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Abstract
Background—Pharmacogenetics uses genetic variation to predict individual differences in
response to medications and holds much promise to improve treatment of addictive disorders.

Objectives—To review how genetic variation affects responses to cocaine, amphetamine, and
methamphetamine and how this information may guide pharmacotherapy.

Methods—We performed a cross-referenced literature search on pharmacogenetics, cocaine,
amphetamine, and methamphetamine.

Results—We describe functional genetic variants for enzymes dopamine-beta-hydroxylase (DβH),
catechol-O-methyltransferase (COMT), and dopamine transporter (DAT1), dopamine D4 receptor,
and brain-derived neurotrophic factor (BDNF). A single nucleotide polymorphism (SNP; C-1021T)
in the DβH gene is relevant to paranoia associated with disulfiram pharmacotherapy for cocaine
addiction. Individuals with variable number tandem repeats (VNTR) of the SLC6A3 gene 3′-
untranslated region polymorphism of DAT1 have altered responses to drugs. The 10/10 repeat
respond poorly to methylphenidate pharmacotherapy and the 9/9 DAT1 variant show blunted
euphoria and physiological response to amphetamine. COMT, D4 receptor, and BDNF
polymorphisms are linked to methamphetamine abuse and psychosis.

Conclusions—Disulfiram and methylphenidate pharmacotherapies for cocaine addiction are
optimized by considering polymorphisms affecting DβH and DAT1 respectively. Altered subjective
effects for amphetamine in DAT1 VNTR variants suggest a ‘protected’ phenotype.

Scientific Significance—Pharmacogenetic-based treatments for psychostimulant addiction are
critical for successful treatment.
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INTRODUCTION
New technology in molecular biology, pharmacology, and genomics research has transformed
the way pharmacotherapeutic medications are administered in clinical practice. Variability in
drug pharmacokinetics and pharmacodynamics are largely influenced by an individual’s

Copyright © Informa Healthcare USA, Inc.
Address correspondence to Therese A. Kosten, Ph.D. Michael E. DeBakey VA Medical Center, Research Service Line (151), 2002
Holcombe Blvd., Houston, TX 77030. tkosten@bcm.edu.

NIH Public Access
Author Manuscript
Am J Drug Alcohol Abuse. Author manuscript; available in PMC 2009 September 29.

Published in final edited form as:
Am J Drug Alcohol Abuse. 2009 ; 35(3): 161–177. doi:10.1080/00952990902825447.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



genetic makeup (1,2). Thus, the goal of pharmacogenetics is to correlate drug response with
genetic makeup. In theory, individualizing therapy based on genetic profile will optimize
responses to therapies and help better define common “polygenetic” diseases into more discrete
molecular-genetic disorders (3-6). Indeed, recent pharmacogenetic studies in clinical medicine
confirm that individual’s genetic profile is a much better guide for drug choice that leads to
improved clinical outcome (3-13). The present challenge however is integrating these advances
into mainstream medicine (1,14).

Initial pharmacotherapy choices for psychiatric diseases fail in 30-40% of patients and a large
portion of responders may be due to the placebo effect (15,16). Taking into account genetic
individual variability can improve initial medication choices (17-19). For example, the hepatic
cytochrome P450 system metabolizes a majority of psychiatric medications and shows 10%
genetic variability (20). Considering this variability can help avoid producing high systemic
drug levels that result in serious adverse side effects and noncompliance (18,20-22). Other
adverse side effects such as weight gain and dyskinesias are also linked to gene variants (23,
24).

Recent studies in psychiatry give clear evidence that tailoring drug treatment to a person’s
genetic makup is critical to engendering a positive therapeutic response (25), thwarting
dangerous side effects due to toxicity (17,20,21) and increasing compliance (18). Less attention
however has been centered on drug dependence likely because addictions have fewer effective
medications so less opportunity has arisen for pharmacogenetic studies. Drug addictions are
common polygenic, chronic, relapsing brain disease whose pharmacotherapy would benefit
from becoming more optimally defined through molecular-genetic approaches (15,26-28).
Clearly, not all that experiment with drugs of abuse become addicted. This heterogeneity of
response to developing addiction can be attributed, in part, to genetically driven inter-individual
differences (29,30). Mutations in genetic code may be responsible for differences in the
subjective effects of drugs of abuse making them either more rewarding or aversive depending
on the individual’s genotype. Genetically divergent and genetically altered rats, mice (31-33)
and human studies support this notion (30,34,35).

Gene profiling of individuals who respond divergently to drugs of abuse may help medication
development or help guide present pharmacotherapy. For example, genetically driven
alterations in enzymes (DβH, COMT), transporters (DAT1) receptors (D4) and neuropeptides
(BDNF) alter psychostimulant effects and response to medications aimed at these targets. Thus,
this review of pharmacogenetics extends our previous coverage of alcohol and opiates to
psychostimulants and follows that review’s goal of identifying possible pharmacogenetic
targets (36).

DRUG DEPENDENCE: NEUROBIOLOGICAL SUBSTRATES
The motivating effects of drugs of abuse are mediated through multiple sites and mechanisms
in the brain but studies strongly support activation of the mesocorticolimbic dopamine (DA)
system as key to mediating their reinforcing effects (32,36) (33,37-39). DAergic cell bodies in
the ventral tegmental area (VTA) and their projections to the prefrontal cortex (PFC) and
nucleus accumbens (NAC) define the core circuitry of this system whereas the amygdala,
hippocampus and hypothalamus are associated with emotional memories with drug addiction
(40-43). Further, drugs of abuse evoke DA release in the PFC and NAC and lesion studies of
these brain areas alters their behavioral effects (44-47).

Figure 1 presents a detailed hypothetical scenario for a DA neuron and its target neuron. DA
from terminal regions binds to a number of DA receptor subtypes called D1-like (D1, D5) or
D2-like (D2, D3, D4) classified based on molecular and pharmacological attributes. Synaptic
DA’s action is terminated by sequestration of the transmitter into the presynaptic neuron
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through the DA transporter (DAT) (48,49). DAT levels are high in ventral midbrain and
striatum but low in the PFC where the enzyme catechol-O-methyltransferase (COMT)
inactivates released DA through enzymatic conversion (50-52). Activation of D1-like receptors
leads to increasing amounts of the second messenger cAMP (cyclic adenosine 3′5′-
monophosphate) through stimulation of adenylate cyclase via Gs stimulatory G-proteins
whereas D2 activation acting through Gi inhibitory G-proteins decreases the formation of
cAMP. The formation of cAMP is dependent upon adenylate cyclase and degraded by
phosphodiesterase enzymes in the cytoplasm. Increased cAMP levels affect intracellular
protein kinase A (PKA). The catalytic subunit of PKA (PKA-Cα) may translocate to the nucleus
of the cell where it phosphorylates the transcription factor cAMP-dependent protein kinase
(CREB) leading to CRE (cAMP response element)-mediated gene expression (53). PKA-
Caα also phosphorylates dopamine and cAMP regulated phosphoprotein 32 kDa (DARPP-32)
that has numerous intracellular roles in DAergic neurons and plays a critical role in DA
signaling (54). Chronically administered drugs of abuse alter this intracellular cascade (53,
55). Genetically altered components of this system using modified mouse strains or other
strategies can influence the behavioral effects of drugs (32). By extension, genetic differences
in this system in humans strongly influence how an individual responds to drugs of abuse.

DOPAMINE NEUROTRANSMISSION AND DRUG ABUSE
Drug addiction is a general term encompassing the inability to cease drug-seeking and taking,
possible incremental increases in drug intake or tolerance to the drugs pleasurable effects and
physiological or psychological dependence. This drug intake continues despite deteriorating
physical and mental health and social footing. Elicitation of a withdrawal syndrome involving
physiological and/or psychological components upon drug discontinuation also signals drug
dependence. Other important pharmacological aspects of drugs of abuse include cross-
tolerance or tolerance to one substance that develops also to another substance usually in the
same drug class. Similarly, cross-sensitization occurs when sensitization to one substance
develops to a different drug also usually in the same class. Psychostimulants readily induce
sensitization that is linked to DA and other neurotransmitters such as norepinephrine (NE)
(56,57). Sensitization is considered key in the development of drug dependence (58), can be
demonstrated in humans (59) and is linked to craving associated with unconditioned and
conditioned drug effects (58) and relapse (60).

Data suggest that DA is associated with ‘euphoria’ elicited by drugs of abuse. DA is also
associated with conditioning; it increases the ‘salience’ or attractiveness of external stimuli
associated with drug procurement and intake (40). Similar to rodents (33), humans willingly
self-administer psychostimulants under controlled conditions (61-63) that activate reward
circuitry that is linked to drug-induced euphoria (61,64,65). Human imaging studies link DAT
and D2 receptor occupancy with cocaine and amphetamine-induced euphoria (66,67). D1
(68) and D2 receptor antagonism (69,70) or altering DA metabolism (71) blocks the pleasurable
effects of these drugs to some extent.

COCAINE ADDICTION AND ITS PHARMACOTHERAPY
Cocaine addiction is a persistent problem in the United States. The Office of National Drug
Control Policy estimates that approximately 3 million individuals chronically use cocaine and
years of research and drug development has yielded no indicated treatments (15,16). Cocaine
blocks the re-uptake of a number of neurotransmitters including DA, NE and serotonin (5HT)
(72). Yet, DA focused pharmacotherapies including DA antagonists as blocking agents, or
direct DA agonists such as cabergoline (73) and bromocriptine (74) have shown limited success
(15,16,74,75). However, indirect actions on DA through other neurotransmitters like GABA,
such as baclofen (76) and tiagabine (77) show promise. Metabolically altering DA levels (and
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blocking NE) through enzymatic inhibition may show the best efficacy for the treatment of
cocaine addiction (78,79). Enzymes involved in the production of DA (80) as well as those
involved in cocaine metabolism are significantly affected by genetics (81). Most intriguing are
recently identified polymorphisms that alter subjective responses to psychostimulants (34,
35). Genetic polymorphisms that are involved in coding DA-related proteins involved in its
regulation may guide individualized pharmacotherapy for cocaine addiction. One example
discussed below is the DβH inhibitor disulfiram.

COCAINE ADDICTION: DISULFIRAM PHARMACOTHERAPY
Disulfiram (DS) presumably treats alcohol dependence by inhibiting the enzyme aldehyde
dehydrogenase leading to increased plasma levels of acetaldehyde upon drinking alcohol, a
byproduct of alcohol metabolism that is aversive (82). DS also chelates copper (83) in turn,
inhibiting the copper-containing glycoprotein enzyme DβH that catalyzes the conversion of
DA to NE in peripheral and central NE-containing neurons (84). DβH inhibition leads to
decreases in peripheral and central NE and increases in DA (85,86). In humans, DS also inhibits
plasma and microsomal carboxylesterases and plasma cholinesterase (87,88) that inactivate
cocaine systemically thereby increasing blood levels (88). This effect likely contributes to DS’s
efficacy in treating cocaine addiction (89,90).

Controlled clinical trials support the efficacy of DS for cocaine dependence. DS reduces self-
reported cocaine use and positive cocaine urine toxicologies in primary cocaine addicts,
alcoholics and opiate dependent subjects who also abuse cocaine, and addicts maintained on
methadone or buprenorphine. (91-95). DS’s pharmacological effect is not specifically related
to alcohol use (90). A meta-analysis of randomized controlled studies on the effectiveness of
DS shows highly significant efficacy (P < 0.001). More recent studies also support DS as a
significant treatment in primary cocaine abusers (79) and those with co-dependence (91,
93-96). Carroll et al. conducted a 12-week study and demonstrated that DS with psychotherapy
decreased cocaine and alcohol use (91). A one-year follow-up analysis showed DS significantly
reduced cocaine, but not alcohol use, suggesting the effect was specific (97). This result for
cocaine was confirmed and extended by a more extensive study (79).

Early studies with DS alone showed that massive doses (up to 3 gm loading dose, and up to 1
gm/day for maintenance) induce paranoid psychosis in some patients (98). More recent studies
of DS with cocaine showed that DS increases the aversive effects of cocaine such as
nervousness that many cocaine abusers describe as “paranoia” (78). A subpopulation of cocaine
addicts have a greater susceptibility to developing cocaine-induced paranoia, a characteristic
that is genetically mediated (99). Although DS blocks enzymes that metabolize cocaine in the
periphery, subjective measures of cocaine craving, ‘high’ or ‘rush’ associated with IV
administered cocaine is reduced with DS treatment (78,95,100). This suggests that DS’s
therapeutic effects may more likely be due to its ability to inhibit DβH (increasing DA levels
and decreasing NE) rather than just its pharmacodynamic effects (increasing systemic levels
of cocaine).

When DβH levels are low, DA is increased whereas NE is decreased. Mice that lack DβH show
increased DA in the PFC and decreased NE. Treatment with disulfiram further increases DA
in this region (85). Cocaine potently blocks DA reuptake increasing synaptic levels of the
neurotransmitter as does DS via DβH inhibition. Thus, its reasonable to conclude that cocaine/
DS combination treatment results in supra-physiological increases in DA. This effect may
contribute to the aversive characteristics of the drug as supported by human (88) and rodent
studies (57,86,101). Under controlled laboratory conditions, Cubells et al. showed cocaine and
DS combinations induce intense dysphoric reactions including psychotic symptoms in patients
(102) but only in certain individuals suggesting that this effect was due to genetic factors
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(99). Taken together, evidence supports that DS affects various behavioral effects of cocaine
including blunting euphoria or ‘high’, neutralizing craving, or intensifying the dysphoric
aspects of cocaine.

FUNCTIONAL SNP C-1021T AND DISULFIRAM ACTION
DβH is a synaptic vesicular enzyme that uses copper as a cofactor and oxygen and ascorbate
as co-substrates (103). The enzyme converts DA into NE (104) and is co-released with
catecholamines. Individuals genetically deficient in DβH usually perish at birth but those that
have less severe forms exhibit physiological abnormalities namely, postural tachycardic
syndrome or generalized autonomic failure because of lack of sympathetic tone (105-107).
DβH is stable in plasma, correlates with cerebrospinal fluid (CSF) levels (108,109), and is age-
dependent (110). Based on twin and family studies, plasma levels are variable between
unrelated individuals (111-113). These genetically driven differences are likely due to
polymorphisms in close proximity to the DβH gene. Studies link the C-1021T (-1021C>T)
SNP to differences in circulating DβH levels (102,114-116) The SNP C-1021T is positioned
∼1 kb upstream from the initiation codon of the DβH gene (116). Several studies support the
notion that the C-1021T SNP is a functional polymorphism that gives rise to altered
transcription and decreased plasma levels of DβH (116-119) but other SNPs may also play a
role (80,120-122).

Decreased DβH attributed to C-1021T is found in diverse populations (European Americans,
African Americans, Eastern Indian and Japanese) accounting for up to 52% of overall variation
(116,118,119,123). Those individuals that are T allele homozygous have the lowest levels of
plasma DβH activity (106,116,118,119,123). Differences in DβH enzyme levels or activity is
linked with a number of psychiatric disorders including schizophrenia (114,124), psychotic
depression (125), nicotine addiction (126), attention deficit hyperactivity disorder (ADHD)
(127), post-traumatic stress disorder (128), conduct disorder (129-133), and neurological
diseases involving DA neurotransmission such as Parkinson’s Disease (80,134). The DA
metabolite, homovanillic acid (HVA) found in CSF fluid is an indirect measure of monoamine
concentration in the brain and is correlated with DβH C-1021T SNP genotype (135).

That C-1021T may be a functional polymorphism leading to decreased basal DβH levels has
pharmacogenetic significance for treatment of cocaine dependence with DS. In individuals
with already low levels of DβH enzyme, DS would be more effective in increasing DA and
decreasing NE (e.g. heterozygous and more so for subjects homozygous for the T allele). Data
from DβH deficient mice support this notion in that basal levels of DA in either +/- or -/-
homozygous are increased two and five times respectively. DA:NE ratio is significantly
reduced (approximately 35%) and DS pretreatment decreases NE and increases DA in wildtype
and +/- mice (85). An imbalance in DA:NE in the PFC may underlie increased cocaine-induced
paranoia in individuals with low levels of DβH attributed to the C-1021T SNP (80). This theory
posits that DA:NE ratios may be elevated at baseline in those homozygous for the T allele.
Cocaine, which potently increases DA levels, may lead to supra-physiological levels above
that of cocaine alone contributing to cocaine-induced paranoia and psychosis. Consistent with
this notion, controlled human experiments utilizing a ‘binge’ type cocaine self-administration
paradigm show that subjects homozygous for the T allele (‘very low-activity’) in the DβH gene
exhibit greater cocaine-induced paranoia compared to CT or CC genotypes (136,137).
Moreover, cocaine abusers that experience cocaine-induced paranoia (that is extremely
aversive) are more prone to develop psychosis and to seek immediate medical treatment
(138,139). Preclinical studies in rats (101) and with genetically deficient DβH mice support
this interpretation. Indeed, decreasing DβH through DS treatments or via genetic manipulation
enhances the behavioral effects of cocaine and increases anxiety associated with the drug
(57,86). Specifically, cocaine aversion is enhanced in DβH deficient mice and cocaine-induced
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anxiety eliminated (57); the later effect appears to be mediated through beta-adrenergic
receptors. In fact, DβH inhibition with DS facilitates cocaine-induced locomotor sensitization
that may reflect enhanced aversiveness of the drug (101).

Taken together, SNP mapping profiles aimed at detecting DβH genotype may help predict
whether an individual will respond well to DS treatment for cocaine dependence. That is, DS
efficacy may be affected by an individual’s genotype. Individuals harboring the DβH C-1021T
SNP TT allele likely would respond better to DS treatments and need less of a dose whereas
CT allelic carriers would need an intermediate dose and those with the CC allele may need
increased concentrations for maximum therapeutic effectiveness. Evidence to date indicates
that DS appears to be a good example of a pharmacogenetic treatment for drug abuse. Future
studies are needed to clarify the mechanisms involved, and the contributions of other SNPs
implicated in altering DβH levels that may affect treatment outcome.

DOPAMINE RECEPTOR D2 (DRD2)
Literature strongly supports D2 receptor involvement in the reinforcing effects of drugs of
abuse. Imaging studies show significantly reduced levels of these receptors in alcoholics
(140), cocaine (141), methamphetamine (142), and heroin abusers (143). D2 receptors are also
related to drug-induced euphoria (65,144) and drug craving (145,146). Individuals with a
positive family history of alcoholism—a predisposing factor to developing the disease—that
have higher D2 receptor levels, are protected from developing drug dependence (147).
Intriguingly, positron emission tomography (PET) imaging studies in drug näive rats show that
low D2 receptors in the ventral striatum (which includes the NAc) predicts impulsivity and
greater drug self-administration behavior (148). Predetermined rat phenotypes that readily self-
administer drugs of abuse suggests genetic factors are involved (31,149). Inbred rat strains that
have a proclivity to self-administer drugs of abuse across classes, have low D2 receptor density
(149-151) and altered responses to DAergic agents (33). Similarly, genetic ablation of the D2
receptor in mice significantly decreases drug reward and responsivity (32,152,153).
Accordingly, deficits in D2 receptors in some human drug abusers persist even after pro-longed
periods of abstinence suggesting that these altered levels were not solely drug-induced (154).
These data suggest an important role for genetic factors that affect D2 receptor availability and
may predict inter-individual responses to drugs of abuse. Pharmacogenetic medications aimed
at increasing D2 levels in those individuals genetically predetermined for low levels may prove
beneficial.

DOPAMINE TRANSPORTER (DAT) SLC6A3 GENE
The DAT is encoded by the SLC6A3 gene (155) and sequesters DA back into the presynaptic
neuron (see Figure 1) to modulate DAergic tone (48,49). Cocaine strongly inhibits DAT that
is related to its reinforcing effects (156,157). Similarly, other psychostimulants, such as
amphetamine and methamphetamine, have action at the DAT enhancing DA neurotransmitter
release into the extracellular space potently increasing levels (158-160). Mice genetically
deficient in DAT have altered responses to cocaine and amphetamine (161). The cocaine
euphoria, or ‘high’ associated with self-administering the drug is correlated with DAT
occupancy in humans (66). Thus, genetic alteration in DAT could contribute to altered
sensitivity to cocaine in humans.

SLC6A3 comprises 15 exons spanning 60 kb on chromosome 5p15.32. The 3′-untranslated
region (UTR) DAT1 polymorphism is a 40 bp VNTR with repeat copy numbers between 3-13
times with the 9 and 10-repeat allele being the most frequently found in the population
(162-164). Unique to this polymorphism is that it is located in the untranslated region of the
DAT1 gene but has been linked to disease phenotypes involving DA dysregulation. This
suggests that it may be in linkage disequilibrium with another mutation that influences either
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gene expression or functional aspects of the transporter. Preclinical studies suggest that this
VNTR alters levels of gene expression, yet it is unknown precisely at what level (165-167).

DAT VNTR AND THERAPEUTIC RESPONSE TO METHYLPHENIDATE: ADHD
MODEL

ADHD is a common disorder of childhood and adolescence associated with persistent
impairment in academic and social spheres (168,169). Imaging studies generally show
dysregulated DA-rich brain structures, altered presynaptic DA storage and abnormal DAT
striatal density (170-175). Individuals with ADHD have a high rate of comorbid psychiatric
illness with substance abuse occurring in 1 in 5 patients (168,176). Methylphenidate (and its
various formulations) is the drug of choice for the treatment of ADHD and binds to the DAT
similar to cocaine (39,66,177).

Some studies (178-181) but not all (166,182,183) indicate that the VNTR polymorphism of
the DAT1 is a risk factor for psychiatric diseases associated with drug abuse such as ADHD.
Haplotype is a combination of alleles at two or more closely linked gene loci on the same
chromosome. VNTR polymorphisms located in intron 8 and the other 3′ untranslated region
(3′-UTR) of the gene and the 10-repeat 3′ UTR alleles together appear as a common DAT1
haplotype (10/3) (181). Intriguing data from Bellgrove et al. show in normal developing healthy
children, the DAT1 genotype—in particular the 10- and 3-repeat allele markers-influences
attentional spatial bias and neglect displayed as inattention for left-sided stimuli, characteristics
that could be related to the ADHD phenotype (184). Whether this combination haplotype
confers risk, or alters pharmacological interventions for cocaine addiction is unknown. One
large study showed that alleles of SLC6A3 polymorphism 30 bp VNTR in intron 8 in patients
addicted to cocaine and showed compromised function in in vitro reporter assays (185).
Replication of this study in different subject populations is warranted.

Some studies show that ADHD individuals with the 10/10 genotype of the DAT1 VNTR show
poor response to methylphenidate on clinical and physiological measures (186-191) whereas
others have shown no significant response (192,193) or better response (191,194,195) to
methylphenidate. Although far from conclusive, VNTR polymorphisms in the DAT1 gene
confer clinically relevant alterations that may affect response to methylphenidate, a possible
treatment for cocaine addiction.

Methylphenidate treatment is associated with significantly greater frequency of cocaine-free
urines compared to placebo controls in cocaine dependent individuals with ADHD (196).
Methylphenidate also has been shown to block some of the subjective effects of cocaine and
reduce free choice of cocaine over a monetary reward (197). Methylphenidate’s therapeutic
action is unknown but likely involves increasing neurotransmission in the orbitofrontal cortex
secondary to elevated DA in thalamic brain regions (39). Increased neurotransmission in the
orbitofrontal cortex may contribute toward reversing the well-demonstrated finding of hypo-
frontality in chronic cocaine dependent subjects (198). Restoring DAergic inhibitory influence
from the prefrontal cortex on structures involved in affective drive (199) and executive
functioning (200) may underlie normalizing compulsive drug-seeking behaviors.

Properly assessed genetically driven functional changes in the DAT could help determine
which patient would benefit most from methylphenidate for cocaine addiction (32). Imaging
studies indicate that the 9/9 and 9/10 genotypes are associated with differences in DAT
availability in vivo. Some imaging groups find decreased DAT availability of 9/10 allele vs.
10/10 carriers (201) or no difference (202). However, our early collaborating studies using
single photon emission tomography (SPECT) and the [123I] beta-CIT ligand highly selective
D2 (and D3) receptor ligand noted a 13% increase in striatal binding in the 9/10 repeat
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heterozygotes compared with the 10 repeat homozygotes in normal non-diseased subjects
(203). A more recent study confirmed these findings using the same SPECT ligand in normal
subjects. SLC6A3 9 repeat carriers (in this study combined 9/9 and 9/10 genotypes) have
significantly higher striatal DAT availability compared to 10 repeat homozygotes (204)
suggesting that the SLC6A3 9 repeat genotype leads to increased DAT availability in striatum.
Although in vitro studies give conflicting conclusions as to the extent to which variants regulate
transcriptional activity or number of DAT proteins (165,166,202,205), it is likely that altered
DAT levels contribute to inter-individual differences in the ability of the transporter to clear
DA from the synaptic space. Supra-physiological levels of orbitofrontal DA presumably
contribute to psychotic symptoms such as paranoid ideation (206). Increased DA levels in this
area are also linked to the euphoric effects of cocaine (177,200). Thus, more DAT in the 9
repeat carriers would presumably sequester greater amounts of synaptic DA in turn reducing
the initial pleasurable effects of drugs and perhaps ‘protecting’ the individual from developing
drug addiction. This interpretation is consistent with the finding that euphoric effects of
amphetamine are significantly decreased (35) in the 9 repeat carriers as is therapeutic response
to methylphenidate (178,195).

Taken together, conflicting results demonstrating altered DAT1 concentrations and/or function
are difficult to interpret within the context of methylphenidate treatment for cocaine addiction.
Evidence suggests however, that since the VNTR is in an untranslated region and-presently
unknown to produce any functional protein-it may be a marker associated with another
mutation in linkage disequilibrium that influences either gene expression or functional aspects
of the transporter. The presence of ADHD in cocaine dependent subjects in tandem with
genotype are important factors to consider in predicting therapeutic response for
methylphenidate for cocaine.

AMPHETAMINE: MECHANISMS OF ACTION AND PHAMACOGENETICS
Amphetamine was first used commercially as an over-the-counter inhaler for nasal congestion
and asthma (160,207). Today, amphetamine is used medically for ADHD, narcolepsy with off
label use for chronic fatigue syndrome, and adjunct therapy for anhedonia associated with
refractory depression. Amphetamine and its derivatives, such as methamphetamine, are widely
abused illicit drugs second only to cannabis.

Early studies show that responses vary greatly from one individual to another in response to
the same dose of amphetamine (208-210). This heterogeneity of response may be due to a
number of factors such as expectancies of the drug (211), psychiatric disease or personality
type (212,213), or gender differences (214). Yet, considerable evidence shows that individual
variability in drug response is due to genetics (160). For example, polymorphisms DAT 3′UTR
VNTR (35), COMT val158met (215), SLC6A2 NET intronic 36001 C/C (216), 5-HT
transporter gene-linked polymorphic region and Intron 2 VNTR (217), adenosine receptor A2a
1976 C/T and 2592 C/Tins (218), casein kinase 1 epsilon (219) and BDNF G196A val66met
(220) have all been implicated in altering the subjective effects of amphetamine.

Amphetamine’s primary effects are mediated by action on the DAT. Similar to cocaine and
methamphetamine, amphetamine has strong effects on the DAT, reversing the transporter
enhancing extraneuronal DA concentrations (158). As mentioned, the SLC6A3 3′-UTR DAT1
polymorphism VNTR, frequently found in the population (162-164), affects gene expression
(221), results in altered central DAT levels (166,201-204), and impacts subjective and
therapeutic efficacy of the ADHD drug methylphenidate (178,195). Similarly, the DAT gene
is crucial to individual variability in response to amphetamine (35). Subjects with the 9/9 DAT1
variant report no euphoria, anxiety or “feel drug” responses to increasing doses of amphetamine
compared to those with the 9/10 or 10/10 alleles. Homozygous 9/9 repeat allele carriers also
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have significant decreases in peripheral physiological measures, such as diastolic blood
pressure. These data are consistent with studies showing that individuals who have the 9/9
repeat genotype do not respond to the ADHD medication methylphenidate (178,195).

Initial pleasurable experiences with drugs of abuse predict future use and dependence (222,
223). By extension, subjects with the 9/9 allele experience less positive subjective effects of
psychostimulants, in this case amphetamine, and may be “protected” from developing future
psychostimulant abuse. Studies in genetically diverse inbred strains Lewis and Fischer 344 rats
support this conjecture. Lewis rats (vs. F344 rats) have innate predisposition to self-administer
a wide variety of drugs of abuse and have low baseline DAT levels and function (224). Haile
et al. (2005) recently showed that the potent and selective DAT inhibitor RTI 336 decreases
cocaine-induced activity and self-administration in Lewis but not F344 rats (225). That a highly
selective DAT inhibitor was more effective in decreasing cocaine’s behavioral effects in a
genotype known to have decreased DAT levels supports this as a possible therapeutic target.
Future studies determining if the SLC6A3 3′-UTR DAT1 VNTR polymorphism is a useful
phamacogenetic marker for medications to treat amphetamine and cocaine abuse in humans
are warranted.

METHAMPHETAMINE
Methamphetamine (METH) is a potent and highly addictive psychostimulant (160). METH
efficiently penetrates the CNS (226) evoking the release of high concentrations of monoamines,
in particular DA, through multiple mechanisms (158). The half-life of cocaine is 90 minutes
whereas METH is upwards of 10 hours (227). Abusers tend to self-administer the drug in
“binges” or “runs” lasting 1-3 days or more followed by abstinence then repeated abuse.
Because of METH’s lengthy half-life, ‘binge’ administration results in increasing
concentrations of the drug within the system that can be toxic particularly because minimal
tolerance occurs to its peripheral and central effects (228,229).

Acute administration of METH produces powerful sympathetic nervous system stimulation.
Euphoria, increased energy, heightened attentiveness, hypersexuality, and decreased anxiety
are effects of METH intoxication (230). In contrast, depression, anhedonia, irritability, anxiety,
fatigue, hypersomnia, poor concentration, intense craving and aggression are associated with
METH withdrawal (231-233). Chronic METH ingestion frequently results in severe
psychiatric disturbances or METH-induced “psychosis” that resembles schizophrenia
(234-236). There are presently no FDA-approved medications indicated for METH addiction
but a variety of compounds are being tested (237).

METHAMPHETAMINE’S EFFECTS ON NEUROCHEMISTRY AND BEHAVIOR
METH is similar to cocaine and amphetamine in that it has potent effects on the DAT that
likely contribute to its addictive properties. METH greatly enhances DA concentration in
reward circuitry, such as the NAC, 1000% over baseline (238) independent of neuron
depolarization (239) redistributing cytosolic DA for quick release from the neuron (240).
Redistribution of cytosolic DA may be due to METH’s ability to inactivate vesicular
monoamine transporter (VMAT2) in monaminergic neurons (241) that is normally responsible
for repackaging, storage and re-release of neurotransmitter. METH-induced increases in
massive amounts of synaptic DA is auto-oxidized into highly reactive species that inactivates
and decreases DAT that further elevates synaptic DA levels (242-244) and neurotoxicity
(120,245-247). DA selective receptor antagonists, DAT antagonists, and DA depletion block
METH’s effects on the DAT (248). Likewise, DA D1-like and D2-like antagonists also block
METH-induced behavioral sensitization in rats (249,250). Clozapine, an atypical antipsychotic
that blocks a number of receptors, including the D4 receptor subtype (251), antagonizes
METH-induced behavioral activation as does a D4 selective antagonist (252). Clozapine
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pretreatment also blocks METH-induced memory deficits in rodents (253). Neither the non-
selective DA blocker haloperidol nor the combination DA D2/5HT blocker risperidone block
the subjective effects of METH in humans (254).

Individuals with METH abuse histories have significant decreases in DAT binding in the
caudate and putamen as measured with the PET radioligand [11C]WIN-35,428 (255). Other
PET studies confirm decreased DAT binding in these areas in current abusers (256), recently
detoxified subjects (257), and in subjects drug-free for upwards of 11 months (142). Similar
to what has been demonstrated in alcoholics (140), cocaine (141), and heroin (143) abusers,
D2 receptor levels are lower in the caudate and putamen of METH abusers, as measured by
PET [11C]raclopride (142)(but see (257)).

Research has focused on polymorphisms involving the DAergic system that relates to METH-
induced psychosis and vulnerability. The 7-repeat (exon III) DRD4 polymorphism and the
functional polymorphism COMT Val158Met are two examples (258-261). Substantive
evidence supports an association with the met allele of the COMT enzyme with METH-induced
psychosis (262) and as a risk factor for developing prolonged METH-induced psychosis
(263). METH-psychosis is associated with proteins linked to DA neurotransmission such as
C-kinase-1 (PICK1) that is related to DAT membrane localization and securing a stable protein
complex within the membrane (264). Others include the functional polymorphism of
glutathione S-transferase involved in oxidative stress protection that results in markedly
reduced enzyme (30%) levels possibly potentiating METH’s deleterious effects (265,266).
Organic cation transporter 3 (267), beta-arrestin 2 gene (268), and newly identified SNPs of
OPRM1 (269,270), but not the delta opioid receptor (OPRD1) (271), have also been linked to
METH-induced psychosis.

Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor implicated in a number of
neurological processes such as cell survival, proliferation, synaptic growth through
development, and hippocampal changes associated with learning and conditioned drug reward
(272-275). Interestingly, plasma BDNF levels are significantly higher in abstinent METH
abusers compared to controls (183) and in multiple substance abusers with schizophrenia
(276). Recent association studies have linked an increased incidence of the purported functional
BDNF gene polymorphism val66met (277) and substance abuse in males (278). This mutation
appears to affect declarative memory in humans (279). Increased incidence of the val66met
polymorphism in substance abusers is partly supported by another study (280). It is unknown
however, whether the val66met polymorphism alters any of the subjective effects of METH
or rather, may be a viable pharmacogenetic target.

Taken together, there has been much progress made in defining polymorphism that may confer
susceptibility to abuse and developing psychosis from METH abuse. From a pharmacogenetics
perspective, studies have yet to find a target that would improve pharmacotherapeutic decision-
making in the setting of variability in response to a drug therapy for this drug of abuse.

CONCLUSIONS
Identifying gene-targets that will improve clinical decision making within the context of
variability in response to drug therapy is the principle challenge of pharmacogenetics.
Psychiatric pharmacogenetic studies have identified genes implicated in altered responses to
psychostimulants and have identified targets for maximizing pharmacotherapeutic response.
Studies presented here briefly highlighted therapeutics for drug dependence currently being
used but focused mainly on maximizing therapeutic response based on individual’s genetic
profile. For example, cocaine pharmacotherapy is influenced by C-1021T SNP of the DβH
gene that alters enzyme levels. Disulfiram’s action on this enzyme and DAT gene variable
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number tandem repeats of the SLC6A3 gene affects treatment response to methylphenidate.
DAD4 receptor 77-repeat (exon III) polymorphism may alterclozapine action for the treatment
of METH-induced psychosis. Further, the purported functional polymorphism of the BDNF
gene val66met may offer a pharmacogenetic target for METH addiction. Val158met may alter
COMT enzyme levels and is associated with amphetamine and METH use. Presumed
genetically predetermined decreases in DRD2 levels in chronic drug abusers offers another
possible pharmacotherapeutic target (see Figure 2).

Individualized treatments based on the presence of SNPs or other gene variants that alter a
particular target protein’s function but enhance response to a medication is key. Better-defined
contributions of genes already associated with drugs of abuse and how they may alter the
subjective effects that contribute to pathological compulsive drug seeking is under way. Future
studies should consider gene variants that affect pharmacodynamic, pharmacokinetic and
possibly epigenetic factors that could contribute to a positive clinical outcome and response to
a particular medication. Information from imaging studies coupled with carefully defined
candidate gene variants and their function will also help clarify contributions of candidate genes
to phenotype and possibly predict responses to psychostimulants and to medication.
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FIG. 1.
Hypothetical schematic of a DAergic synapse. Presynaptic neuron contains DA precursors
leading to vesicular DA fusing with the presynaptic membrane and being released into the
synaptic cleft. DA then stimulates DAergic receptors on the postsynaptic cell. DA is inactivated
by being sequestered back into the presynaptic neuron by the DA transporter (DAT). DA may
also be metabolized extra-synaptically by catechol-O-methyl transferase (COMT). DA present
in the cytosol is taken up by the vesicular transporter (VMAT) for degradation and repackaging.
Tyrosine hydroxylase is the rate-limiting enzyme in DA synthesis. Dopamine beta-hydroxylase
(DβH) is responsible for the formation of norepinephrine (NE). Intracellular mechanisms
associated with the cAMP-PKA-CREB pathway through DA D1-like and D2-like receptors
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are represented in the postsynaptic neuron. D1 stimulates through Gαs whereas D2 receptor
activation inhibits cAMP levels via adenylate cyclase (AC) through Gαi G-proteins. cAMP
enhances the dissociation of the regulatory subunit of proteins kinase A (PKA) from the
catalytic subunit (Cα) causing activation. PKA-Cα may translocate to the nucleus where it
phosphorylates cAMP-response element binding protein (CREB) that leads to cAMP response
element (CRE)-mediated gene expression. PKA-Cα may phosphorylate other receptors or
channels as well. This kinase also phosphorylates dopamine-and cAMP-regulated-
phosphoprotein 32 kDa (DARPP-32) at position Thr34, that then leads to regulation of other
intracellular proteins and effects on the neuron.
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FIG. 2.
Hypothetical schematic of a DAergic synapse representing various polymorphisms affecting
proteins involved in psychostimulant action or altering response to medications for
psychostimulant addiction. Cocaine pharmacotherapy is influenced by C-1021T SNP (1) of
the DβH gene that alters enzyme levels and disulfiram’s action on this enzyme. DAT gene
variable number tandem repeats of the SLC6A3 (2) affects treatment response to
methylphenidate and possibly cocaine and amphetamine (AMPH). DAD4 receptor 7-repeat
(exon III) polymorphism (3) may alter clozapine action for the treatment of methamphetamine
(METH)-induced psychosis. The purported functional polymorphism of the BDNF gene
val66met (4) may offer a pharmacogenetic target for METH addiction. Val158met (5) may
alter COMT enzyme levels and is associated with AMPH and METH use. Genetically
predetermined decreases in DRD2 receptors (6) in chronic drug abusers across classes offers
a possible pharmacotherapeutic target.
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