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Abstract
β-Methylamino-L-alanine (BMAA) has been proposed as a global contributor to neurodegenerative
diseases, including Parkinson-dementia complex (PDC) of Guam and Alzheimer’s disease (AD).
The literature on the effects of BMAA is conflicting with some but not all in vitro data supporting a
neurotoxic action, and experimental animal data failing to replicate the pattern of neurodegeneration
of these human diseases, even at very high exposures. Recently, BMAA has been reported in human
brain from individuals afflicted with PDC or AD. Some of the BMAA in human tissue reportedly is
freely extractable (free) while some is protein-associated and liberated by techniques that hydrolyze
the peptide bond. The latter is especially intriguing since BMAA is a non-proteinogenic amino acid
that has no known tRNA. We attempted to replicate these findings with techniques similar to those
used by others; despite more than adequate sensitivity, we were unable to detect free BMAA.
Recently, using a novel stable isotope dilution assay we again were unable to detect free or protein-
associated BMAA in human cerebrum. Here we review the development of our new assay for tissue
detection of BMAA and show that we are able to detect free BMAA in liver but not cerebrum, nor
do we detect any protein-associated BMAA in mice fed this amino acid. These studies demonstrate
the importance of a sensitive and specific assay for tissue BMAA and seriously challenge the proposal
that BMAA is accumulating in human brain.

Introduction
Parkinson-dementia complex (PDC) of the Chamorro on Guam and surrounding Mariana
Islands is a unique neurodegenerative disease that remains a significant public health burden
to the older members of this indigenous ethnic minority (Hirano et al., 1961; Waring, 1994;
Murakami, 1999; Oyanagi and Wada, 1999; Wiederholt, 1999; Galasko et al., 2002).
Previously, PDC was often co-morbid with amyotrophic lateral sclerosis (ALS); however, the
incidence of ALS among Chamorros has returned to levels comparable to the rest of the world
over the last 50 years (Garruto et al., 1985; Wiederholt, 1999; Plato et al., 2002; Waring et
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al., 2004). Current data indicate that PDC is a complex phenotype that derives significant
contributions from advancing age, inherited susceptibilities, and as yet to be clarified
environmental factors that broadly ultimately derive from progressive ‘westernization’ of
Chamorros or consumption of initiators or promoters that are indigenous to these islands. No
proposed environmental factor has withstood scrutiny as a sole cause of ALS or PDC (Garruto
et al., 1984; Yanagihara et al., 1984; Spencer et al., 1987; Hudson and Rice, 1990; Duncan,
1992; Esclaire et al., 1999; Plato et al., 2002; Plato et al., 2003), leading to speculation of a
yet to be identified gene-environment interaction (Morris et al., 2004).

The cycad plant was an early target of suspicion as the source of an environmental toxicant
that promoted or caused ALS/PDC, since it was noted that Chamorros had relied heavily on
cycads for food and medicinal purposes (Spencer et al., 1987). Arthur Bell first identified β-
Methylamino-L-alanine (BMAA), a nonproteinogenic amino acid, as one of the many unusual
amino acids present in cycad plants. BMAA is synthesized by cyanobacteria, and cyanobacteria
are found on the roots of cycads (Cox and Banack, 2006). Indeed, cycad flour preparations
contain BMAA (Kisby et al., 1992). BMAA can be toxic to neurons in some in vitro models
(Allen et al., 1995; Rao et al., 2006; Lobner et al., 2007). Other groups were unable to replicate
BMAA-induced in vivo neurotoxicity (Wilson et al., 2002; Cruz-Aguado et al., 2006; Santiago
et al., 2006), and efforts to replicate a neurodegenerative illness similar to ALS/PDC by feeding
BMAA to non-human primates were not successful (Spencer et al., 1987). Finally, it seemed
impossible for humans to ingest sufficient BMAA to achieve levels expected to produce
neurodegeneration (Duncan et al., 1990). For these reasons the “cycad/BMAA hypothesis”
waned.

The cycad/BMAA hypothesis was resurrected in 2003 with the proposal that Chamorros are
exposed to high levels of BMAA through biomagnification from cyanobacteria to cycads to
flying foxes to humans (Cox et al., 2003). As a test of this proposal, others quantified
extractable or free BMAA in museum specimens of flying foxes (investigation was limited by
scarcity of tissue samples) and in frontal lobe specimens from Chamorros who died of PDC,
Chamorro controls, patients from Western Canada who died of Alzheimer’s disease (AD), and
their respective controls. While BMAA was detected in frontal lobe from all PDC patients,
there was no detectable free BMAA in all thirteen frontal lobe samples from control individuals
on Guam or in Western Canada who died without neurodegenerative disease (Cox et al.,
2003; Banack et al., 2006). Surprisingly, two frontal lobe specimens from patients in Western
Canada who died of AD had levels of free BMAA that were comparable to those observed in
PDC patients from Guam. In a subsequent study, protein-associated BMAA, liberated by
techniques used for peptide bond hydrolysis, was observed at many fold greater concentration
than free BMAA in cerebral cortex from all six Chamorros who died of PDC, one Chamorro
who died without history of neurodegenerative disease, and both Canadians who died with AD
but none of thirteen Canadians who died without evidence of neurologic disease (Murch et
al., 2004b). In an additional report, BMAA was quantified in frontal cortex samples as a free
amino acid in 83% of Chamorro PDC patients (3–10 μg/g) and as a protein-associated amino
acid in 100% of Chamorro PDC patients (149–1190 μg/g); again, both forms of BMAA were
found at comparable levels in two Canadians who died of progressive neurodegenerative
disease (Murch et al., 2004a). More recently, BMAA was identified as a protein-associated
amino acid in the brains of humans afflicted with AD and ALS, and in low levels in one patient
who died from Huntington’s Disease (HD), furthering the hypothesis that BMAA
bioaccumulation is a factor in the development of several neurodegenerative diseases (Pablo
et al., 2009).

Motivated by the singular importance of an environmental contributor to neurodegenerative
diseases worldwide, we previously attempted to replicate these results from human brain using
a similar method as others. BMAA spiked into human brain homogenates was detectable with
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the range of levels reported by others and with a limit of detection for free BMAA that was an
order of magnitude less than levels reported using a similar fluorescent derivatization/HPLC
assay, yet no free BMAA was detected in any of the sixty samples we investigated: frontal
cortex, temporal cortex, and cerebellar cortex from ten Chamorros (eight with PDC and two
controls) and ten Caucasians from Seattle (five with AD and five controls) (Montine et al.,
2005). There were limitations to these experiments. First, we limited our analysis to extractable
(free) BMAA and did not pursue protein-associated BMAA. Second, since we did not detect
BMAA in human tissue, we did not have an authentic positive control for BMAA in tissue.
Recently, we have addressed these limitations. Indeed, we have reported in brief results from
a new stable isotope dilution assay that we developed fro the detection of BMAA from these
same human samples; no free or protein-associated BMAA was detected using this alternative
method despite ample sensitivity (Snyder et al., 2009). Here, we describe in detail the
development of our novel stable isotope dilution assay for BMAA, and report results from
mice fed BMAA for a month at a dose that mimics proposed environmental levels (Cruz-
Aguado et al., 2006).

Methods
Synthesis of D3-BMAA

Our synthetic scheme followed a previously published method (Figure 1) (Ziffer, 1990). Solid
sodium hydroxide (0.88 g) was added to a frozen solution of 1.0g D3-methylamine
hydrochloride (Cambridge Isotope Laboratories, 98% isotopically pure) in 4mL water. The
solution was thawed slowly to room temperature and slowly distilled. The collection flask was
kept in a dry ice/acetone bath. The frozen distillate was warmed to room temperature and then
reacted with 0.37g of acetamidoacrylic acid (Sigma Aldrich) at 35°C for 22 hours (Ziffer,
1990). Unreacted methylamine was removed from the resulting solution using a rotovap. An
excess of 3M HCl was added to the intermediate and the solution was refluxed at 100°C for 2
hours. Hydrochloric acid was removed using a Speedvac, and the resulting product was
recrystallized in ethanol and water at 4°C. Crystals were then filtered, washed with cold ethanol,
dried under vacuum, and stored at −20°C. This protocol yielded 180mg of product that was
characterized using 1H- and 13C-NMR (Figures 2 and 3). Unlabelled (H3-) BMAA from Sigma
Aldrich (97% pure) was also analyzed using NMR spectroscopy to provide a reference for the
labeled BMAA synthesized in our lab. Proton NMR spectra were obtained on a Bruker 300MHz
spectrometer and carbon spectra were obtained using a Bruker 500MHz spectrometer. Samples
were dissolved in deuterium oxide for all NMR experiments.

Gas chromatography (GC)/mass spectrometry (MS)
Samples for GC-MS analysis were derivatized according to the procedure developed by Guo,
et al. (Figure 4) (Guo et al., 2007). This one-step procedure utilizes ethyl chloroformate (ECF)
that converts both amines and the carboxylic acid into esters. Derivatized solutions were
extracted into dichloromethane, dried under nitrogen, and reconstituted in dichloromethane
prior to GC-MS analysis on an HP 5971A GC-MS. The injector port was held at 250°C and
operated in splitless mode with 1μL injections. A 60m × 0.25mm i.d. × 0.25μm Restek film
RTX-5MS column was employed for chromatographic separation using helium (1.0 mL/s) as
carrier gas. The initial oven temperature of 55°C was increased to 200°C at a rate of 15°C/min,
then to 300°C at a rate of 5°C/min, and then by 15°C/min to 320°C and held constant for three
minutes. Total run time was 34.50 minutes. Standards were run to verify fragmentation patterns
for BMAA and its isotopically labeled analog, and confirmed results published by others (Guo
et al., 2007). The mass spectrometer was operated in electron ionization (EI) mode with
electron energy of 70 eV, and in selected ion monitoring (SIM) mode to monitor four ions: m/
z 116, m/z 119, m/z 245 and m/z 248. The former two ions are used for quantification and the
latter two ions used as qualifying ions. Samples were run within 72 hours of derivatization.
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Control standards run at the beginning and at the conclusion of each analysis showed that no
significant degradation occurred even after three days.

Mice
Flash frozen liver and cerebrum samples from eight mice fed BMAA (28 mg/kg/d × 30d) and
six mice fed control diet were used (Cruz-Aguado et al., 2006). No behavioral differences were
observed in these BMAA fed mice (Cruz-Aguado et al., 2006). Following behavioral
assessments, mice were sacrificed, perfused with ice-cold PBS, and selected tissues rapidly
dissected, flash frozen, and stored at −80°C.

Tissue preparation
We prepared standard curves for quantification of extractable BMAA in each organ
investigated by preparing homogenates according to the method of others (Duncan et al.,
1989; Duncan et al., 1991). Briefly, tissue was thawed in ice cold HCl (1 M) containing a fixed
amount of D3-BMAA and varying amounts of H3-BMAA that span the concentrations
previously reported by others. Tissue was disrupted by ultrasonication, and sedimented to
precipitate protein. The supernatant was transferred to a screw top test tube containing chilled
chloroform (4:1 v:v). After vigorous mechanical shaking for 5 min the samples were separated
into two phases by centrifugation (3000 rpm, 4°C, 10 min), the aqueous phase was transferred
to a clean test tube and derivatized directly as described above using ethyl chloroformate. All
samples were run in triplicate. For detection of protein-associated BMAA the protocol of others
was followed (Murch et al., 2004a; Banack et al., 2006). The resulting protein pellet described
above was re-homogenized in 0.1N trichloroacetic acid (TCA, 1:1), incubated for 30 min at
4°C, and sedimented for 20 min at 25,000×g. The TCA-precipitated protein pellet was washed
twice with PBS (pH 7.4) and suspended in 6.0N HCI spiked with H3-BMAA of varying
amounts and a fixed amount of D3-BMAA, incubated for 24 h at 110 °C to achieve total protein
hydrolysis (Fountoulakis and Lahm, 1998), cooled to room temperature for 2 h prior to
ultrafiltration, and evaporated to dryness using a Speedvac Concentrator. These samples were
derivatized with ethyl chloroformate, extracted in dichloromethane, and analyzed as described.
Again, all samples were run in triplicate. Since BMAA is a non-proteinogenic amino acid, we
know of no standard to use for amino acid hydrolysis that has BMAA already incorporated
into protein. Analysis showed no appreciable decay of BMAA or its isotopically labeled analog
under hydrolysis conditions.

Results
1H-NMR spectrum showed that the singlet peak representing the -CH3 group at 2.78 ppm is
absent for the D3-BMAA sample while other proton signals have a similar pattern of magnetic
resonance as commercial H3-BMAA (inset), verifying that the target compound was achieved
(Figure 2). 13C-NMR spectra for H3-BMAA and its deuterated isotopomer are shown in (Figure
3). Proton decoupled 13C-NMR showed that each peak in the reference spectrum appeared as
a singlet (inset). Deuterium substitution on the labeled compound split the signal from the
carbon in the methyl group.

GC retention times of ECF-derivatized H3-BMAA and D3-BMAA (Figure 4) were 19.55 min
and 19.52 min, respectively. In scan mode, the MS fragmentation pattern for H3-BMAA (inset)
was identical to that reported by others (Guo et al., 2007), including m/z 116 as the most
abundantly detected fragment; these authors suggest a possible structure for this ion (Guo et
al., 2007). As expected, D3-BMAA had similar a fragmentation pattern with a corresponding
shift of 3 mass units (Figure 5) for each fragment; again, the m/z 119 was the most abundantly
detected ion. We used m/z 116 and 119 for quantification, and m/z 245 and 248 as qualifying
ions in selected ion monitoring (SIM) mode to generate a linear calibration curve (Figure 6)
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over a 100-fold concentration range (10 pg to 1000 pg) in mouse liver, mouse cerebral cortex,
and human cerebral cortex; r2 = 1.00 for each seven point line in each tissue homogenate. Our
limit of detection for free BMAA was 0.1 μg/g tissue, limit of quantification = 0.2 μg/g tissue.
These data showed that our assay provides more than enough sensitivity to detect the 3 tom >
1,000 μg/g BMAA that has been reported in human brain (Murch et al., 2004b). Development
of the assay revealed the problem of co-elution of other compounds near BMAA. We addressed
this issue by using the longer 60m column, and verified compound identification by monitoring
the retention times of the two ions for BMAA. Additional proof of identification was provided
by the use of an internal standard, and two ions for the isotopically labeled analog were
simultaneously monitored during sample analyses.

Flash frozen liver and cerebral cortical samples from eight mice fed BMAA at a dose that
reflects proposed environmental levels (28 mg/kg/d × 30d) and six mice fed control diet without
BMAA were analyzed in triplicate. Sample analysis was blinded until completion of the study.
These mice had been used in behavioral experiments that failed to detect any significant change
associated with BMAA exposure (Cruz-Aguado et al., 2006). We detected free BMAA in all
24 runs of liver from mice fed BMAA (mean ± SEM = 4.8 ± 1.3 μg/g for 8 average triplicate
determinations) but were unable to detect BMAA in any of the livers from mice fed control
diet; the average coefficient of variation for triplicate determinations of hepatic free BMAA
was 1.6 % (Figure 7). We determined that no appreciable decay of spiked BMAA occurred
when samples were acid hydrolyzed for determination of protein-associated BMAA. No
BMAA was detected in any of the acid hydrolyzed protein fractions from mouse liver despite
our ability to detect abundant phenylalanine (migrating near BMAA) and other amino acids in
our chromatographic system.

We analyzed flash frozen cerebral cortex from the same fourteen mice. Standards for a
calibration curve were prepared using mouse brain homogenates from control mice that had
not been exposed to BMAA. Matrix standards were run to verify a lack of BMAA in the
homogenates. Standards were prepared by spiking the homogenates with a fixed amount of
deuterated BMAA and varying amount of commercial BMAA to create a 7-point calibration
curve. Using this data we established the following parameters for the detection of free BMAA
for this assay: limit of detection = 0.1 μg/g tissue, limit of quantification = 0.2 μg/g tissue.
These experiments were repeated for our analysis of protein-associated BMAA and the assay
parameters were follows: limit of detection = 5.0 μg/g tissue, limit of quantification = 10.0
μg/g tissue. These limits are well within the range of levels reported in the literature, and the
sensitivity and specificity of this stable isotope dilution assay makes this a suitable method for
detection of BMAA in tissue. Recovery was greater than 95% for these experiments, verifying
that this BMAA was not significantly degraded during sample preparation.

Finally, we used our new stable isotope dilution assay to determine free and protein-associated
BMAA in frontal and temporal cortex samples from individuals who died of AD or PDC, as
well as control samples from individuals who died without neurodegenerative disease (Snyder
et al., 2009) (Table 1). Again, no free or protein-associated BMAA was detected in any of
these samples with the same recovery and limits of detection and quantification as noted above
for mouse cerebral cortical homogenates (Figure 8).

Discussion
Exposure to BMAA has been proposed as a possible global contributor to neurodegenerative
diseases, including PDC and AD (Cox et al., 2003; Cox and Banack, 2006). Since these initial
intriguing data and speculations about a possible role for cyanobacteria contaminating global
water supplies with BMAA (Cox et al., 2003), these findings have been commented on in news
and editorial sections of premier scientific and medical journals (Science, (Cox and Banack,
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2006; Duncan and Marini, 2006; Miller, 2006) Nature (Whitfield, 2003), JAMA (Hampton,
2003; Kuehn, 2005)) and the national media including the Boston Globe,(2005) the Washington
Post, (Stein, 2005) and the New Yorker Magazine (Weiner, 2005). There are thousands of
websites dealing with this topic; one example is WaterTiger™ in British Columbia that displays
a local newspaper article “Algae linked to Alzheimer’s” (Munro, 2005). Clearly, there is
widespread interest and concern about this potential water-based toxicant and its possible role
in neurodegeneration across the globe; thus it has become important to develop new tools to
analyze and detect BMAA in tissue samples. Human tissue samples are complex in nature;
therefore a straightforward assay that provides unambiguous data is necessary. This developed
assay is well suited for tissue analyses and monitoring four specific ions unique to BMAA and
its isotopically labeled analog allow for clear identification of the analyte of interest.
Furthermore, we have addressed problems of co-elution by modifying the assay so that no other
compounds that are similar to BMAA cloud the analysis. Identification is verified by running
standards prior to sample analysis to confirm retention times.

We have been unable to replicate other’s finding of detectable free BMAA in human cerebral
cortex (Montine et al., 2005; Snyder et al., 2009) using two assays. Since we have been unable
to detect BMAA in any human sample except by ex vivo spiking, there remains the possibility
that BMAA is somehow degraded in our preparations. We undertook studies to address this
potential limitation here and have developed an assay with 95% recovery for the detection of
BMAA in tissue. The data show clearly that this stable isotope dilution assay is capable of
detecting BMAA with high sensitivity, and that free BMAA was present in liver of mice fed
this compound at a dose that approximates proposed environmental exposures (Cruz-Aguado
et al., 2006). Indeed, each of eight mice fed BMAA for one month had detectable levels of
extractable, or free, BMAA in liver homogenates. None of six control mice that received
identical diets without BMAA had detectable hepatic free BMAA. No protein-associated
hepatic BMAA was detected in any of these mice using this assay. Moreover, no free or protein-
associated BMAA was detected in brain samples from any of these mice. We stress the
importance of these results since BMAA exposure to humans is in question. The mice that had
detectable levels of BMAA were exposed to BMAA, while none of the control diet mice had
detectable levels of BMAA. These data support the studies done by others, and while our results
for human cerebrum contradict literature results, we acknowledge the limitations of the assay.
Indeed, mice exposed to higher levels of BMAA had readily detectable levels of BMAA in
brain tissue (Duncan et al., 1991) and it is likely that different feeding doses would yield
different analysis results using this assay. While this assay was designed to readily detect
BMAA within the range reported by others (Pablo et al., 2009), there is a need for more
sensitive assays and methods to detect trace amounts of this neurotoxin. Furthermore, as
mentioned before, analysis of complex samples must be verified due to the potential for
misinterpretation. A thorough mass and retention time analysis was undertaken during assay
development to confirm correct identification of the analyte of interest. Others have
employed 15N-BMAA to assess its oral bioavailability in cynomolgous monkeys using GC/
MS; following oral dosing, 80% of the administered BMAA was absorbed into the systemic
circulation (Duncan et al., 1992). This same group examined the kinetics and mechanism of
BMAA influx across the blood-brain barrier in a rat brain perfusion model. BMAA influx is
sodium-independent, saturable, and mediated by neutral amino acid carriers (Smith et al.,
1992). Our results are consistent with these earlier studies but suggest that, although possible,
in vivo transport of BMAA across the blood-brain barrier in mice apparently is very limited.
If BMAA was present in the cerebral samples examined using our method, then it was at levels
that were below the detection limit of this assay.

Others have observed apparently protein-associated BMAA that exceeds free BMAA by 10-
to over 100-fold, and proposed it as a “slow release” form of the putative neurotoxin (Murch
et al., 2004a). We are unaware of any group that has replicated this finding. We have not been
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able to detect protein-associated BMAA in any human sample or in the mouse liver or cerebral
samples investigated here, including the liver samples from mice fed BMAA that had detectable
free hepatic BMAA. We hasten to add that BMAA is a non-proteinogenic amino acid for which
there is no known tRNA, and that the conditions used to liberate protein-associated in our assay
BMAA were sufficiently chaotropic to impede non-covalent interactions.

We conclude that dietary exposure to BMAA in mice results in detectable hepatic free BMAA,
but not cerebral free BMAA, or protein-associated BMAA in either organ that exceeds the
detection limit of 0.1μg/g tissue. Moreover, BMAA does not detectably accumulate in older
adults from Guam or Seattle, regardless of the presence or absence of PDC or AD as determined
by the same assay (Snyder et al., 2009). While these data cannot speak to the potential health
significance of other toxins that may be present in cycads (Steele and McGeer, 2008), they
seriously challenge the proposal that BMAA accumulates in brain or represents a global health
concern for toxicant-induced neurodegeneration.
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Figure 1. Synthesis scheme for D3-BMAA
Acetamidoacrylic acid was reacted with methylamine overnight, followed by acid hydrolysis
of the acetyl group to achieve the final product. D3-BMAA was purified by crystallization in
ethanol and water.
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Figure 2. 1H-NMR spectra of H3-BMAA (top panel) and D3-BMAA (bottom panel)
The singlet peak at 2.78 ppm is absent in the deuterated isotopomer.
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Figure 3. 13C-NMR spectra of H3-BMAA (top panel) and D3-BMAA (bottom panel)
The singlet peak at 37.5 ppm is absent in the deuterated isotopomer (inset shows zoom of 30
to 50 ppm domain).
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Figure 4. BMAA derivatization for GC-MS
Derivatization of BMAA was accomplished using a pyridine catalyzed reaction with
ethylchloroformate and ethanol. This one-step reaction simultaneously converts both the amino
and carboxylic acid groups.
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Figure 5. Fragmentation ions of commercial BMAA (top panel) and its deuterated isotopomer
(bottom panel)
Electron Ionization mass spectrometric analysis of H3-BMAA shows a fragmentation pattern
consistent with results reported by others. Analysis of D3-BMAA showed a shift of +3 mass
units for compared to H3-BMAA.
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Figure 6. Calibration curve for D3-BMAA
Solutions of 10 to 1000 pg/μl H3-BMAA and 250 pg/μl D3-BMAA were combined with
homogenates of mouse liver or cerebrum, or human cerebrum for comparison, derivatized with
ethyl chloroformate, and analyzed by GC/MS. The ratio of the amount of H3-BMAA to D3-
BMAA in each sample was plotted against the ratio of relative response for m/z 116 (H3-
BMAA) to m/z 119 (D3-BMAA). Linear regression analysis with 95% confidence intervals
are plotted along with the seven amount ratios for each tissue homogenate (r2 = 1.00 and P <
0.0001 for each). Slope for mouse cerebrum and mouse liver were 1.15 ± 0.01 and 1.04 ± 0.01;
human cerebrum yielded results virtually identical to mouse cerebrum.
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Figure 7. Mouse hepatic free BMAA after feeding
GC-MS m/z chromatograms of stable isotope dilution assay of mouse liver. H3-BMAA (m/z
116 and 245, arrows) along with its deuterated standard (m/z 119 and 248, arrows) were
detected in the extractable fraction, also called free BMAA, in mice fed BMAA (A) but none
of the mice fed control diet that lacked BMAA (B). Scattergram shows average values of
triplicate determinations of hepatic free BMAA as well as mean ± SEM for all eight mice fed
BMAA (C). No detectable free or protein-associated BMAA was detected in any of the six
mice fed control diets.
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Figure 8. Human Cerebral Cortex
GC-MS m/z chromatograms of stable isotope dilution assay of human cerebral cortex. H3-
BMAA (m/z 116 and 245, arrows) along with its deuterated standard (m/z 119 and 248, arrows)
were detected in the extractable fraction, also called free BMAA, in samples spiked ex vivo
with 250 pg/μl H3-BMAA (A). No H3-BMAA was detected in any human sample that was not
spiked (B).
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Table 1
Description of individuals’ tissue that was used in this study

Number and Gender Age range Tissue

Chamorros on Guam
Control 2F: 0M 61 and 93

Frontal and Temporal Cortex for each
PDC 5F: 3M 64 to 89

Residents of Seattle Area
Control 3F: 2 M 82 to 91

AD 3F: 2 M 74 to 83
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