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ELECTROENCEPHALOGRAPHIC (EEG) SLOW WAVES 
ARE THE EPITOME OF DEEP SLEEP. THE PREVALENCE 
AND AMPLITUDE OF SLOW WAVES IN THE SLEEP EEG 
are typically quantified as slow-wave activity (SWA; power den-
sity in the 0.75 - 4.5-Hz range). SWA appears to be a marker of 
sleep need and to be an expression of a homeostatic sleep-regu-
latory process.1 But it is unclear whether SWA is simply an EEG 
epiphenomenon or whether it directly serves important functions. 
In this issue of SLEEP, Landsness et al2 tested the hypothesis that 
SWA is responsible for the consolidation of visuomotor learning.

Many recent studies have linked SWA to learning and syn-
aptic plasticity. SWA is not the only aspect of sleep that has 
been related to such processes, but it has specifically been im-
plicated in declarative memory,3 as well as in overnight gains in 
perceptual4 and visuomotor performance.5 SWA appears to be 
use dependent such that cortical circuits that were particularly 
active during wakefulness produce more SWA during subse-
quent sleep,5,6 whereas underused circuits produce less SWA.7 
Increases in SWA that were induced either by practicing a learn-
ing task during prior wakefulness5 or by transcranial direct-cur-
rent stimulation during sleep3 were found to correlate positively 
with the magnitude of sleep-dependent learning effects. 

Whereas much of the earlier evidence was correlative, a recent 
study using an acoustic SWA-suppression paradigm provided sup-
port for a causal relationship between SWA and sleep-dependent 
gains in perceptual learning.8 The power of the SWA-suppression 
paradigm is that— if applied carefully—it allows for a sizable 
reduction of SWA, while total sleep time and REM sleep remain 
unaffected. Using this type of paradigm, Landsness et al2 exam-
ined the role of SWA in rotation adaptation, a well-characterized 
form of visuomotor learning. The authors show that reduction of 
SWA by an average of 31% prevented overnight improvement in 
visuomotor performance and that changes in SWA over the right 
parietal cortex, as measured with high-density EEG, correlated 
with changes in performance. Despite its strength, the acoustic 
SWA-suppression paradigm also has limitations: it is difficult to 
know whether the behavioral effects of the stimuli are attribut-
able solely to the decrease in SWA or additionally to an increase 
in arousals. Well aware of these limitations, Landsness et al2 sys-
tematically pursued several new strategies to overcome them. 

First, they included a control acoustic stimulation condition 
(CAS), in which subjects were exposed to stimuli during sleep 
but only when slow waves were absent. In contrast to slow 
wave deprivation (SWD), subjects exhibited significant learn-
ing in the CAS condition, thus ruling out the possibility that the 
acoustic stimulation procedure per se prevented learning. Next, 
the authors compared the number of clinically defined arousals. 
Although they found that the arousal index was slightly higher 
in the SWD than in the CAS conditions, multiple regression 
analysis with SWA and arousal index as independent variables 
revealed that only SWA predicted next-day visuomotor perfor-
mance. Finally, the authors introduced a new automated arousal 
index that was based on an event-related spectral perturbation 
analysis of the EEG response to auditory stimuli. The basic idea 
was to identify EEG responses to stimuli that may not meet the 
criteria for clinically defined arousals but may represent a more 
subtle kind of sleep fragmentation that may differ between the 
SWD and CAS conditions. At the end of an exhaustive analysis, 
it was demonstrated, however, that it was indeed SWA and not 
a subtle type of “EEG lightening” or sleep fragmentation that 
predicted visuomotor performance.2 The analysis validated the 
acoustic SWA-suppression paradigm and strengthened its inter-
pretational power.

In summary, Landsness and colleagues2 provide strong evi-
dence for a causal role of SWA in visuomotor learning. Despite 
the clarity of these results, one should keep in mind that some 
other studies have failed to find effects of SWA suppression on 
learning9,10 or on other waking functions.11,12 It is possible that 
methodologic differences may have played a role, and, therefore, 
it will be important in the future to examine such differences 
more systematically. It is also reasonable to assume that waking 
functions differ in the degree to which they depend on SWA. 
The investigation of such differences may reveal clues about the 
functional role of SWA. The fact that the largest behavioral ef-
fects of acoustic SWA suppression so far have been found in 
learning2,8 is consistent with a role for SWA in plasticity.
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