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Abstract

Background: Cross-sectional surveys utilizing biomarkers that test for recent infection provide a convenient and cost
effective way to estimate HIV incidence. In particular, the BED assay has been developed for this purpose. Controversy
surrounding the way in which false positive results from the biomarker should be handled has lead to a number of different
estimators that account for imperfect specificity. We compare the estimators proposed by McDougal et al., Hargrove et al.
and McWalter & Welte.

Methodology/Principal Findings: The three estimators are analyzed and compared. An identity showing a relationship
between the calibration parameters in the McDougal methodology is shown. When the three estimators are tested under a
steady state epidemic, which includes individuals who fail to progress on the biomarker, only the McWalter/Welte method
recovers an unbiased result.

Conclusions/Significance: Our analysis shows that the McDougal estimator can be reduced to a formula that only requires
calibration of a mean window period and a long-term specificity. This allows simpler calibration techniques to be used and
shows that all three estimators can be expressed using the same set of parameters. The McWalter/Welte method is
applicable under the least restrictive assumptions and is the least prone to bias of the methods reviewed.
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Introduction

Although prospective follow-up of an initially HIV-negative

cohort is widely regarded as the ‘‘gold-standard’’ for estimating

incidence, the idea of utilizing a biomarker to define a suitable

class of ‘‘recently infected’’ individuals, and then to use the

prevalence of this class as the basis for estimating HIV incidence, is

attractive for a number of reasons. Since this can be implemented

using a cross-sectional survey, it is logistically simpler, cheaper and

less prone to the biases that result from intervention and loss to

follow-up.

The BED capture enzyme immunoassay (BED assay) has been

developed for this purpose [1,2] and widely used [3]. It measures

the proportion of IgG that is HIV-1 specific as a normalized

optical density (ODn). Since this proportion increases over time

after the infection event, specifying an ODn threshold allows

seropositive individuals to be classified as recently infected, if they

are below threshold, and as non-recently infected, if they are

above threshold. Initially, an incidence formula was proposed [1]

that did not explicitly account for the possibility of assay non-

progressors (i.e. individuals who never develop enough of an

immunological response to cross the threshold). This method was

similar to the earlier approaches of Brookmeyer and Quinn [4],

and Janssen et al. [5]. Later, the methodology proposed by

McDougal et al. [6] was the first to deal with assay non-progressors.

They derived an incidence formula which can be expressed in

terms of the prevalence of below-threshold seropositive, above-

threshold seropositive and seronegative individuals, and four assay

calibration parameters, being the mean window period (v),

sensitivity (s), short-term specificity (r1) and long-term specificity

(r2). Introducing the long-term specificity parameter provided a

way to quantify assay non-progression.

Two other incidence paradigms that explicitly account for assay

non-progressors have since been formulated. Hargrove et al. [7]

proposed a simpler incidence estimator which is equivalent to the

McDougal estimator when one sets s~r1. Recently, we have also

proposed a formally rigorous incidence paradigm [8], which

accounts for assay non-progression using fewer assumptions than

are made by McDougal et al. The parameters that emerge

naturally in our estimator are a mean window period and a

probability of not progressing on the assay (which can also be

expressed as a long-term specificity).

A large portion of this paper is dedicated to an analysis of the

assay parameters of the McDougal methodology, showing how

they are related. By using a survival analysis formulation of the

problem, we are able to write down precise expressions for the

parameters. This allows us to derive a relationship between three

of the parameters, which simplifies the McDougal estimator by

showing that only v and r2, which are considerably easier to

calibrate than s and r1, are required in the final formula. The

reduction of the McDougal approach is important in that it shows

that all three incidence estimators are, in effect, based on the same

underlying parameters characterising the performance of the

assay, and are therefore amenable to direct comparison.

We then compare the performance of the three incidence

estimators by substituting analytic expressions for population
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counts, derived from a model steady state epidemic, into the

various formulae. This analysis shows that only our formula [8]

produces a bias-free result. Although the biases are typically small,

we demonstrate, using numerical examples, that there are regimes

where bias may be significant.

The paper is structured as follows: We start by describing the

McDougal methodology and, in doing so, write down mathemat-

ical expressions for the assay calibration parameters. In the next

section we restate the assumptions made by McDougal et al. in a

mathematically precise manner. This allows us to derive the

identity that shows the relationship between the parameters. We

then present the three incidence formulae and compare them by

inserting the population counts from a model steady state

epidemic. We conclude the paper with a discussion of the

implications of the identity and the steady state analysis.

Analysis

The McDougal Methodology
Denote the number of individuals in a cross-sectional sample

who are respectively under-threshold, over-threshold and healthy

(susceptible) by NU, NO and NH. Then the McDougal estimator

[6] can be written as

�II~
fNU

fNUzvNH
, ð1Þ

where v is specified in years and the ‘‘correction factor’’,

f : ~
Pt

Po
~

Pozr2{1

Po s{r1z2r2{1ð Þ , ð2Þ

is the ratio of the ‘‘true’’ proportion Pt of recent infections and the

proportion Po~NU= NUzNOð Þ of the HIV positive individuals

that are under the threshold. This correction factor, which

depends on subtle definitions for the sensitivity and specificity

parameters, explicitly accounts for the fact that the BED assay

imperfectly classifies individuals as ‘‘recently infected’’.

McDougal et al. calibrate these parameters using seroconversion

panels which show BED optical density as a function of time since

infection (some of these are published [1,2]). The calibration

occurs in two stages. A window period is estimated, and then

estimates of the sensitivity, short-term specificity and long-term

specificity are determined with respect to the window period.

The window period is estimated as ‘‘the mean period of time

from initial seroconversion to reaching an ODn of 0.8’’ [6].

Although it is not explicitly stated, we presume that those

individuals that never reach the threshold, either because they

do not progress above the threshold or because they die before

reaching the threshold, are not included in the calculation of the

mean. More specifically this implies that the window period is the

mean observable threshold crossing time, conditional on assay

progression (i.e. actually reaching the threshold).

In order to calibrate the sensitivity, short-term specificity and

long-term specificity, ‘‘a plot of the proportion of specimens positive

in the assay versus time since seroconversion’’ is generated (also later

referred to as ‘‘the curve’’). This is the sampled survival function

(essentially a Kaplan-Meier curve) in the state of being under the

threshold, conditional on being alive, which we denote SUjA tð Þ.
The sensitivity of the test is estimated for an interval

corresponding to the window period by ‘‘integrating the curve

within the window’’. Short-term specificity is calculated for ‘‘the

interval immediately after, and equal in duration to, the window

period’’. Long-term specificity is for ‘‘the period thereafter (where

the curve is flat)’’. McDougal et al. explicitly make the following

assumptions, with the justification that they ‘‘are reasonable as

very little attrition (from death) during the first two time intervals

after infection would be expected’’:

1. ‘‘Recent infections are randomly distributed within the first

window period’’.

2. ‘‘The number of persons in the interval of equal duration

immediately after the mean window period equals the number

in the first window period’’.

3. ‘‘The remainder of the population is more than two window

periods since seroconversion’’.

While it may be true in the situation being explored here, we note

that it is not a priori obvious that the choice of equal window periods

ensures that SUjA tð Þ is flat after twice the window period. With this

in mind, we propose a generalization in which there are two window

periods with arbitrary values v1 and v2, chosen so that all

individuals that progress do so in a time less than v1zv2 after

seroconversion (i.e. SUjA tð Þ is flat for twv1zv2, see the bottom

graph of Figure 1). It should be noted that this is a special survival

curve in that it never reaches a zero value, capturing the fact that a

certain proportion of individuals will never progress above the

threshold. This is what differentiates this approach from other

approaches that do not account for assay non-progression (Such as

Brookmeyer and Quinn [4], Janssen et al. [5], and Parekh et al. [1]).

For analytical convenience, we introduce SPUjA tð Þ, the survival

of assay progressors in the state of being under-threshold. We also

introduce RNP, the probability of individuals not progressing on the

assay. Then SUjA tð Þ, SPUjA tð Þ and RNP are related by

SUjA tð Þ~ 1{RNPð ÞSPUjA tð ÞzRNP:

The introduction of SPUjA tð Þ allows us to provide a precise

definition of the window period used by McDougal et al. It is the

mean time between seroconversion and reaching threshold, for

individuals who progress:

v~

ð?
0

SPUjA tð Þ dt: ð3Þ

Assumption 1 above can only mean that infection times in the

first window period are uniformly distributed. Although assumption 2

merely states that the number of infections in the second window

period is equal to the number in the first, we shall see later that for

r1 to be a property of the assay, independent of the epidemic state,

we require the stronger assumption that the infection events in the

second window period are also uniformly distributed with the same

intensity as in the first window period. We see below that this

assumption is implicit in the work of McDougal et al. To make this

more explicit, we define f tð Þ to be the density of times since

infection realized in the sample. The number of seropositive

individuals is then given by

Nsp~
X6

i~1

ni~

ð?
0

f tð Þ dt,

where ni are the counts of individuals in the various categories

depicted in the top graph in Figure 1.

Setting f tð Þ~f0 over the first two window periods means that the

ratio of the number of infected individuals in the second window

Biomarker Incidence Estimators
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period to those in the first period is v2=v1. Assumption 2 is

recovered when the length of the window periods is equal. It should

be noted that f tð Þ depends on incidence, susceptible population and

life expectancies over the history of the epidemic. With reference to

Figure 1, we are now in a position to write expressions for the

number of seropositive individuals in each sector:

n1~

ðv1

0

f tð Þ 1{SUjA tð Þ
� �

dt~f0 1{RNPð Þ
ðv1

0

1{SPUjA tð Þ
� �

dt

n2~

ðv1

0

f tð ÞSUjA tð Þ dt~f0v1RNPzf0 1{RNPð Þ
ðv1

0

SPUjA tð Þ dt

n3~

ðv1zv2

v1

f tð Þ 1{SUjA tð Þ
� �

dt~f0 1{RNPð Þ
ðv1zv2

v1

1{SPUjA tð Þ
� �

dt

n4~

ðv1zv2

v1

f tð ÞSUjA tð Þdt~f0v2RNPzf0 1{RNPð Þ
ðv1zv2

v1

SPUjA tð Þdt

n5~

ð?
v1zv2

f tð Þ 1{SUjA tð Þ
� �

dt~ 1{RNPð Þ
ð?

v1zv2

f tð Þ dt

n6~

ð?
v1zv2

f tð ÞSUjA tð Þ dt~RNP

ð?
v1zv2

f tð Þ dt:

Using the above expressions, the sensitivity, the short-term

specificity and the long-term specificity are given by

s~
n2

n1zn2
~

1{RNPð Þ
Ðv1

0
SPUjA tð Þ dtzv1RNP

v1

r1~
n3

n3zn4
~

1{RNPð Þ
Ðv1zv2

v1
1{SPUjA tð Þ
� �

dt

v2

r2~
n5

n5zn6
~1{RNP:

We can now see why the assumption of uniformly distributed

infection events for the first and second window periods is required

– it is the only way in which a cancelation of f tð Þ in the

expressions for s and r1 is possible. Note that under bias-free

Figure 1. The six sector model of McDougal et al. The top graph shows counts ni and the bottom graph shows the survival function SUjA tð Þ
versus time since infection.
doi:10.1371/journal.pone.0007368.g001
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recruitment into a survey, at time t~0, we have

f tð Þ~ Nsp

Tsp
I {tð ÞH {tð ÞSA tð Þ, ð4Þ

where I tð Þ is the instantaneous incidence, H tð Þ is the number of

healthy (susceptible) individuals, SA tð Þ is the life-expectancy

survival function measured from the time since infection and

Tsp~

ð?
0

I {tð ÞH {tð ÞSA tð Þ dt

is the total number of seropositive individuals alive in the

population at the time of the survey. The ratio Nsp

�
Tsp is just

the fraction of the total population that has been recruited. Thus,

the only sensible way to ensure that f tð Þ~f0 for tƒv1zv2, is to

assume that the incidence and the susceptible population are

constant, and the survival function SA tð Þ~SA 0ð Þ~1.

We also see why SUjA tð Þ must be flat after both window periods

– this ensures that SUjA tð Þ is constant and can be pulled out of the

integrals in the expressions for n5 and n6 as the factor RNP. This is

necessary for r2 to be independent of f tð Þ.
Furthermore, in order to specify r2 so that it is independent of

the state of the epidemic, an implicit assumption is being made

that survival is the same for assay progressors and assay non-

progressors. Note that f tð Þ appears in the expressions for both n5

and n6. If different life expectancies were used in these formulae,

reflecting a difference in survival for assay progressors and assay

non-progressors, the f 9s in these formulae would need to be

different, and would not cancel in the expression for r2. This

assumption is not explicitly stated by McDougal et al. but is implicit

in their assumption that r2 is independent of epidemic state.

With the calibration parameters specified in the more general

setting of unequal window periods v1 and v2, we now generalize

the expression for the correction factor

f ~
Pt

Po
,

where Pt~ n1zn2ð Þ
�

Nsp is the proportion of seropositive

individuals who are truly infected at a time less than v1. Recalling

that Po~ n2zn4zn6ð Þ
�

Nsp and using the definitions of the

parameters, it is easy to verify that

Po~PtszPt
v2

v1

1{r1ð Þz 1{Pt{Pt
v2

v1

� �
1{r2ð Þ:

This means that the correction factor can be expressed as

f ~
Pozr2{1

Po s{ v2

v1
r1z 1z v2

v1

� �
r2{1

h i : ð5Þ

Note that this equation simplifies to the previous expression (2)

when one sets v1~v2.

Elimination of Parameters
For completeness, we now provide a precise specification of the

assumptions that are required in order to facilitate the analysis in

the rest of this paper. We note that with the exception of arbitrary

sized window periods, these assumptions are equivalent to the

assumptions – either explicit or implicit – that are being made by

McDougal et al. [6].

Model Assumptions. Specify window periods v1 and v2. We

assume that:

1. The window periods are chosen so that the survival function SUjA tð Þ is

flat (and equal to RNP) for twv1zv2 . This means that SPUjA tð Þ
only has support on the time interval t [ 0,v1zv2½ � .

2. Arrival times of infection events are uniformly distributed on the interval

0,v1zv2½ �. An equivalent way of stating this assumption is that over the

interval t [ 0,v1zv2½ �; H tð Þ and I tð Þ are constant and SA tð Þ~1.

3. Survival is the same for assay progressors and assay non-progressors.

We are now able to provide the identity relating the parameters

in the McDougal approach.

Proposition 1. Under the model assumptions stated above, the

following identity holds:

s{
v2

v1
r1z 1z

v2

v1
{

v

v1

� �
r2~1: ð6Þ

Proof. Since we assume that SPUjA tð Þ only has support on

t [ 0,v1zv2½ �, we have

ðv1zv2

0

SPUjA tð Þ dt~

ð?
0

SPUjA tð Þ dt~v

Then, simply evaluating

s{
v2

v1

r1~
1{RNPð Þ

Ðv1

0 SPUjA tð Þ dtzv1RNP

v1

{
v2

v1

1{RNPð Þ
Ðv1zv2

v1
1{SPUjA tð Þ
� �

dt

v2

~
1{RNPð Þ

Ðv1zv2

0 SPUjA tð Þ dt{
Ðv1zv2

v1
1{RNPð Þ dtzv1RNP

v1

~
1{RNPð Þ v{v2{v1ð Þzv1

v1

~1{ 1z
v2

v1
{

v

v1

� �
r2,

yields the result directly.

Using the proposition, the correction factor (5) simplifies to

f ~
v1

v

Pozr2{1

Por2

:

This expression no longer relies on estimates for s and r1.

It is also interesting to note that it does not depend explicitly on

v2. Calibrating r2, however, requires identifying individuals

who have been infected for at least v1zv2. Thus, v2 need not

be precisely known, but a safe upper bound for v1zv2 is

required.

Furthermore, if we set v1~v as in McDougal et al. then we

recover

Biomarker Incidence Estimators
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f ~
Pozr2{1

Por2

: ð7Þ

Note that (2) as stated in McDougal et al. contains three calibration

parameters (s, r1 and r2), while (7) contains only one calibration

parameter (r2). Incidence estimates using (1) and (7), however, still

require the estimation of v. The method of McDougal et al. can in

principle be applied to an arbitrarily declared (as opposed to

measured) window period, as long as s, r1 and r2 are calibrated

for that value. We have therefore reduced the number of

calibration parameters by one.

Estimation of extra parameters may unnecessarily dilute the

statistical power of the calibration data at hand. Moreover,

estimates of the uncertainty due to calibration, based on the

assumption of the independence of s, r1 and r2, will be incorrect.

Note that when one sets v1~v2~v, the identity is reduced to

s{r1zr2~1:

Substituting the estimates of the parameters found by

McDougal et al., namely s~0:768, r1~0:723 and r2~0:944,

into this equation gives a value of 0:989&1 for the left hand side.

The slight discrepancy is a manifestation of the combined

fluctuations in the estimates of s, r1, r2 and v. Although v is

superficially absent in the identity, it enters as the period over

which the other parameters are defined.

When one assumes that r2~1 (corresponding to the situation

where there are no assay non-progressors) and v1~v, the identity

reduces to

v 1{sð Þ~v2 1{r1ð Þ ð8Þ

and the ratio of counts over this period is given by

n1zn2

n3zn4
~

v

v2
:

Using this ratio and substituting the definitions for s and r1 into

(8) yields n1~n4. Therefore, for tests with perfect long-term

specificity, the observed count of individuals who are under-

threshold is an unbiased estimate of the number of infections in the

last period v. This was noted in a less general analysis of

Brookmeyer [9] where assay non-progressors were a priori

excluded.

It should be noted that there is a subtlety in the definition of the

window period that emerges in the above analysis. If, instead of (3),

the window period is defined by

v : ~

ð?
0

SPUjA tð ÞSA tð Þ dt: ð9Þ

then the two definitions are equivalent under the model

assumptions leading to the proposition. This follows from the fact

that SPUjA tð Þ only has support on t [ 0,v1zv2½ � and that

SA tð Þ~1 over that interval. We have suggested an alternative

incidence estimation paradigm [8] which requires fewer assump-

tions than the method of McDougal et al. In this approach RNP and

v, as defined in (9), emerge as the natural calibration parameters.

Comparison of Estimators Under Steady State Conditions
We now provide a simplified form for the McDougal incidence

estimator based on the proposition. Substituting the new

correction factor (7) into their estimator (1) and expressing the

result in terms NU, NO and NH gives

�IIa~
NU{RNP NUzNOð Þ

NU{RNP NUzNOð Þzv 1{RNPð ÞNH

, ð10Þ

where v is specified in years. Here the subscript a indicates that

the estimator is quoted as an ‘‘annualized incidence’’. Note that in

writing down this expression, we have chosen to use RNP rather

than the long-term specificity as this is a biologically more intuitive

parameter. In addition, the other two estimators to which this

estimator will be compared were originally specified in terms of

RNP.

In a previous attempt to simplify the McDougal formula,

Hargrove et al. [7] proposed the following incidence formula

~IIa~
NU{RNP NUzNOð Þ

NU{RNP NUzNOzNHð ÞzvNH
, ð11Þ

where v is specified in years. Note that they use the symbol e

where we use RNP.
We have recently rigorously derived a weighted incidence

estimator under less restrictive assumptions than those that are

required for the McDougal or Hargrove approach [8]. Unlike the

other two estimators, our estimator is expressed as a rate (indicated

by a subscript r) and is given by

ÎI r~
NU{ RNP

1{RNP
NO

vNH

~
NU{RNP NUzNOð Þ

v 1{RNPð ÞNH
:

ð12Þ

To convert between an annualized incidence and an incidence

expressed as a rate, one can use the standard conversion formula

Ia~1{e{IrT u Ir~
{ln 1{Iað Þ

T
,

where T~1 year.

In Appendix S1 we show that, under steady state conditions,

NUand NO are specified in terms of NH and an incidence rate I as

NO~INH 1{RNPð Þ a{vð Þ ð13Þ

and

NU~INH 1{RNPð ÞvzINHRNPa ð14Þ

where a is the post-infection life expectancy. Using these

population counts, it is now possible to compare the performance

of the incidence estimators. Substituting (13) and (14) into the

McDougal formula (10) yields

�IIa~
I

Iz1
:

Biomarker Incidence Estimators
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Converting this to a rate, we have

�IIr~ln Iz1ð Þ~IzO Ið Þ2,

where the last step results from a Taylor series expansion. Thus the

estimator is accurate for small values of I , but yields a discrepancy

at O Ið Þ2. The reason for this discrepancy is subtle. In deriving the

correction factor, McDougal et al. assume uniform infection events

over the window periods. We have shown that this is consistent

with assuming that the incidence and susceptible population are

constant. In using this factor to estimate an incidence with (1) they

have, however, inconsistently assumed that these infection events

are generated in a susceptible population which is being depleted

by the infection events over a period of a year. This is implied by

their choice of denominator in that formula, which adds back an

annualized number of recent infections into the susceptible

population. This is at odds with the assumption of a constant

susceptible population, and leads to dimensionally inconsistent

incidence estimators, (1) and (10).

To illustrate the magnitude of the bias, Figure 2 shows the

difference between the McDougal incidence estimate and the

equilibrium incidence, expressed as a percentage. Note that the

range of incidence values used is large (up to 50% per annum).

Although incidence for HIV is not likely to be larger than about

15% in the highest risk groups (e.g. injection drug users [10]), if

this methodology were used to monitor other rapidly spreading

epidemics, where incidence is large when stated in units of years, it

would certainly produce unacceptable bias.

Substituting the counts into the Hargrove formula (11) yields

~IIa~
I

Iz v{RNP

1{RNPð Þv
,

which, when converted to a rate, gives

~IIr~ln
I 1{RNPð Þv

v{RNP
z1

� �
~Iz

RNP 1{vð Þ
v{RNP

IzO I2
� �

:

The Hargrove estimator incorporates the same form of denom-

inator which leads to the second order discrepancy and

dimensional inconsistency in the McDougal formula, and, in

addition, it includes a linear bias term. Figure 3 demonstrates the

bias introduced as a function of v and RNP for an equilibrium

incidence of 5% per annum. Although the bias is worst in the

regimes where all the estimators have little statistical power and

are unlikely to be used, there are nevertheless intermediate regimes

where the bias is significant. Note that the estimator produces the

same result (and bias) as the McDougal estimator when RNP~0 or

v~1.

Finally, substituting the counts into our formula (12), which is

already specified as a rate, yields

ÎIr~I :

Thus, under the assumption of a steady state epidemic, our

weighted incidence estimator recovers the steady state incidence

exactly. It is also the maximum likelihood estimator. This can be

seen by writing the estimator in terms of the population

proportions

ÎIr~
PU{ RNP

1{RNP
PO

vPH
, where PX~

NX

Nsp
,

and noting that, since the counts are trinomially distributed, the

sample proportions are the maximum likelihood estimates of the

population proportions. We have already seen that the estimator

solves for the equilibrium incidence. Thus, by the invariance

property of maximum likelihood estimators (see e.g. p. 105 of van

den Bos [11]), it is the maximum likelihood estimator for the

incidence. This has also recently been demonstrated by Wang and

Lagakos [12] by explicit maximization of the log likelihood function.

A weighted incidence will in general not be equal to the

instantaneous incidence under non-steady state conditions. We

should, however, demand that any incidence formula exactly

recover the incidence under this rather idealized situation.

Discussion

We have shown that under a precise restatement of the

McDougal et al. assumptions, there exists a redundancy in the

parameters they chose to characterise the assay. This allows the

elimination of s and r1 from their estimator, with the important

advantage that the remaining parameters are easier to calibrate.

The calibration of s and r1 requires obtaining specimens from

individuals with confidence about their time since infection (i.e.

using frequent follow-up). On the other hand both v and RNP (or

equivalently r2) can be estimated through long follow-up intervals.

The estimate for RNP is the proportion of under-threshold samples

known to be obtained more than v1zv2 post-infection. Given an

estimate for RNP, an estimate of v can be obtained from data with

follow-up intervals greater than v1zv2 using an extended version

[13] of the Bayesian approach previously described by Welte [14].

We have also shown that under steady state conditions the only

estimator that is dimensionally consistent and produces an

unbiased result is the one we have previously derived [8]. It is

Figure 2. Bias in the McDougal estimator. Relative difference
between the McDougal estimate and the equilibrium incidence plotted
as a function of equilibrium incidence.
doi:10.1371/journal.pone.0007368.g002
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also the maximum likelihood estimator. The new approach makes

fewer assumptions than the other methods. In particular, it

consistently accounts for a dynamic epidemic by adopting a

weighted definition of incidence. This overcomes a drawback of

the other two methods which assume epidemic equilibrium for at

least a period equal to the maximum progression time (v1zv2). It

should be noted that this methodology is applicable to any

biomarker, not only the BED assay – all that is needed is a suitable

calibration of the assay parameters. It also follows that cross-

sectional incidence estimates using this approach are applicable to

infections other than HIV, as long as suitably calibrated assays that

test for recent infection are available.

A shortcoming of all the methods explored here is that they

make the assumption, either implicitly or explicitly, that survival

for assay non-progressors and assay progressors is the same. As we

have shown, relaxing this assumption means that the long-term

specificity becomes epidemic state dependent and hence is time

dependent. We are involved in ongoing work to address this issue.
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