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A B S T R A C T

The high complexity and large dynamic range of blood plasma proteins currently prohibit

the sensitive and high-throughput profiling of disease and control plasma proteome sam-

ple sets large enough to reliably detect disease indicating differences. To circumvent these

technological limitations we describe here a new two-stage strategy for the mass spec-

trometry (MS) assisted discovery, verification and validation of disease biomarkers. In an

initial discovery phase N-linked glycoproteins with distinguishable expression patterns

in primary normal and diseased tissue are detected and identified. In the second step

the proteins identified in the initial phase are subjected to targeted MS analysis in plasma

samples, using the highly sensitive and specific selected reaction monitoring (SRM) tech-

nology. Since glycosylated proteins, such as those secreted or shed from the cell surface

are likely to reside and persist in blood, the two-stage strategy is focused on the quantifi-

cation of tissue derived glycoproteins in plasma. The focus on the N-glycoproteome not

only reduces the complexity of the analytes, but also targets an information-rich subpro-

teome which is relevant for remote sensing of diseases in the plasma. The N-glycoprotein

based biomarker discovery and validation workflow reviewed here allows for the robust

identification of protein candidate panels that can finally be selectively monitored in the

blood plasma at high sensitivity in a reliable, non-invasive and quantitative fashion.
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1. Protein biomarkers for preventive and predictive Recent technological advancements along with the informa-
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The greatest benefits for patients are likely to be realized from

the monitoring and management of early stage disease rather

than from treatment of late stage disease. This concept, often

called preventive medicine, has been a vision for many years.
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ation of European Bioche
tion generated by the human genome project offer great

hope for making the early detection of diseases a reality

within the next few years in many disease settings (Goncalves

et al., 2004; Hood et al., 2004; Jain, 2004).

Among the strategies that have the highest potential to real-

ize the promises of preventive medicine is the detection of
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prognostic and diagnostic protein signatures in blood plasma1

and other body fluids (Christensen et al., 2008; Gravett et al.,

2007; Theodorescu et al., 2006). It has been shown that personal-

ized molecular gene expression signatures can be detected in

tissues and that these signatures can aid clinicians to diagnose

early stage disease, stratify similar pathologies, and to distin-

guish those diseases which respond to current therapy from

those that do not (Chang et al., 2003; Staunton et al., 2001; van

’t Veer et al., 2002; van de Vijver et al., 2002). As an example, in

2007, the FDA cleared the first multivariate molecular test that

profiles genetic activity. It is a breast cancer specific molecular

prognostic test which correlates the expression pattern of 21

genes in paraffin-embedded tumor tissue probes with the likeli-

hood of distant reoccurrence in patients with node-negative, ta-

moxifen-treated breast cancer (Paik et al., 2004). Although the

test is of highly predictive value it requires the complicated

and costly clinical extraction of selective breast tissue samples.

Unfortunately, most human tissues are difficult to access

and it is unlikely that human tissue will be routinely analyzed

in large populations for the presence of such predictive gene ex-

pression signatures. In contrast, human blood is easily accessi-

ble for sampling and contains informational cues from all

organs which is contacting through a network of arteries, veins

and capillaries. During its journey through the cardiovascular

system blood has been shown to collect molecular cues consist-

ing of proteins secreted, shed or otherwise released from tissues

(Liotta and Petricoin, 2006; Zhang et al., 2007). Therefore, the

quantitative protein composition of blood plasma contains in-

formation about the state of organs and the whole organism

in health and disease – an informational network which needs

to be deciphered to allow for remote sensing of specific diseases.

The mapping of this informational network requires robust, re-

producible and sensitive measurements of single protein

markers or selected protein panels. Such protein panels can

be thought to reflect the perturbed molecular networks in the

disease microenvironment. The task for a successful blood bio-

marker strategy therefore involves the analysis of the disease

perturbed cellular networks, the identification of cellular pro-

teins that indicate the state of the perturbed networks and their

detection and quantification in blood plasma.
2. Currently used protein biomarkers and their
limitations

Initial attempts to use the information contained in the blood

proteome for early diagnosis were focused on the detection

and quantitative measurement of single protein markers via

affinity reagents. This is exemplified by the best known

plasma biomarker, prostate specific antigen (PSA). Despite

its now well recognized limited specificity for the detection

of prostate cancer, PSA continues to be the most widely

used tumor marker in the world. The discovery of PSA is beset

with controversy as different researchers discovered it inde-

pendently using immunological techniques, resulting in dif-

ferent names for the same marker (Rao et al., 2008).

Originally, PSA was of interest for immunological reasons.
1 In this paper, the term plasma is used to indicate serum or
plasma.
Tissue specific antigens were believed to be targets for specific

antibodies in order to destroy cancer (Flocks et al., 1960). Later

PSA was also suggested as forensic evidence in cases of rape

(Hara et al., 1971). Only in 1987, some 27 years after the first

publication, Stamey et al. (1987) suggested in a landmark

study to use PSA as a marker for prostate cancer.

PSA was found to be specifically expressed in prostate tis-

sue and to be secreted into the blood stream at elevated levels

upon disease progression. A second reason for using PSA as

a tumor marker was the availability of specific antibodies for

standardized and affordable ELISA blood tests. A second

well-known example of a single protein biomarker is the

Her2/neu proto-oncogene (CD340). This membrane bound re-

ceptor tyrosine kinase exemplifies the way scientists in the

1980s attempted to uncover new cancer-causing oncogenes.

By overexpressing genes of interest, the effect of potential on-

cogenes on cancer induction or development was assayed. In

one such study the Her2/neu gene was found to cause breast

cancer in rats (Schechter et al., 1984). Later, it was found to

be amplified in up to 30% of invasive breast cancers and its

over-expression to be associated with a poor prognosis (Sla-

mon et al., 1987). Elevated plasma levels of CD340 are there-

fore used as an indicator for higher aggressiveness in breast

cancer (Luftner et al., 2003). Her2/neu is not only used as a bio-

marker, but also as a target of trastuzumab (Herceptin) in anti-

cancer therapy (Baselga et al., 1998). Both examples showcase

single proteins which can ‘‘leak’’ from diseased tissue into the

blood stream and are indicative for a disease if detected at el-

evated plasma levels. Unfortunately, neither PSA nor Her2/

neu, nor for that matter any other single protein biomarker

in clinical use, have sufficiently high sensitivity and specificity

to predict the development of a particular form of disease and

to accurately detect it at an early stage. In the Prostate Cancer

Prevention Trial (PCPT), among 5112 men in the placebo arm

of this trial, a PSA level >4 ng/ml had specificity of 93% and

a rather low sensitivity of 24% (Thompson et al., 2006), while

a study by Cook et al. (2001) revealed that at an upper limit

at 15 ng/ml of Her2/neu the specificity for normal breast was

98% and the sensitivity for breast cancer stage IV disease

was only 40%. In Her2/neu positive breast cancer patients,

a Her2/neu serum concentration cutoff of 37 ng/ml resulted

in 95% specificity and 62% sensitivity (Kong et al., 2006).

Therefore, additional test parameters are needed in combi-

nation with current biomarker tests to increase their perfor-

mance. A panel of disease-specific protein biomarkers is

thought to be necessary to narrow down diagnosis and treat-

ment options, and reliable strategies for the discovery of such

panels need to be developed. Furthermore, both examples

cited above highlight another major limitation for current pro-

tein biomarker measurements. Without suitable antibodies or

other affinity reagents to sensitively and unambiguously de-

tect and quantify the respective proteins, their validation

and use as protein biomarkers has been substantially limited.
3. Protein biomarker discovery strategies and their
limitations

Most clinically relevant biomarkers have been discovered ser-

endipitously, as already mentioned in the case of PSA and
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Her2/neu, or via a circuitous route of trial and error. Sub-

stances thought to be associated with a certain disease were

further investigated in several directions (Pritzker, 2002). For

example, in 1847 Bence Jones detected large quantities of

a particular protein in the urine of a multiple myeloma patient

(Jones, 2006). More than a hundred years later the protein was

identified as a free antibody light chain produced by the tumor

(Kyle, 1994) that was also present in blood plasma (Sinclair

et al., 1986). It was a 152 years after its first discovery that in

the year 1998 the FDA approved a routine immunodiagnostic

test for the protein as a diagnostic marker for multiple mye-

loma. Clearly, such non-directed biomarker discovery efforts,

while occasionally successful, lack the efficiency to be of gen-

eral utility for medicine.

The emerging field of proteomics with its objective to com-

prehensively identify and quantify proteomes immediately

raised high expectations for plasma biomarker discovery (Sri-

nivas et al., 2002). Most biomarker discovery studies based on

proteomics to date attempted to detect proteins specifically

associated with disease by the comparative profiling of

plasma proteomes (or specific fractions thereof) of healthy

control and disease affected donors. Several proteomic tech-

niques have been applied for this purpose, including two-di-

mensional gel electrophoresis (Lee et al., 2002), SELDI-TOF

MS (Petricoin et al., 2002), label free LC–MS pattern compari-

son (Zhang et al., 2005), LC–MS/MS shotgun analysis (Chen

and Yates, 2007; Hong et al., 2004; Radulovic et al., 2004), and

protein array methods (Janzi et al., 2005; Loch et al., 2007).
Figure 1 – Depicted are the plasma protein concentration as described by A

main categories (classical plasma proteins, tissue leakage products, interleu

HUPO plasma proteome initiative (States et al., 2006) and yellow dots rep
However, these purely discovery-driven studies have

achieved only modest success. While these methods, either

by themselves or in combination, have achieved substantial

progress in the quantity and quality of data generated, every

presently known plasma proteomic method today still only

samples a relatively small fraction of the proteome that

mostly consists of the relatively highly expressed proteins

(States et al., 2006). Both the large dynamic concentration

range of up to 12 orders of magnitude for plasma proteins

but also the presence of very high abundance proteins such

as serum albumin (35–50 mg/ml) and immunoglobulins (5–

18 mg/ml) which mask the lower abundance plasma proteins

present major challenges for comprehensive plasma pro-

teome analysis, especially for proteins below the microgram

per milliliter concentration limit (Anderson and Anderson,

2002). The discrepancy between the sensitivity of present pro-

teomics methods and the requirements for biomarker discov-

ery is illustrated in Figure 1. The figure indicates the

concentration of proteins identified by the HUPO plasma pro-

teome collaborative study (States et al., 2006) and that of cur-

rently used plasma biomarkers (Polanski and Anderson, 2006).

It is apparent that the concentration ranges of the two popu-

lations barely overlap, suggesting that it is unlikely that the

continued application of the same methods in further studies

will discover new biomarkers. The presently used proteomics

methods mainly sample so called classical plasma proteins in

the range of mg/ml to mg/ml, i.e. those proteins that carry out

their functions in the circulation, thus excluding messengers
nderson and Anderson (2002). The proteins can be grouped in three

kins/cytokines). Red dots indicate proteins that were identified by the

resent currently utilized biomarkers (Polanski and Anderson, 2006).
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and leakage products (Putnam, 1976). In contrast, the PSA con-

centration in blood plasma of healthy individuals is around

2 ng/ml (Herrmann et al., 2004; Ng et al., 2005), and the blood

plasma concentration of Her2/neu is in the range of 10 ng/

mL, about one order of magnitude higher than for PSA (Wu,

2002). Both plasma biomarkers are thus situated in the lower

region of currently known plasma protein abundance levels

and the same applies to other plasma biomarkers known to-

day. Thus, future biomarker discovery technologies have to

be able to reliably detect plasma proteins in the low ng/ml

concentration range, or even below the ng/ml range.

Because currently used LC–MS-based proteomic methods

have great difficulty to analyze low abundance proteins, nu-

merous protein and/or peptide separation methods have

been used to reduce plasma sample complexity and thus to in-

crease sensitivity of detection in the thus generated fractions

(Issaq et al., 2002). The most common protein fractionation

methods use size fractionation by gel electrophoresis or chro-

matography. While protein fractionation methods performed

upstream of a mass-spectrometric shotgun analysis have to

be performed offline, peptide separation based on hydropho-

bicity can be achieved online and is therefore easier to auto-

mate. Although sample fractionation is the key to a higher

number and quality for protein identifications, in the context

of a biomarker discovery effort such techniques can be prob-

lematic for mainly two reasons. First, sample fractionation in-

creases the number of samples to be analyzed, which is time

and labor intensive to a degree that routine measurements

of larger patient groups become prohibitive. Second, varia-

tions along a multi-step protein separation workflow, e.g.

the slightly different distribution of specific proteins in col-

lected fractions, will add another level of bioinformatic com-

plexity toward the detection of disease related patterns.

Another popular strategy to achieve higher sensitivity in MS

assisted plasma proteome analyses has been the selective re-

moval of high-abundance proteins such as albumin and the

various forms of immunoglobulins by selective immunode-

pletion. A study published by Echan et al. (2005) showed that

effective depletion of six abundant proteins resulted in the

ability to load larger equivalent amounts of plasma into down-

stream separation workflows including 2-D gels, leading to

a more in depth plasma proteome characterization. The re-

moval of the six most abundant plasma proteins depletes

85% of the total plasma protein resulting in an estimated

five-fold enrichment of a potential biomarker (Brand et al.,

2006). Another immunodepletion LC column removes 99% of

the 20 most high abundance plasma proteins representing

97% of the proteomes giving rise to an up to 20-fold enrich-

ment as stated by the manufacturer (Sigma–Aldrich). Despite

these improvements, the currently used MS assisted bio-

marker discovery efforts still lack the needed sensitivity and

the throughput required to identify biomarker candidates in

the low ng/ml concentration range by the comparative analy-

sis of multiple samples.

Based on these observations we conclude that the next

generation proteomics-based protein biomarker discovery

strategies need improved analytical sensitivity, robustness

and sample throughput in order to reliably detect tissue-spe-

cific protein patterns in plasma with high specificity. More-

over, special attention has to be paid to the time consuming
and labor intensive validation of the large datasets produced

by these methods in a relatively short time, an issue that so

far has been neglected in most studies as pointed out in recent

reviews (Domon and Aebersold, 2006; Zolg, 2006).
4. Performance boundaries for proteomic
technologies in biomarker discovery

In the segment above we have discussed the limitations of

current proteomic methods for protein biomarker discovery.

Here we discuss the performance boundaries that have likely

to be matched for a method to be successful.

The accessible human body fluids such as plasma, urine,

ascites, semen, saliva, seminal plasma and cerebrospinal fluid

are thought to contain tens of thousands of different proteins

spanning more than 10 orders of magnitude in abundance

(Anderson and Anderson, 2002). To comprehensively analyze

such samples at the required sample throughput a proteomic

technology has to meet a number of so far unmet require-

ments. First, the technology has to have the sensitivity to

identify and quantify minute amounts of proteins in plasma

to a concentration of at least low ng/ml, i.e. seven orders of

magnitude in concentration below albumin. In that regard

good signal to noise ratios are critical to exclude artifactual re-

sults. This is particularly challenging if the concentration

range assayed exceeds the dynamic range of the MS platform

used (Rifai et al., 2006). Second, any proteomic platform for the

discovery of candidate disease protein biomarkers must have

the capacity for the automated, repetitive and reproducible

analysis of hundreds of patient samples in a relatively short

time period and in a cost-effective manner to achieve suffi-

cient statistical power to be clinically useful. Third, clinically

relevant diagnostic markers require both high sensitivity

and specificity (Gutman and Kessler, 2006). To achieve this

goal, any proteomic platform in a biomarker discovery work-

flow requires robustness in the sense that repetitive measure-

ments achieve coefficients of variance in the low single digit

range, and fourth, the assay that measures the protein or

sets of proteins in question needs to be portable between lab-

oratories in a way that guarantees comparable results

obtained in different studies, given that the sample taking,

handling and storage thereof is well controlled and

standardized.

Apart from the technological challenges, the quest for

standardized protein biomarkers as measurable disease pre-

dicting indicators is further complicated by the genetic varia-

tion among individuals (Altmüller et al., 2001). This genetic

variation causes measurable protein abundance changes

within the plasma of individuals that are independent of

any disease state, making it difficult to define ‘‘normal’’ pro-

tein levels. Furthermore, one has to consider that the plasma

proteome is dynamic over time and a function of a multitude

of factors (daytime, age, sex, etc.). Therefore, disease related

protein abundance changes especially in the onset of a disease

can be buried within normal plasma protein fluctuations

within the individuals tested (Coombes et al., 2005). On top

of this, even at the single protein level an array of protein

modifications such as posttranslational modifications as

well as point mutations frequently occur expanding the
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potential variation among patients boundlessly (Nedelkov

et al., 2005). In order to circumvent some of the above men-

tioned challenges at least in the biomarker discovery phase

genetically stable mouse models of disease could simplify

the initial protein biomarker candidate selection (Kuick

et al., 2007).
5. A role for proteomic technology in all phases of
biomarker discovery

The process of identifying new protein biomarkers can be

mainly divided into four major phases as suggested by Rifai

et al. (2006). In the initial discovery phase, proteins of differen-

tial abundance in plasma are identified and classified. Subse-

quently, promising candidates are qualified in a second

phase and a subset of these verified in a third phase. In the

last phase, the surviving candidates are validated as potential

biomarkers by using a specifically developed high-throughput

assay, usually ELISA. During this four-step biomarker discov-

ery process, the number of samples that need to be analyzed

increases while the number of potential biomarker candidates

decreases from initially hundreds to a few candidates. These

remaining candidates must be verified and validated by show-

ing discriminative power in clinical studies among large co-

horts of cancer positive and negative patients. The rationale

for choosing this path of progressive attrition of biomarker

candidates is rooted in the practical challenge to quantify large

numbers of proteins in large numbers of samples, rather than

in fundamental considerations. In fact, in an ideal scenario all

the putative biomarkers would be subjected to rigorous valida-

tion in large sample sets, thus avoiding the application of arbi-

trary rules to reduce the candidate pool at each step.

Until very recently mass spectrometry has been used al-

most exclusively for the identification of potential biomarker

candidates, whereas their verification and validation have tra-

ditionally been carried out by higher throughput affinity

methods. Emerging new MS-based analytical platforms with

increased selectivity and sensitivity have now the capacity

to be instrumental not only in the initial phase of biomarker

discovery but also for the follow-up studies in clinical settings.

Multiplexed measurements of biomarker candidates via tar-

geted MS methods such as selected ion monitoring (SRM;

also referred to as multiple reaction monitoring, MRM) have

the potential to speed-up the expensive and time-consuming

biomarker verification and validation phases (Lange et al.,

2008b). Therefore, the application of emerging targeted mass

spectrometry-based proteomics methods with their proven

ability to reliably and sensitively detect and quantify pre-de-

termined sets of proteins in complex samples will be instru-

mental for protein biomarker discovery as well as

qualification, verification and validation, respectively (White-

aker et al., 2007).
6. Generation of biomarker candidate sets by
quantitative cell and tissue proteomics

Above we discussed the challenges in identifying protein bio-

marker candidates by comparative plasma proteomics.
Compared to detecting meaningful disease related protein dif-

ferences in plasma the challenges of identifying proteins that

differentiate cancerous and normal cells and tissues are sig-

nificantly reduced. This is due to the fact that the protein con-

centration range in tissue is expected to be lower than in blood

which facilitates the measurement of a higher percentage of

the proteome in a single analysis (Eriksson and Fenyö, 2007;

Tyers and Mann, 2003). Cell lines have the additional advan-

tage that in most cases the amount of sample needed for MS

analysis is not limited which makes cell lysates compatible

with extensive fractionation schema, further increasing the

likelihood of discovering proteins of lower abundance. A key

benefit of tissue samples is the fact that the differential pro-

teome profiles can be directly investigated at the origin of

the disease. Therefore, disease indicating protein concentra-

tion differences are expected to be more pronounced in suit-

able tissue samples compared to the blood stream where the

relevant tissue derived proteins are expected to be detected

after significant dilution. Assuming that a protein gets se-

creted from the prostate into the blood, the protein would be

a thousand times more concentrated in the tissue by simply

comparing the volume of prostate and plasma. In turn, protein

abundance ratio changes in the tissue compared to blood are

also expected to be higher and thus easier to detect with the

MS-based quantification strategies currently available. In ad-

dition, the biological material assayed for discovery can also

originate from proximal fluids, i.e. biofluids in close or direct

contact with the site of disease. In contrast to blood, it is

highly plausible that the protein concentration of potential

biomarkers is enriched in such a ‘‘sink’’ and that therefore

such liquids are valuable resources for initial biomarker dis-

covery (Celis et al., 2004; Soltermann et al., 2008).

For the detection of biomarker candidates from tissue or

proximal fluids, it is critical to start out with a well-defined

group of samples, i.e. the disease samples must be classified

clearly and differentiated from the control group (Rifai et al.,

2006). For statistical analysis, at least three independent

samples of each condition need to be available to account

for biological variations (Molloy et al., 2003). In order to fol-

low the progression of the disease, it is also beneficial to

have defined samples at different stages of disease develop-

ment, as pointed out earlier. Conditional gene knock-in/out

models leading to a specific disease phenotype are excellent

systems as starting points for biomarker discovery efforts,

provided that they closely recapitulate the known human

disease stages (Pitteri et al., 2008). Such systems offer the

opportunity for sampling at the very early stage of the dis-

ease where the genetic preposition for the disease is present

but no disease-specific phenotype is detectable. Upon the

possible sampling at the onset of the disease, genetic model

systems also allow for consistent sampling at different dis-

ease stages.

Cancerous diseases are categorized according to the fol-

lowing stages as defined by the National Cancer Instiute

(NCI, 2004): Stage 0 – the amount of cancerous cells is rela-

tively small and constrained to the organ within which it de-

veloped. Stage I–III – from stage I to III, the cancer gets more

extensive and the tumor size increases. Sometimes nearby

lymph nodes contain cancer cells and the cancer spreads to

organs adjacent to the primary tumor. Stage IV – the cancer
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has spread from where it started to another body organ, such

as the liver, bones or lungs (see Table 1). Thus, a valid animal

model should recapitulate the different stages so that valuable

conclusions can be drawn from the discovery phase. Nowa-

days, cancer progression is described using TNM staging and

various disease-specific grading such as the Gleason score

for prostate cancer (Gleason, 1992). In the TNM staging system

the disease is assessed using a combination of tumor size or

depth (T ), lymph node spread (N), and presence or absence

of metastases (M) (Ludwig and Weinstein, 2005).

Valid disease and benign control tissue samples, or cell

lines representing different disease states are crucial re-

sources for MS-assisted biomarker discovery, especially if

used with new mass spectrometry-based workflows of in-

creased throughput and sensitivity (Rifai et al., 2006).

In the following, we describe a new biomarker discovery

strategy based upon the directed analysis of glycoproteins

in plasma. The approach presented circumvents most of

the above mentioned limitations and supports the multi-

plexed measurement of protein targets with increased sensi-

tivity and high quantitative accuracy, and the throughput

required for discovering and evaluating new biomarker

candidates.
7. The glyco-proteome enrichment strategy

In searching for a method having the potential to detect tis-

sue-specific protein signatures in blood plasma, we have de-

veloped methods for the selective analysis of de-

glycosylated peptides that are N-glycosylated in the intact

protein, termed solid-phase extraction of N-glycopeptides

(SPEG) (Zhang et al., 2003). We refer to these peptides as

N-glycosites. The focus on the subproteome of N-glycosites

is based on the fact that most proteins that are localized on

the cell surface or secreted from cells are glycosylated (Gahm-

berg and Tolvanen, 1996). Our working assumption was that

disease-associated glycoproteins secreted or shed from cell

surfaces, or otherwise released from tissue, might be detect-

able by remote detection in the blood stream. The potential

of such a strategy focusing onto the N-glycosite subproteome

was further supported by a re-evaluation of a list of current

plasma biomarkers published by Polanski and Anderson

(2006). Thirty out of the 38 proteins within the list of protein

biomarkers currently used in the clinic and thus a vast major-

ity is known to be glycosylated (Table 2).
Table 1 – Description of the different stages used TNM
classification as defined by NCI (2004).

Stage Definition

Stage 0 Carcinoma in situ (early cancer that is present

only in the layer of cells in which it began).

Stage I, Stage II,

and Stage III

Higher numbers indicate more extensive

disease: greater tumor size, and/or spread of

the cancer to nearby lymph nodes and/or

organs adjacent to the primary tumor.

Stage IV The cancer has spread to another organ.
8. Identification of N-glycosites from plasma

Protein glycosylation has long been recognized as a common

co-translational modification. Typically, carbohydrates are

linked to serine or threonine residues (O-linked glycosylation)

or to asparagine residues (N-linked glycosylation). N-linked

glycosylation sites generally fall into the NxS/T sequence mo-

tif in which � denotes any amino acid except proline. In

contrast, a consensus primary amino acid sequence for O-gly-

cosylation sites has not been identified. Glycoproteins can be

enriched either via lectins (Yang and Hancock, 2004) leaving

the carbohydrate structure intact or via coupling to a hydra-

zide support (Bayer et al., 1988). In this case, the carbohydrates

are oxidized with sodium periodate and the aldehydes formed

for affinity purification can be covalently coupled to a hydra-

zide containing support as described by Bayer et al. (1988)

and Zhang et al. (2003). For subsequent mass-spectrometric

identification, N-glycosites can be specifically released from

the solid support by PNGase F. The catalytic action of the en-

zyme also converts the formerly glycosylated asparagine res-

idue via deamidation into aspartic acid. This enzymatic

conversion leads to a mass shift of 0.98 Da which can readily

be detected by high mass accuracy mass spectrometers. The

MS detectable mass shift improves the confidence of the pep-

tide identification and unambiguously identifies the aspara-

gine residue(s) to which the carbohydrate was linked in the

intact protein. We have investigated the rate of miss assign-

ment of the monoisotopic peak on an LTQ-FTICR from

Thermo Finnigan using a monoisotopic toggle and found

that in 99.5% of the time the right monoisotopic signal was in-

deed identified, which is a requisite for the unambiguous as-

signment of N-glycosites (unpublished result). Optionally, to

gain increased confidence in the N-glycosite identification,

the hydrolysis of the glycan–asparagine bond catalyzed by

PNGase F can be performed in heavy water (D2O), which leads

to an increased mass shift of 1.98 Da.
9. Selective isolation of N-glycosites from cells and
tissues

While soluble glycoproteins in plasma can be readily isolated

and analyzed, glycoproteins embedded in cellular membranes

within tissues are more difficult to isolate and identify. Typi-

cally, the tissue/cell samples have to be homogenized prior

to glycoprotein isolation, or a cell free supernatant of collage-

nase digested tissues has to be used for N-glycosites extrac-

tion as described by Tian et al. (2007).

To isolate the N-glycosites specifically from cell surface

glycoproteins we have developed a variant of the SPEG

method, the cell surface capturing (CSC) method, where glyco-

proteins can be selectively enriched from the plasma mem-

brane of intact, living cells (unpublished data/manuscript

under revision, Wollscheid et al., Nature Biotechnology,

2008). CSC allows for the selective isolation, identification

and quantification of cell surface glycoproteins, and the MS

data reveals a snapshot of the cell surface protein landscape

at the time of labeling. The selective and multiplexed identifi-

cation of cell surface glycoproteins of a specific cell type is



Table 2 – List of markers in clinical use including their status of glycosylation.

Protein Names Plasma concentration in
controls pg/ml

Clinical
Markers

SwissProt #
(human)

Glycosylation FDA
approved

Alkaline phosphatase, placental type O P05187 yes

Alpha-fetoprotein 2.00Eþ04 O P02771 yes O

CA 125 O Q8WXI7 yes O

CA 15.3 O P15941 yes O

CA 19.9 O x yes O

CA 27.29 O x yes

CA 72-4 O x yes

Carcinoembryonic antigen 1.00Eþ03 O P06731 yes O

Choriogonadotropin beta chain 1.00Eþ02 O P01233 yes

Chromogranin A (parathyroid secretory protein 1) 6.50Eþ04 O P10645 yes

Colony stimulating factor 1 (macrophage) 7.00Eþ01 O P09603 yes

Complement factor H related protein O Q03591 yes O

Corticotropin-lipotropin contains ACTH 1.10Eþ01 O P01189 yes

Epidermal growth factor receptor 6.94Eþ06 O P00533 yes

Follicle-stimulating hormone O P01225 yes

Hepatocyte growth factor 2.00Eþ02 O P14210 yes

Inhibin 3.00Eþ03 O P05111 yes

Kallikrein 10 4.39Eþ02 O O43240 yes

Kallikrein 11 2.15Eþ06 O Q9UBX7 yes

Kallikrein 3 (prostate specific antigen) 1.86Eþ03 O P07288 yes O

Kallikrein 5 O Q9Y337 yes

Kallikrein 6 2.90Eþ03 O Q92876 yes

Kallikrein 7 O P49862 yes

Kallikrein 8 O O60259 yes

Luteinizing hormone-releasing hormone receptor O P22888 yes

Mesothelin O Q13421 yes

MK-1 protein, Ep-CAM 2.00Eþ03 O P16422 yes

OVX1 O x yes

Prolactin 1.60Eþ04 O P01236 yes O

soluble IL-2R alpha 1.42Eþ03 O P01589 yes

Somatotropin growth factor, growth hormone 4.00Eþ02 O P01241 yes

Thyroglobulin 1.00Eþ03 O P01266 yes O

V-erb-b2, Her2/neu 1.12Eþ04 O P04626 yes O

Vascular endothelial growth factor A, VEGF 2.01Eþ02 O P15692 yes

Calcitonin 1.00Eþ01 O P01258 no

Estrogen receptor 1 O P03372 no

Gastrin 6.90Eþ02 O P01350 no

Insulin O P01308 no

Parathyroid hormone-related protein O P12272 no

Progesterone receptor O P06401 no

Somatostatin 2.00Eþ01 O P61278 no

Vasoactive intestinal peptide O P01282 no
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especially interesting for targeted therapeutic approaches. Al-

most two-thirds of the currently used therapeutic targets are

among these plasma membrane proteins (Yildirim et al.,

2007).

In contrast to the identification of N-glycosites, O-glyco-

sites are more difficult to study mainly due to a lack of a con-

sensus sequence around the carbohydrate attachment site

and the lack of an enzyme analogous to PNGase F that gener-

ally removes O-linked carbohydrate from the glycoprotein.

Thus, chemical approaches for the efficient de glycosylation

of O-glycosites in complex samples, such as beta-elimination

are currently being explored albeit with limited success so far.

To date we have developed a suite of methods for the

specific MS identification of N-glycosites from the cell sur-

face, complete cells, tissue and plasma. All these methods

have been extensively applied toward the identification of

N-glycosites from human and murine cells, tissue and
plasma. In particular, plasma samples were extensively frac-

tionated in several dimensions on the protein and peptide

level to reach an extensive coverage of the human plasma

glycoproteome (unpublished data). The identified peptides/

proteins were consistently annotated and imported into the

established database UniPep (http://www.unipep.org), a pub-

licly accessible repository for N-glycosites (Zhang et al.,

2006). UniPep protein entries are annotated by the number

of times a particular N-glycosite was observed including rel-

evant meta information about the source of origin and asso-

ciated parameters which are critical for biomarker discovery

efforts. UniPep is part of the PeptideAtlas project (http://

www.peptideatlas.org) which comprises a growing publicly

accessible database of peptides not restricted to N-glycosites

that were detected in many MS-based proteomic studies

(Deutsch et al., 2005) and an instance of the PeptideAtlas da-

tabase (Desiere et al., 2005). Such databases are cornerstones

http://www.unipep.org
http://www.peptideatlas.org
http://www.peptideatlas.org
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for the future target selection of peptides in emerging

MS-assisted biomarker studies relying on directed proteomic

workflows as reviewed by Deutsch et al. (2008).
10. Detection of cell/tissue N-glycosites in plasma

As pointed out earlier, we initially assumed that proteins re-

leased by tissue (secreted, shed or otherwise released) into

the blood stream could be detected in plasma for remote sens-

ing of the state of specific cells/tissues in health and disease.

Our approach, the comprehensive analysis of N-glycosites

seemed to be ideally suited for the remote sensing of such sig-

natures, due to the fact that glycoproteins and therefore

N-glycosites are an information-rich subproteome with the

benefit of a reduced proteome complexity. In initial studies

we therefore set out to determine whether N-glycosites iden-

tified in various cell and tissue samples were represented in

the plasma by comparing the MS identified N-glycosites

within the relational database UniPep, being the perfect tool

for such a comparison. As shown in Figure 2a, a large number
77
(34)

202
(32)

286
(123)

134
(19)

114
(4)

Plasma
1105 N-glycosites

Prostate cancer tissue
445 N-glycosites

(129)

B and T lymphocytes
384 N-glycosites

(259)

Bladder cancer tissue
176 N-glycosites

(11)

Liver metastasis
248 N-glycosites

(44)

Breast cancer cells
703 N-glycosites

(389)

135

Prostate

Lymphocyte

Breast

12

5
35

47

12

27
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Figure 2 – Schematic diagram of analysis of N-glycosites from tissues/

cells and plasma. Cell surface proteins and secreted proteins from tissues/

cells and plasma are processed using glycopeptide capture method, glyco-

peptides are analyzed by mass spectrometry and identified by SEQUEST

search. The identified peptides and proteins from tissues/cells and plasma

are compared and the tissue/cell specific proteins are identified.

Figure was adapted from Zhang et al. (2007).
of N-glycosites and proteins that were identified from lym-

phocytes, bladder, prostate, breast and liver were also

detected in the respective plasma samples (Zhang et al.,

2007). The data provided proof that it is possible to identify cel-

lular N-glycosites in the plasma. However, the data represent

only an indirect proof of our concept, since the N-glycosites

identified within the plasma cannot be attributed at this point

directly to the cell or tissue of origin. For example, we identi-

fied 202 unique N-glycosites in both prostate tissue and

plasma. Of these, 96 likely to originate from classic plasma

proteins, 94 are likely to have originated from prostate tissue

and cells, and the remaining 12 originated from hypothetical

proteins with no protein information to determine their

source.

Nevertheless, a subsequent comparison of N-glycosites

identified from SK-BR-3 breast cancer cells and Jurkat T lym-

phocytes by using the CSC technology with prostate N-glyco-

sites and plasma identified N-glycosites provided further

evidence for our concept. As shown in Figure 2a, 77 peptides

identified from lymphocytes and 286 peptides from breast

cancer cells were also detected in plasma. When we compared

the peptides identified from lymphocytes and breast cancer

cells with the peptides identified from prostate tissue, only 5

peptides were found to be common to all three samples

(Figure 2b). This indicates that N-glycosites derived from cells

and tissues can be detected in plasma and might be linked to

their specific cell/tissue of origin. Collectively these data indi-

cate that we are able to detect cell/tissue-derived N-glycosites

specifically in plasma via newly developed N-glycosite captur-

ing workflows in combination with tandem mass

spectrometry.
11. Quantification of N-glycosites

Peptides extracted from either cells, tissue or plasma can be

MS quantified by using a number of stable isotope labeling

technologies as reviewed by Bantscheff et al. (2007) and Muel-

ler et al. (2008). The introduction of stable isotopes through

stable isotope labeling into protein samples has the advantage

that after the labeling process the samples can be processed in

parallel and thus the variability among the samples can be

limited (Gygi et al., 1999). However, isotopic labeling increases

sample complexity due the differential labeling and combin-

ing the samples. Furthermore, the number of samples that

can be compared directly is limited by the number of isotopic

labels (ICAT/2; iTRAQ/4-8; SILAC/3). In contrast, recently

emerging label-free quantification workflows using peptide

elution ion trace profiles (Listgarten and Emili, 2005; Mueller

et al., 2007) or semi-quantitative methods using spectral

counting (Ishihama et al., 2005; Liu et al., 2004) have the ad-

vantage that they are not limited in the number of samples

analyzed, rather by the sample amount itself. Although la-

bel-free quantification of peptides reduces the individual sam-

ple manipulation steps, which is beneficial for pattern

detection, the workflow requires the independent MS analysis

of the samples. This in turn requires sophisticated computa-

tional tools for the alignment of the MS runs and the subse-

quent quantification of peptide ratios. Because this approach

seemed suitable for the bioinformatic MS analysis of clinical
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samples in a high-throughput manner we developed the soft-

ware SuperHirn (Mueller et al., 2007) and applied label-free

quantitative proteomics to the detection of N-glycosites. The

experiments revealed that the combination of label-free

quantification and SuperHirn are a robust quantitative tech-

nology platform to profile N-glycosites (Schiess et al., 2008).
12. Selective quantification of tissue derived
N-glycosites in plasma by targeted mass spectrometry

To identify N-glycosites with diagnostic information in

plasma it is necessary to screen multiple plasma samples for

the presence of the respective proteins in a selective, parallel

and absolute quantitative fashion. This can be accomplished

by combining the previously generated knowledge about N-

glycosites with targeted MS assisted via SRM. The require-

ments for targeted MS are two-fold. First, one needs to know

which proteins/peptides are to be targeted and secondly, a se-

lective SRM assay has to be established for the absolute quan-

tification of the protein of interest. The necessary information

about individual N-glycosites required for establishing the

SRM assay can be retrieved either by searching the UniPep

(or PeptideAtlas) databases, or bioinformatically estimated us-

ing a suite of software tools (Kuster et al., 2005; Mallick et al.,
Cell culture

Tissue

Blood plasma

QualiN-glycosite

SRM assay

Discovery

Ve

Validation

Biomarker panel

Protein extract Enriched glycopeptides
Released

glycopeptides

Q1 Q2 Q3 I

tPeptide
Selection

Fragmentation Fragment
Selection

SRM
Signal

Figure 3 – Scheme for biomarker discovery, qualification, verification and v

performed to discover in vivo disease-specific signatures using cells, tissue

selected reaction monitoring (SRM) assays of these protein panel are then

validated again by SRM or ELISA.
2007; Tang et al., 2006). Recently, we have also made an effort

to setup a database of targeted proteomics assays to detect

and quantify proteins (http://www.mrmatlas.org) (Picotti

et al., 2008). For each protein to be measured at least one pep-

tide which is unique for the selected protein, a so-called pro-

teotypic peptide, has to be chosen (Kuster et al., 2005). By

measuring only selected proteotypic peptides, the presence

or absence of a protein and its abundance, respectively, can

be definitively established. Sets of proteotypic peptides can

be detected and quantified very precisely by using triple quad-

rupole MS or triple quadrupole/linear ion trap hybrid MS in-

struments by applying SRM. Highly sensitive and selective

SRM analyses are performed by monitoring fragmentation

channels specific to each peptide of interest (Kuhn et al.,

2004). From a technical point of view, a precursor ion is se-

lected by the first quadrupole, fragmented in the second quad-

rupole and characteristic fragment ions of the precursor are

detected and counted upon selection in the third quadrupole

by a sensitive detector. The SRM technology ensures higher

selectivity by eliminating co-eluting interferences and thus al-

lows for the detection of low abundance components. This

gained increase in sensitivity compared to shotgun MS work-

flows is critical for the success of MS assisted biomarker dis-

covery efforts. Absolute quantification of the selected

peptides can be performed by concomitantly monitoring the
fication

rification

Number of
canditates

Number of
samples

10’s

100’s

1000’s

1000’s

100’s

10’s

alidation. Solid phase enrichment of N-glycopeptides (SPEG) can be

and finally blood plasma and MS-based label-free quantification. The

qualified and later verified in human patients by SRM and eventually

http://www.mrmatlas.org
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fragmentations of the corresponding isotopically labeled pep-

tides that are added to the plasma samples prior to their anal-

ysis. A linear response over a wide concentration range of at

least five orders of magnitude was observed by Stahl-Zeng

et al. (2007). The detection limit for peptides present in the

mixture was around 30 atmol (i.e. amount actually injected

into the LC/MS system), which translates to a protein concen-

tration in the original plasma sample of some 100 pg/ml. How-

ever, it is important to note that this sensitivity could only be

achieved by reducing the sample complexity through

N-glycosite capturing. Similar results cannot be achieved to

date by measuring whole plasma samples due to sample com-

plexity in combination with signal to noise issues in available

MS instrumentation. Apart from the increased sensitivity of

N-glycosite SRM assays compared to shotgun proteomic work-

flows, such a strategy enables the quantitative measurement

of currently up to 500 peptides per MS run in a selective, repet-

itive and automated manner (Lange et al., 2008a).
13. Conclusions

Currently used MS assisted biomarker discovery platforms are

not sensitive enough and lack throughput. Sensitivity is

mainly hampered by the huge complexity of the protein sam-

ples obtained from human body fluids. Here we suggest that

MS can play a role in all phases of biomarker discovery. To cir-

cumvent current limitations, we suggest enriching for a sub-

proteome, the glycoproteome. The selective focus on this

particular subproteome allows for the discovery-driven iden-

tification of glycoproteins in tissue and cell culture followed

by the directed analysis of these secreted or otherwise re-

leased proteins in blood plasma. Therefore SRM assays have

to be established for N-glycosites originating from those tis-

sue-derived glycoproteins.

Importantly, new biomarkers must outperform currently

available markers. To do so, proteins need to be reliably and rou-

tinely detected at the low ng/ml range. Current MS techniques

can still be improved in terms of sample throughput and repro-

ducibility as well as software tools for automated SRM schedul-

ing need to be developed and improved. Furthermore, resources

for the community such as an SRM atlas need to be built up.

We believe that the proposed strategy by choosing directed

MS could speed-up biomarker discovery (Figure 3). Further-

more we have demonstrated that directed MS in combination

with solid phase enrichment of N-glycosites reaches desired

sensitivity and due to the fact that up to 500 candidates can

be monitored in parallel, this approach finally has the poten-

tial to compete current ELISA techniques in preclinical bio-

marker evaluation studies.

R E F E R E N C E S

Altmüller, J., Palmer, L.J., Fischer, G., Scherb, H., Wjst, M., 2001.
Genomewide scans of complex human diseases: true linkage
is hard to find. Am. J. Hum. Genet. 69, 936–950.

Anderson, N.L., Anderson, N.G., 2002. The human plasma
proteome: history, character, and diagnostic prospects. Mol.
Cell. Proteomics 1, 845–867.
Bantscheff, M., Schirle, M., Sweetman, G., Rick, J., Kuster, B., 2007.
Quantitative mass spectrometry in proteomics: a critical
review. Anal. Bioanal. Chem. 389, 1017–1031.

Baselga, J., Norton, L., Albanell, J., Kim, Y.M., Mendelsohn, J., 1998.
Recombinant humanized anti-HER2 antibody (Herceptin)
enhances the antitumor activity of paclitaxel and doxorubicin
against HER2/neu overexpressing human breast cancer
xenografts. Cancer Res. 58, 2825–2831.

Bayer, E.A., Ben-Hur, H., Wilchek, M., 1988. Biocytin hydrazide–
a selective label for sialic acids, galactose, and other sugars in
glycoconjugates using avidin-biotin technology. Anal.
Biochem. 170, 271–281.

Brand, J., Haslberger, T., Zolg, W., Pestlin, G., Palme, S., 2006.
Depletion efficiency and recovery of trace markers from
a multiparameter immunodepletion column. Proteomics 6,
3236–3242.

Celis, J.E., Gromov, P., Cabezón, T., Moreira, J.M.,
Ambartsumian, N., Sandelin, K., Rank, F., Gromova, I., 2004.
Proteomic characterization of the interstitial fluid perfusing
the breast tumor microenvironment: a novel resource for
biomarker and therapeutic target discovery. Mol. Cell
Proteomics 3, 327–344.

Chang, J.C., Wooten, E.C., Tsimelzon, A., Hilsenbeck, S.G.,
Gutierrez, M.C., Elledge, R., Mohsin, S., Osborne, C.K.,
Chamness, G.C., Allred, D.C., O’Connell, P., 2003. Gene
expression profiling for the prediction of therapeutic response
to docetaxel in patients with breast cancer. Lancet 362,
362–369.

Chen, E.I., Yates, J.R., 2007. Cancer proteomics by quantitative
shotgun proteomics. Mol. Oncol. 1, 144–159.

Christensen, E., Evans, K.R., Ménard, C., Pintilie, M., Bristow, R.G.,
2008. Practical approaches to proteomic biomarkers within
prostate cancer radiotherapy trials. Cancer Metastasis Rev.,
375–385.

Cook, G.B., Neaman, I.E., Goldblatt, J.L., Cambetas, D.R.,
Hussain, M., Luftner, D., Yeung, K.K., Chan, D.W.,
Schwartz, M.K., Allard, W.J., 2001. Clinical utility of serum
HER-2/neu testing on the Bayer Immuno 1 automated system
in breast cancer. Anticancer Res. 21, 1465–1470.

Coombes, K.R., Morris, J.S., Hu, J., Edmonson, S.R., Baggerly, K.A.,
2005. Serum proteomics profiling – a young technology begins
to mature. Nat. Biotechnol. 23, 291–292.

Desiere, F., Deutsch, E.W., Nesvizhskii, A.I., Mallick, P., King, N.L.,
Eng, J.K., Aderem, A., Boyle, R., Brunner, E., Donohoe, S., et al.,
2005. Integration with the human genome of peptide
sequences obtained by high-throughput mass spectrometry.
Genome Biol. 6 R9.

Deutsch, E.W., Eng, J.K., Zhang, H., King, N.L., Nesvizhskii, A.I.,
Lin, B., Lee, H.K., Yi, E., Ossola, R., Aebersold, H.R., 2005.
Human plasma PeptideAtlas. Proteomics 5, 3497–3500.

Deutsch, E.W., Lam, H., Aebersold, R.H., 2008. PeptideAtlas:
a resource for target selection for emerging targeted
proteomics workflows. EMBO Rep. 9, 429–434.

Domon, B., Aebersold, R.H., 2006. Challenges and opportunities in
proteomics data analysis. Mol. Cell Proteomics 5, 1921–1926.

Echan, L.A., Tang, H.Y., Ali-Khan, N., Lee, K., Speicher, D.W., 2005.
Depletion of multiple high-abundance proteins improves
protein profiling capacities of human serum and plasma.
Proteomics 5, 3292–3303.
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Glossary

Selected Reaction Monitoring (SRM): A mass spectrometry based
method for the targeted quantification of peptides at high
selectivity and sensitivity.

Solid-Phase Extraction of N-Glycopeptides (SPEG): Isolation pro-
cedure for glycoproteins from biological samples based
on hydrazide chemistry.

N-glycosites: A peptide that is N-glycosylated in the intact pro-
tein in its de-glycosylated form.

Cell Surface Capturing (CSC): Selective isolation of glycoproteins
from the cell surface of living cells.

http://doi:10.1074/mcp.M800172-MCP200

	Targeted proteomic strategy for clinical biomarker discovery
	Protein biomarkers for preventive and predictive medicine
	Currently used protein biomarkers and their limitations
	Protein biomarker discovery strategies and their limitations
	Performance boundaries for proteomic technologies in biomarker discovery
	A role for proteomic technology in all phases of biomarker discovery
	Generation of biomarker candidate sets by quantitative cell and tissue proteomics
	The glyco-proteome enrichment strategy
	Identification of N-glycosites from plasma
	Selective isolation of N-glycosites from cells and tissues
	Detection of cell/tissue N-glycosites in plasma
	Quantification of N-glycosites
	Selective quantification of tissue derived N-glycosites in plasma by targeted mass spectrometry
	Conclusions
	References


