Skip to main content
. Author manuscript; available in PMC: 2009 Sep 28.
Published in final edited form as: Technometrics. 2009 May 1;51(2):110–120. doi: 10.1198/TECH.2009.0013

Table 2.

Results of the simulation study. PMSE is reported as the mean (standard error) over the simulated datasets for each simulation setting. The true (false) positive rate is computed by recording the proportion of the important (unimportant) variables included for each data set and averaging over all simulated data sets. A variable is deemed to be included in the Bayesian models if the posterior inclusion probability is greater than 0.5.

(a) Prediction mean squared error (PMSE)
Design Correlation of the predictors MARS COSSO BSS-ANOVA Linkletter
1 Ind 3.23 (0.28) 2.33 (0.13) 1.67 (0.08) 3.50 (0.12)
1 CS (t=1) 7.60 (0.83) 6.08 (0.40) 4.11 (0.27) 7.39 (0.24)
1 AR (ρ=0.5) 5.86 (0.44) 5.37 (0.33) 3.72 (0.18) 6.38 (0.22)
2 Ind 2.26 (0.08) 1.68 (0.04) 1.63 (0.04) 1.40 (0.05)
3 Ind 5.03 (0.38) 4.79 (0.23) 2.72 (0.09) 4.50 (0.08)
(b) Inclusion percentage for variables not in the true model
Design Correlation of the predictors MARS COSSO BSS-ANOVA Linkletter
1 Ind 0.04 0.06 0.03 0.03
1 CS (t=1) 0.04 0.13 0.03 0.08
1 AR (ρ=0.5) 0.03 0.12 0.05 0.06
2 Ind
3 Ind 0.04 0.13 0.10 0.11
(c) Inclusion percentage for variables in the true model
Design Correlation of the predictors MARS COSSO BSS-ANOVA Linkletter
1 Ind 0.78 0.91 0.91 0.81
1 CS (t=1) 0.74 0.83 0.79 0.80
1 AR (ρ=0.5) 0.75 0.82 0.78 0.80
2 Ind
3 Ind 0.67 0.77 0.82 0.89