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Mechanisms of Arterial Remodeling in Hypertension: Coupled
Roles of Wall Shear and Intramural Stress

Jay D. Humphrey

Abstract

Hypertension causes and is caused by significant changes in the structure and function of arteries.
Diverse data collected over the past four decades reveal that many of these changes result from a
mechanical stress or strain mediated reorganization and turnover of cells and extracellular matrix in
vasoaltered states that promotes a “mechanical homeostasis.” This paper reviews diverse data on the
mechanobiological behaviors of vascular cells (endothelial, smooth muscle, and fibroblasts) and
associated changes that manifest at the tissue level. Although experimental design is often motivated
by the thought that altered flow largely affects arterial caliber and altered pressure largely affects
wall thickness, all three primary descriptors of vessel geometry (radius, thickness, length) are coupled
strongly to all three primary measures of stress (wall shear, circumferential, axial). Hence,
mechanobiological responses by resident cells should likewise be expected to be sensitive to all three
primary stresses. It also appears that cellular production of vasoactive molecules, growth factors,
cytokines, matrix proteins, and proteases depends nonlinearly, often sigmoidally, on changes in
stress. This suggests that there is a need to quantify coupled, nonlinear “mechanical dose response
curves” that correlate altered stresses with cellular activity; moreover, mathematical models can help
integrate such information across multiple length scales (from molecule to cell and tissue) and time
scales (from minutes to days and months). For example, quantification of stress mediated synthesis
and cross-linking of collagen organization within the hypertensive arterial wall, and associated
signaling pathways, may suggest new therapeutic strategies based on targeted levels of inhibition.
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Diverse data collected over the past four decades suggest the existence of a mechanical
homeostasis across multiple length and time scales in the vasculature. For examplel, stress
fibers within endothelial and vascular smooth muscle cells appear to disassemble and then
reassemble in a mechanically preferred manner when perturbed from a normal value of
mechanical stress or strain; focal adhesions in smooth muscle cells and fibroblasts tend to
increase in area in response to local increases in mechanical loading so as to maintain the stress
constant at a preferred value; fibroblasts tend to increase the tractions they exert on extracellular
matrix when external loads are decreased from a preferred value, thus suggesting an attempt
to enforce a “tensional homeostasis”; vascular smooth muscle cells tend to re-lengthen to their
normal, preferred values when an arteriole is forced into a vasoconstricted state for an extended
period; and arteries tend to decrease in caliber in response to sustained decreases in flow-
induced wall shear stress, to increase in thickness in response to sustained increases in pressure-
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induced circumferential stress, and to lengthen in response to extension-induced increases in
axial stress. Whereas changes in the cytoskeleton and integrins occur within minutes, changes
at the cell-cell and cell-matrix level occur over hours and those at the vessel level occur over
days to weeks or months. Hence, despite marked differences in length scales (dimensions from
nm to cm) and time scales (durations from minutes to months), mechanobiological control
mechanisms in the vasculature tend to restore values of stress or strain toward preferred
(homeostatic) values in response to diverse perturbations from normal?=°. Biomechanics and
mechanobiology thus play key roles in vascular development, tissue maintenance in maturity,
normal adaptations, aging, disease progression, and responses to injury or clinical
interventions.

A current challenge in hypertension research is to understand how mechanobiological
mechanisms at molecular and cellular levels (e.g., altered turnover of collagen) manifest at
tissue and organ levels and, conversely, how mechanical loads at tissue and organ levels (e.g.,
increased pulse pressure) are sensed by molecular structures and result in altered gene
expression. To gain increased understanding, we can exploit lessons learned from all areas of
vascular research for it appears that the same fundamental cell-mediated mechanisms govern
diverse cases of vascular growth (i.e., change in mass) and remodeling (i.e., change in structure)
via the reorganization and/or turnover of cells and extracellular matrix in evolving
biomechanical states?.

Biomechanical Consequences of Perturbed Flow and Pressure

Notwithstanding complexities of in vivo mechanics due to pulsatile blood flow and nonlinear
anisotropic wall properties®, the normal artery is subjected to three primary mechanical
stresses: a blood flow induced wall shear stress z,, a blood pressure induced circumferential
wall stress oy, and an axial wall stress o, that appears to arise during development and to persist
into maturity due to the long half-life of elastinf. Mean values of these three components of
stress (i.e., forces acting over oriented areas) can be calculated as*
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where x is the blood viscosity, Q the mean volumetric flow rate, a and h the luminal radius
and wall thickness in any pressurized configuration, P the transmural pressure (with low
perivascular pressure), and f the axial force that maintains the axial “prestretch” (which is
appreciated via the axial retraction of a transected artery). The second equation reveals the
importance of the thickness:lumen ratio (h/a), noting that h is total, not intimal-medial,
thickness, and the third equation shows the importance of wall cross-sectional area, which is
often reported with regard to “eutrophic” vs. “hypertropic” remodeling. Although the
importance of axial stress and stretch in hypertension was recognized years ago7, it has received
little attention because of the inability to infer values in vivo.

Large arteries appear to maintain these stresses near homeostatic values (e.g., on the order of
1.5 Pa for 7, and 100 kPa for both o and o, in specific arteries?™*, where 1 kiloPascal (kPa)
equals 7.5 mmHg). Hence, it is instructive to consider how clinically measurable changes in
flow or pressure might lead to tissue level changes in geometry (in addition to changes in
structure and function). Let perturbed values of flow Q and pressure P be related to original
values via Q = ¢Q, and P = yP,, where a subscript or superscript o denotes original and ¢,y
denote sustained percent changes from original (e.g., y = 1.3 if P increases 30% from original).
Equation 1 reveals that if mean wall shear stress and then mean circumferential stress are
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restored via growth and remodeling processes, then specific morphological changes to large
arteries should be:

If7,,=% (*Q“)(perturbed) and 79 4” % (original),

4 4 a
then 7,,=7%, requires -2} ”“Q‘ ,‘:‘%’, or a=¢'a,; @
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For example, a 30% sustained increase in flow alone should cause a 9% increase in both caliber
and wall thickness (i.e., if ¢ = 1.3, then (1.3"%) 1 = .09 with y = 1.0); in contrast, a 30% sustained
increase in pressure alone should cause a 30% increase in thickness but no change in caliber
(i.e., y = 1.3 with ¢ = 1.0). In other words, a mean stress-mediated growth and remodeling
response would require coordinated changes in luminal radius a and wall thickness h based
directly on percent perturbations in hemodynamics from original. Such changes are commonly
observed clinically and in animal studies34:8:9, hence supporting this general hypothesis. Note,
too, that if luminal radius and wall thickness are dictated by flow and pressure, then restoring
o, (equation 1) to its original value requires a change in axial force f, which typically would
cause a change in length (e.g., possible tortuosity). That responses to all stresses must be
considered together is reinforced by observed, coupled effects of pressure (e.g., cyclic
circumferential stress or strain) and flow (wall shear stress) induced changes at cellularand
tissue levels10-12,

Before considering cellular mechanisms by which arteries can achieve gross changes in
geometry, structure, and function, note three subtle points. First, the above (equilibrium)
equations for oy and o are deceptively simple because nonlinear dependencies of pressure on
radius (traditional pressure-diameter data) and axial force on length (common uniaxial data)
are not denoted explicitly, nor are observations that pressure-diameter relations differ at
different axial stretches and axial force-length relations differ at different pressures®. There is
a need, therefore, to account for changes in wall composition, that is, material properties.
Second, equations 1-3 do not account for changes in perivascular tethering or the pulsatility
of flow and pressure, which can play important roles in arterial growth and remodeling. There
is a need, therefore, for more research on the associated mechanobiology. Third, changes in
arterial geometry in response to altered loads depend on coupled elastic deformations (i.e.,
nonlinear wall properties), acute and chronic changes in vascular tone (i.e., smooth muscle
contraction or relaxation), and reorganization or turnover of cells and matrix in potentially
evolving biomechanical states (i.e., growth and remodeling). Hence, even in a simple case of
asingle sustained change of flow or pressure, the means by which and the durations over which
radius tends toward ¢"*a, and thickness tends toward s”*yh,, can be complex and depend on both
short-term and long-term cellular responses, including altered proliferation, migration,
differentiation, apoptosis, synthesis and degradation of matrix, cross-linking of matrix, integrin
binding that governs cell-matrix interactions, and cadherin activity that governs cell-cell
interactions.

Vascular Mechanobiology

The first reports of mechanobiological responses by vascular cells appeared in the
mid-1970s17°. Since then, it has been shown that many different non-structurally significant
molecules (e.g., vasoactive, growth factors, cytokines, proteinases, coagulation factors, an so
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forth) and structurally significant constituents (e.qg., fibronectin, elastin, collagens,
proteoglycans) are produced by fibroblasts, smooth muscle, and endothelial cells in response
to altered mechanical loads2:3:13-15, Although associated mechanisms of
mechanotransduction are not understood fully, G-proteins, ion channels, receptors for growth
factors and vasoactive molecules, and the cytoskeletal-integrin—extracellular matrix axis play
fundamental roles. For example, changes in tissue-level loads can cause rapid reorganization
or remodeling of integrins and associated intracellular proteins so as to promote mechanical
homeostasis®. Integrins play diverse roles, from influencing cell migration, proliferation, and
apoptosis to enabling cells to survey their local mechanical environment or to alter myogenic
responses!®17. Recall, however, that oy is often on the order of 100 kPa in arteries. Although
some investigators suggest that intramural cells necessarily “feel” this level of stress, the
aforementioned findings that some cells attempt to maintain stress on the order of 3 to 10 kPa
at focal adhesions suggests that the full load supported by the extracellular matrix need not be
felt by resident cells, with the possible exception of contractile smooth muscle cells. Rather,
cells can be “stress shielded” by matrix and may merely survey their local environment to
determine appropriate mechanobiological responses!+18. There is a need for more research on
this important aspect of mechanotransduction, which will be essential for linking molecular
level responses and tissue level stimuli.

Even after molecular mechanisms of mechanotransduction are understood fully, tissue level
responses (e.g., increasing wall thickness in response to increased pressure, due to increases
in collagen) should continue to be correlated with changes in the continuum metrics of stress
or strain1? for this level of understanding is fundamental to clinical care (e.g., prognosis,
surgical planning, medical device design)2°. That said, such correlations must capture
underlying complexity; altered gene expression often relates nonlinearly to mechanical stimuli,
thus cellular responses must be measured at multiple levels of stress or strain. For example,
consistent with observed tissue level changes in caliber, data reveal an increasing sigmoidal
relationship between increased z,, and eNOS mRNA?21 and a decreasing sigmoidal relationship
between increased z,, and ET-1 mRNA?22, Ultimately, however, we must know the amounts of
nitric oxide (NO) and endothelin-1 (ET-1) produced, not just changes in mMRNA expression.
Li et al.23 reported data sufficient to quantify collagen synthesis in terms of smooth muscle
cell stretch, again suggesting an increasing sigmoidal relationship. Unfortunately, data from
most reports are not sufficient to construct appropriate nonlinear relationships since the
objective is often to show statistical differences between an unloaded and one or two loaded
cases. There is a need, therefore, for data sufficient to quantify “mechanical dose response
curves,” which is to say that we must quantify better the responses at multiple levels of loading.

There are two issues related to such quantification. First, cellular production of a particular
molecule often depends on changes in multiple types of loads. For example, whereas
endothelial production of ET-1 decreases with increasing wall shear stress?2 (e.g., 3.5 fold due
to an increase in shear from 0 to 2.0 Pa), it increases with increasing cyclic stretch?* (e.g., 1.7
fold due to a 10% stretch relative to no stretch). Similarly, whereas endothelial production of
eNOS increases with increasing wall shear stress?! (e.g., 2.5 fold due to an increase in shear
from 0 to 1.5 Pa), it also increases with increases in cyclic strain?® (~1.9 fold at 6% and 3.1
fold at 109% stretch relative to no stretch). Wall shear stress and cyclic circumferential stretch
can change simultaneously in vivo, hence mechanical dose response curves (actually surfaces)
must account for complex responses to multiple stimuli. Second, there is a need to quantify
changes in terms of all known pathways even for phenomenological modeling. For example,
cyclic stretch (or stress) mediated production of collagen by smooth muscle cells likely occurs
via multiple processes23: mechanical stress appears to increase both angiotensin-11 (ANG-I1)
production and AT receptor sensitivity, which in turn can stimulate the production of latent
transforming growth factor-beta (TGF-p), which can be activated by mechanical stress and
thereby cause an increased production of collagen. Hence, although collagen production can
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be correlated directly to changes in cyclic stretch (or stress), it can also be correlated with
mechano-controlled ANG-II activity and subsequent production and activation of TGF-p26:
21 Knowing that blood flow also alters TGF-P activity28, we again see the need for
quantification in terms of multiple stimuli to appreciate potential overlaps in cases of altered
wall shear stress and intramural stress (or stretch). Indeed, cyclic stretch correlates with smooth
muscle cell proliferation in culture, with stretch upregulating PDGF. The importance of stress-
mediated changes in TGF-$ and PDGF, as well as other growth factors and cytokines, has been
confirmed in numerous in vivo studies of hypertension8:2%:30, There is a need, however, to
quantify time-dependent intramural changes in molar concentrations of growth factors
produced as a function of multiple simultaneously applied stresses or stretches and to
determine, probably in cell culture, whether such effects are competitive or synergistic. Finally,
although most attention in arterial biology and mechanics has been focused on endothelial and
smooth muscle cells, there is increasing evidence that adventitial fibroblasts play important
roles in vascular homeostasis as well as in disease progression and injury responses31=32, Thus,
there is a need for similar data on mechano-control of fibroblast activity.

Complementary Roles of Vasoactivity and Matrix Remodeling

Vasoaltered

Briefly, there are two primary roles of altered vasoactivity relative to growth and remodeling.
First, altered smooth muscle tone changes the biochemomechanical state in which cell and
matrix reorganization and turnover occurs and, second, vasoactive molecules play important
roles in modulating the rates of cell and matrix turnover within the vasoaltered states.

States

In response to a local increase in blood flow above normal, which increases 7, the endothelium
upregulates eNOS and increases its production of NO, which causes the wall the dilate and

return shear stress toward original. If the flow returns to normal soon thereafter, NO production
likewise returns toward normal and the vessel maintains its original caliber. This is the normal
vasoactive response. If the local increase in flow is sustained, however, as, for example, in an
arterio-venous fistula or vigorous exercise, the increased production of NO enables cell and

matrix reorganization or turnover to occur in the dilated state (noting that an increased radius
a and isochorically decreased thickness h increasesy but not necessarilys,). Hence, combined
wall shear and intramural stress mediated growth and remodeling in a vasodilated state allows
the wall to become entrenched at a larger radius and wall thickness. NO production may then
return to normal if 7, is normalized, which may “reset” control with regard to increased flow.

Similarly, consider the case of a sustained increase in pressure. Because large arteries are nearly
elastic, and thus distensible, an initial local increase in pressure tends to increase the luminal
radius and isochorically decrease thickness. Again, these changes serve to increase oy, which
sets into motion smooth muscle and possibly endothelial and fibroblast mediated growth and
remodeling. Yet, the initial pressure-induced increase in caliber would also decrease 7, which
in turn would tend to decrease endothelial production of NO and increase production of ET-1
to restore shear toward normal. Thickening thus occurs in an initially constricted state at the
original caliber via increases in smooth muscle (hyperplasia and/or hypertrophy driven by
stress-mediated increases in PDGF, TGF-p, etc.) and extracellular matrix (particularly fibrillar
collagens driven by increases in TGF-3, connective tissue growth factor (CTGF), etc.)
mass3>14:15,23 Hence, the wall again becomes entrenched within a vasoaltered state, with
multiple stresses simultaneously playing important roles. Once the wall has thickened
sufficiently to restore a4 toward original (i.e., increased the ability of the wall to withstand the
increased pressure), at a preserved caliber and thus 7, it would seem that the endothelium
could return to its normal production of NO. It appears, however, that NO production may not
normalize in hypertension, a situation often referred to as “endothelial dysfunction”. Whether
the endothelium is actually impaired in its ability to produce NO or if there is a resetting of its
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mechano-regulatory target, an increased competition for L-arginine (e.g., by arginase33), or a
competitive upregulation of other vasoactive molecules (e.g., ANG-II) is not clear, however.
Finally, although usually not discussed, the overall increase in thickness at the same radius
necessarily increases cross-sectional area and thereby decreaseso, unless the axial force
decreases proportionately. The latter may occur due to a net increase in the collagen:elastin
ratio that unloads the prestretched elastin®, which may be related to the aforementioned
observation that axial prestretch decreases in hypertension’. Potential implications of this to
overall (biaxial) mechanical homeostasis remain unknown, however.

Altered Rates of Turnover

Another important aspect of wall shear stress regulated changes in vasodilator/vasoconstrictor
production is that NO is an inhibitor of smooth muscle cell proliferation and synthesis of
collagen whereas ET-1 is a promoter of smooth muscle proliferation and synthesis of collagen.
For example, NO has been shown to decrease collagen production by cultured vascular smooth
muscle cells by 30-40% in a dose-dependent (perhaps sigmoidal) manner depending on NO
donor concentration34. Conversely, collagen | production has been shown to depend non-
monotonically on ET-1 concentration3°, peaking at an ~5 fold increase at 108 M. Effects due
to ET-1, which are fundamental in hypertension36, can be augmented by those of other
vasoconstrictors, particularly ANG-II. Recall, therefore, that cyclic mechanical stretch
increases collagen production via an ANG-11/TGF-B pathway?23, apparently involving an
increase in ATy receptor synthesis or sensitivity3’.

Although ANG-II tends to have a stronger effect than ET-1 on SMC proliferation (125%
increase versus 25% increase, both at 1078 M), both can affect collagen production by inducing
growth factors. For example, ET-1 induces an increased production of CTGF; ANG-II induces
an increased production of both CTGF and TGF-p (which stimulates CTGF production further)
37,38 Noting that TGF-p acts through a Smad signaling pathway, ANG-11/TGF-B control of
collagen synthesis is complicated further by the ability of ANG-II to directly activate Smad
signaling®®. Because of the key role played by ANG-Il, it is not surprising that ACE inhibitors
and AT receptor antagonists (e.g., losartan) have been effective in reducing ANG-11 stimulated
collagen production. Nevertheless, quantitative relationships between mechanically induced
changes in intramural concentrations of NO, ET-1 and ANG-II, and their combined effects on
the growth factor production or activation that modulate collagen synthesis, would increase
our overall understanding.

In addition to altered collagen production (e.g., mass fraction), its undulation, orientation,
cross-linking, and interactions with other matrix proteins or proteoglycans are fundamental to
defining the stiffness of the arterial wall. There is a need, for example, for information on the
“prestretch” at which new fibers are incorporated within extant matrix and similarly what
mechanical cues dictate the orientation of collagen fibers that are deposited by smooth muscle
cells or fibroblasts20. With regard to cross-linking, both lysyl oxidase and tissue
transglutaminase activity (tTG) can play important roles in cross-linking matrix proteins within
vasoconstricted states and thereby entrenching a vessel at a different caliber3®. For example,
reduced 7, decreases endothelial production of NO, which is an inhibitor of tTG activity.
Conversely, tTG activity appears to be increased by increased intracellular calcium associated
with increased smooth muscle contractility as occurs in cases of reduced z,, There is a need to
identify possible mechano-regulation of tTG availability and activity, particularly because tTG
associates with B-integrins and integrin clustering is sensitive to changes in mechanical loading.

MMP Activity

The structural integrity of the extracellular matrix depends on a delicate balance between
synthesis and degradation, and its contribution to arterial stiffness is increasingly recognized
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as an important determinant of vascular health or disease*?+41. Matrix metalloproteinases
(MMPs) represent an important class of enzymes capable of degrading matrix constituents2:
43 they are produced by endothelial cells, smooth muscle cells, fibroblasts, and infiltrating
inflammatory cells. MMP expression is controlled transcriptionally by inflammatory
mediators, growth factors, cell-cell and cell-matrix interactions, and mechanical stress or strain.
By degrading matrix, MMPs not only affect wall stiffness, they also impact cell migration,
proliferation, apoptosis, and differentiation and thereby play an important role in vascular
remodeling in hypertension®* as well as other vascular diseases, particularly atherosclerosis
and aneurysms*20, There are 22+ members of the MMP family, but MMP-2 and MMP-9
(gelatinases), MMP-1 (interstitial collagenase), MT1-MMP (membrane type MMP), and
MMP-12 (macrophage metalloelastase) have tended to attract considerable attention in
vascular research. For example, it has been shown that 5% static and 10% cyclic uniaxial stretch
upregulate the production of MMP-2 and MMP-9 (2 to 5 fold) by vascular smooth muscle cells
in culture* and 2.5, 5, and 10% cyclic uniaxial stretches similarly increase MMP-2 production
(2 to 10 fold) by endothelial cells in a dose dependent manner46.

Whereas MMPs are secreted primarily as inactive pro-forms, they are activated by serine
proteases, reactive oxygen species, other MMPs, and even multiple types of mechanical stress.
Indeed, stress can affect the kinetics of MMP-matrix interactions and thus rates of collagen
degradation. The activity of MMPs is regulated further by tissue inhibitors of MMPS, or
TIMPs, but there has been little attention to possible mechano-regulation of TIMPs. Despite
significant information on the role of MMPs, and associated intracellular signaling pathways,
in vascular development, adaptation, disease progression, and response to injury, there has
been little attempt to quantify MMP/TIMP production or activation as a function of multiple
levels of mechanical stimuli, including the biaxial loading as exists in vivo, which as noted
above is essential for determining mechanical dose response curves and achieving predictive
capability. There is also a need to understand better the time-course of MMP activity, which
appears to increase soon after any mechanical perturbation or injury and then return slowly
toward baseline values®’.

Mechanical Damage

Although considerable attention has appropriately been directed towards the turnover of
vascular collagen??, the important roles of elastin cannot be ignored#8:4. Vascular elastin,
with its associated fibrillins and fibulins, appears to be produced primarily during development
and early post-natal periods. Hence, in contrast to vascular collagen, which is produced
continuously and has a normal half-life of ~70 days, structurally significant vascular elastin
appears to be produced early in life and have a half-life on the order of decades*. It is thus
degradation or mechanical damage of elastin, not frank turnover, that is of most importance in
vascular disease and injury, particularly in aneurysms, atherosclerosis, hypertension, restenosis
following angioplasty/stenting, and aging. Elastin is likely susceptible to mechanical fatigue
damage (i.e., gradual weakening due to repetitive cycling, noting that arteries can experience
30 million loading cycles per year), which could be more problematic in cases of increased
pulse pressure?8. There is, of course, increasing evidence that increased pulse pressure in
hypertension may be a more important mechanical stimulus for growth and remodeling in large
arteries than increased mean pressure9:°0, Much can be learned about load-induced
fragmentation of elastin in hypertension from the literature on arterial aging*8:49. Similarly,
Marfan syndrome, due to a mutation in the fibrillin-1 gene, appears to represent a type of
“accelerated aging”, particularly in the aorta, and thus may provide insight into general aspects
of mechanically induced damage to elastin. Of course, in addition to its important structural
role, elastin plays important biological roles, as, for example, by influencing smooth muscle
cell migration, proliferation, and differentiation status. There is a need, therefore, to understand
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better the mechanical basis of rates of degradation or damage of elastin in hypertension and
associated effects on wall remodeling.

Need for Integrative Mathematical Models

The 1998 Bioengineering Consortium (BECON) Report of the U.S. National Institutes of
Health stated,

“The success of reductionist and molecular approaches in modern medical science
has led to an explosion of information, but progress in integrating information has
lagged ... Mathematical models provide a rational approach for integrating this ocean
of data, as well as providing deep insight into biological processes.”

Whereas the need remains to develop more robust mathematical models at all scales (e.g.,
macro, micro, and nano), there is also a need to develop approaches that integrate models across
diverse scales. That is, “multiscale modeling” promises to be an important contributor to
integrating information on molecular and cellular mechanisms with understanding at the tissue
level. Note, for example, that significant progress is being realized in modeling the kinetics of
basal NO release by the endothelium®?, diffusion of NO within the arterial wall®2, and kinetics
of NO activation of soluble guanylate cyclase within smooth muscle cells®3. Similar effort
must be directed toward modeling the kinetics, diffusion, and activity of ET-1 and ANG-II as
well as key cytokines, growth factors, and MMPs. Moreover, progress is being made in
developing tissue level mathematical models that account for mechano-regulated deposition
and degradation of individual structurally important constituents within the arterial wall, their
contributions to overall structural integrity, and associated reaction-diffusion models for the
non-structurally significant substances that influence cell and matrix turnover!:20, which can
exploit the increased understanding at the molecular level. Much remains to be accomplished,
however, before such models can provide reliable descriptive and predictive capability, thus
there is a need for increased effort in this direction.

Perspective

Since the mid-1970s, myriad experiments have demonstrated a mechanical homeostasis across
multiple length and time scales in the vasculature and similarly the ubiquitous role of cell
mediated mechano-regulation of structure and function in nearly all aspects of vascular health
and disease. Nevertheless, there is a need for additional experiments that provide data sufficient
to quantify mechanical dose response curves and that explore potentially competitive or
synergistic effects by multiple cell types exposed simultaneously to changes in multiple
components of stress or strain; there is also a need for mathematical models that can help
integrate information from molecular, cellular, and tissue level studies. For example,
understanding better the molecular mechanisms of stress-mediated regulation of collagen
synthesis and degradation in vasoaltered states promises to suggest new pharmacological
interventions to control the altered wall stiffness that causes and is caused by hypertension.
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