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Abstract
The significant work that has been invested toward understanding protein–protein interaction has
not translated into significant advances in structure-based predictions. In particular redesigning
protein surfaces to bind to unrelated receptors remains a challenge, partly due to receptor flexibility,
which is often neglected in these efforts. In this work, we computationally graft the binding epitope
of various small proteins obtained from the RCSB database to bind to barnase, lysozyme, and trypsin
using a previously derived and validated algorithm. In an effort to probe the protein complexes in a
realistic environment, all native and designer complexes were subjected to a total of nearly 400 ns
of explicit-solvent molecular dynamics (MD) simulation. The MD data led to an unexpected
observation: some of the designer complexes were highly unstable and decomposed during the
trajectories. In contrast, the native and a number of designer complexes remained consistently stable.
The unstable conformers provided us with a unique opportunity to define the structural and energetic
factors that lead to unproductive protein–protein complexes. To that end we used free energy
calculations following the MM-PBSA approach to determine the role of nonpolar effects,
electrostatics and entropy in binding. Remarkably, we found that a majority of unstable complexes
exhibited more favorable electrostatics than native or stable designer complexes, suggesting that
favorable electrostatic interactions are not prerequisite for complex formation between proteins.
However, nonpolar effects remained consistently more favorable in native and stable designer
complexes reinforcing the importance of hydrophobic effects in protein–protein binding. While
entropy systematically opposed binding in all cases, there was no observed trend in the entropy
difference between native and designer complexes. A series of alanine scanning mutations of hot-
spot residues at the interface of native and designer complexes showed less than optimal contacts of
hot-spot residues with their surroundings in the unstable conformers, resulting in more favorable
entropy for these complexes. Finally, disorder predictions revealed that secondary structures at the
interface of unstable complexes exhibited greater disorder than the stable complexes.
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Protein–protein interactions are a critical component of the machinery within living organisms.
These interactions control processes involved in both normal and pathological events ranging
from signal transduction to cell adhesion. Considerable effort has been devoted toward gaining
a deeper understanding of the factors that lead to the formation of protein–protein complexes
(1–5). The availability of an increasing number of three-dimensional structures of protein–
protein complexes from X-ray diffraction and NMR has been critical in unraveling the anatomy
of the protein–protein interface through large scale analyses (6–8). But an increased
understanding of the factors that lead proteins to associate has not translated into significant
progress in structure-based computational approaches such as protein–protein docking and
design of binding proteins. This is attributed to a number of factors, among them the lack of
explicit treatment of receptor flexibility (9,10) and the contributions from water molecules to
binding (11).

These limitations have hampered progress on structure-based protein design and grafting of
interaction sites, as evidenced by the handful of successes reported to date (12–15). The design
of new function in a known protein is of great interest in biomedical research and biotechnology
(12,16). Not only can these designer proteins modulate cellular behavior through interaction
with cell surface receptors, they may also block various interactions that are implicated in
pathological processes and may serve as therapeutic agents for the treatment of various ailments
(17). Such proteins would be highly desirable given the challenges that have to be overcome
to inhibit protein–protein interactions with small molecules (18).

There have been some successes for structure-based computational protein grafting that have
been reported in the literature (19–24). Sia and Kim grafted the complete binding epitope of
an HIV-1 C-peptide onto the surface of a GCN4 leucine zipper as a stable coiled coil (19). The
C-peptide was derived from the C-terminal region of HIV-1 gp41 and was α-helical in the
active form. More recently, the successful design of peptides that specifically recognize the
transmembrane helices of two closely related integrins (αIIbβ3 and αvβ3) in micelles, bacterial
membranes, and mammalian cells was reported (20). Another example was the grafting of side
chains of nine residues of CD4–a protein that is central in the binding to HIV-1 envelope
glycoprotein (gp120)–to the structurally homologous region of the scorpion toxin scaffold
scyllatoxin (21). Liu et al. grafted the E6-binding motif into two parent peptides to create
ligands that have biological activity while preserving the stable, native fold of their scaffolds
(22). Zondlo and Schepartz dissected those α-helical residues required for DNA recognition
from their native protein context and successfully grafted them on the helix of avian pancreatic
polypeptide (aPP), a small, well-folded protein (23,24). They also used aPP as a scaffold to
design miniature proteins to inhibit p53-hDM2 interaction (25).

It is worth noting that one common feature of these successes is that the grafting involved a
single secondary structure that was transferred to the native ligand to bind to the receptor.
Typical protein–protein interfaces, however, are large (between 1,200 and 2,000 Å2) and are
not continuous (multiple secondary structures within the binding partners participate in the
binding) (4). These interactions present significantly greater challenge for computational
design of protein scaffold. There are, however, some aspects of these interactions that can be
exploited as it has been found that proteins with different sequence, structure and function may
still associate in similar ways (26,27). We have developed an algorithm that can exploit the
three-dimensional structure of protein–protein complexes–with interactions spanning multiple
secondary structures–to identify key interaction sites that could be transferred into other stably
folded proteins. Our algorithm was recently successfully implemented to design rat PLCδ1-
PH (pleckstrin homology domain of phospholipase C-δ1) to bind erythropoietin receptor
(EPOR); it is worth noting that rat PLCδ1-PH was heretofore not known to bind EPOR (28).
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Successful design of novel protein–protein interfaces requires an understanding of the factors
that lead to productive and unproductive designer complexes. In this work, we employ our
previously established approach for grafting of protein interaction sites first as a conduit to
probe the forces that drive native and designer proteins to form stable complexes. We graft
various scaffold proteins to bind to receptors from well-known protein–protein complexes,
namely barnase–barstar, hen egg lysozyme–Fv fragment of antibody D1.3, and trypsin–bovine
pancreatic trypsin inhibitor (BPTI). We subject the native and designer complexes to a total of
nearly 400 ns of intensive explicit-solvent molecular dynamics simulations. Interestingly, we
found that a number of the designer complexes dissociate during the trajectories, while the
native complexes remained stable in agreement with experiment. These unstable complexes
provided us with a unique opportunity to compare stable and unstable complexes–instead of
strictly relying on native structures–and to delineate the structural, energetic and dynamical
factor that lead to stability of designer complexes. To that end, snapshots were collected from
the dynamics and extensive free energy calculations following the MM-PBSA approach were
performed. In addition, we perform disorder prediction of the interface sequences from the
designer complexes. Results from this work provided valuable insight into the forces that drive
stable protein–protein complexes and those that lead to unstable complexes. It is the first study
to our knowledge that incorporates the study of designer complexes with receptor flexibility
and explicit solvent. The results also provide valuable insight to guide future design efforts.

EXPERIMENTAL PROCEDURES
Protein Structures

Three protein–protein complexes were considered in this study: barnase–barstar (PDB code
1BRS) from the RNAase-inhibitor family; hen egg lysozyme–Fv fragment of antibody D1.3
(PDB code: 1VFB) from antigen–antibody family; and trypsin–bovine pancreatic trypsin
inhibitor (PDB code: 2PTC) from the protease-inhibitor family. The interfaces of barstar,
antibody D1.3, and BPTI (considered ligands) were computationally transferred onto
nonhomologous scaffold proteins. The scaffold proteins were chosen according to the
following criteria. Sequence identity cutoff was set to 50%, and the resolution cutoff was set
to 2.2 Å. A total of 2846 chains that met the criteria were downloaded from
http://dunbrack.fccc.edu/ PISCES.php. Only single chain proteins with 50–120 residues that
did not contain any ligands were considered. A total of 27 proteins met all the requirements:
1A1X, 1A32, 1ACX, 1AHO, 1AIL, 1BB9, 1BCG, 1BM8, 1FAS, 1FNA, 1HOE, 1HYP, 1KTE,
1NOA, 1OPC, 1PTF, 1R69, 1SFP, 1TEN, 1THX, 1TIG, 1TMY, 1TUL, 1VCC, 1WHO, 2IGD,
3IL8.

Searching for Binding Sites in the Scaffold Proteins
The search for potential binding sites in the scaffold protein was conducted based on the
following procedure. The process was initiated by identifying hot-spot residues and key
interaction atoms on the ligand proteins (barstar, antibody D1.3, or BPTI) that strongly interact
with the receptor protein (barnase, hen egg lysozyme, or trypsin). This process was guided by
site-directed mutagenesis data as well as visual analysis of the complexes. Residues are
considered hot spots when the free energy change is greater than 2.5 kcal · mol−1 upon mutation
to alanine. Proline, glycine residues from glycine turns, and cysteine residues from disulfide
bonds were excluded as candidates for hot-spot residue transfer to the scaffold protein.

Once hot-spot residues on the ligand are identified, we screen the surface scaffold proteins to
identify sets of residues whose relative positioning replicate those of the hot-spot residues in
the ligand (Figure 1A). We will hereby refer to the collection of these hot spots as minimal
binding epitope (MBE). The Cα–Cα, Cβ–Cβ, and Cα–Cβ distances between any two candidate
residues in the scaffold are determined. If the deviation of these distances is less than 3 Å from
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those between the corresponding hot-spot residues on the ligand, these scaffold residues were
mutated to reproduce the arrangement on the ligand protein (Figure 1B).

Finally, the scaffold protein is superimposed onto the ligand protein based on coordinates of
the atoms that are involved in key interactions between ligand and receptor (Figure 1C). During
the superimposition, each rotamer combination was evaluated. For example, if there are 3
grafted residues and there are 9 side chain rotamers for each grafted residue, a total of 9 × 9 ×
9 rotamer combinations are considered. The side chain rotamers of the grafted residues were
assigned based on the backbone-dependent rotamer library of Dunbrack (29). Rare rotamers,
which had an observed frequency less than 1% of the most likely rotamers, were excluded.
The transferred hot-spot residues usually protruded into solvent and had no clashes with other
parts of the scaffold protein. A rotamer combination of the grafted residues on the scaffold was
chosen if it met the following criteria: (1) the root-mean square (rms) deviation of “key
interaction atoms” between the scaffold and the native ligand protein was below 1.5 Å; (2) the
buried interface area was larger than 1,200 Å2 (probe = 1.2 Å); (3) the overlap volume between
the receptor protein and the rigid atoms (backbone, Cβ, Pro, and Cys in the disulfide bridge)
of the scaffold protein was less than 75 Å3. In some cases, many rotamer combinations qualified
as one potential binding site and only one with a small combination of the rms deviation value
and overlap volume was accepted. The algorithm to search for the potential binding site in the
scaffold protein is similar to what we reported previously (30).

Energy Minimization of the Receptor–Scaffold Complex
The mutated scaffold was energy minimized along with the receptor protein using the CHARMM

program (31). If necessary, the side chain conformation of the receptor interface residues was
adjusted to avoid unfavorable interactions with the scaffold protein based on visual analysis.
A total of 200 adopted-basis Newton–Raphson minimization steps (ABNR) were carried out.
All heavy atoms except side chain atoms of the transferred and key interaction residues were
harmonically constrained with a force constant of 2 kcal · mol−1 · Å−2. Distance constraints
were used to mimic strong atom–atom interactions across the interface of native complex.
Interface residues of the scaffold protein, other than glycine, alanine and transferred key
interaction residues, were mutated to alanine before energy minimization. This is done to
minimize the impact of steric clashes between side chains of the scaffold and receptor. In the
next stage of the grafting process, these residues are mutated to form favorable interaction with
the receptor.

Side Chain Rotamer Prediction
The scoring function used to determine the energy of a rotamer positioned in the protein
environment was derived previously:

(1)

where SAcontact, Voverlap, Ehbond, Eelec, ΔSApho, and ΔSAphi are atom contact surface, overlap
volume, hydrogen bonding energy, electrostatic interaction energy, buried hydrophobic solvent
accessible surface and buried hydrophilic solvent accessible surface between the rotamer and
other parts of the protein respectively; Fphi is the fraction of buried surface of non-hydrogen-
bonded hydrophilic atoms; Vexclusion is the normalized solvent exclusion volume around
charged atoms; f1 is the observed frequency of the rotamer, and f2 is the observed frequency
of the amino acid given a backbone conformation; Nssbond is the flag of disulfide bridge (1 or
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0); ΔGref is the reference value of each amino acid. The weights of these energy items together
with the reference values were optimized so that the native residue was predicted energetically
favorable at each position of the training proteins.

Algorithm To Redesign Protein–Protein Interfaces
The protein interface was defined as the set of surface residues with side chains possessing a
solvent accessible surface area that decreased upon complexation. The interface residues of
ligand protein in the complex were mutated to form favorable interactions. Side chains of other
residues in the ligand protein, the backbone, and the receptor that are not directly involved in
the interaction were fixed. Structurally important residues such as proline, cysteine (in disulfide
bridge), and glycine (in glycine turns) were not subjected to mutation. Both residue type and
side chain conformation were initiated randomly at each modeled position. Then Monte Carlo
annealing simulation was applied to search for the interface sequence so that each residue has
a lower energy than other residue types (32). Briefly, the annealing temperature was set to 10
initially and scaled by 0.8 after each cycle. A total of 15 cycles were repeated. Among each
cycle, 100N residue substitutions or 10N successful substitutions were carried out, where N
was the number of the mutated sites. The probability to accept the new residue was exp[−
(Enew – Eold)/T], where Enew and Eold were energy of the new and old residues respectively.
The energy of a rotamer in the modeled position was calculated by eq 1. All the rotamers of
the new residue type were used to determine whether the substitution was successful, and side
chain conformation of the new residue type was also determined by Monte Carlo methods.

Scoring Function To Evaluate Protein–Protein Binding Affinity during the Design Process
We extended eq 1 for evaluation of protein binding affinity. The interaction energy between
two proteins becomes

(2)

Here, each term is evaluated between two binding proteins rather than between a given side
chain and a protein as done during side chain optimization. For example, SAcontact(I) is the
contact surface area between two proteins; ΔSApho(I) and ΔSAphi(I) are the accessible surface
area difference between the complex and the unbound binding partners. Both side chain and
main-chain atoms are included in the calculation. Unlike eq (1), which is used for protein
design, the terms f1, f2, Nssbond, and ΔGref make no contributions to binding affinity and are
not considered. However, a reference value of the protein–protein interaction is added to eq
(2) instead of amino acid reference value in eq (1) to calculate binding free energy. We
hypothesized that the interface reference value is proportional to the buried solvent accessible
surface area of the interface (ΔSAburied). A strong correlation between E(I), ΔGexp(I),
ΔSAburied was found by multiple linear regression analysis of native complexes and binding
data: E(I) = 3.09 ΔGexp(I) − 0.0295 ΔSAburied + 3.77. After inversion, we obtained

(3)

The last term in eq (3) is the interface reference value (33). We used eq (3) to select near native
conformations in ZDOCK 2.3 decoy sets (34). In 20 out of 48 targets, near native decoys were
predicted as the lowest binding free energy. We also participated in CAPRI (Critical
Assessment of PRediction of Interaction) (35) using eq (3) and achieved successful predictions.
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Molecular Dynamics Simulations
The X-ray crystal structure provided initial coordinates of barnase–barstar (PDB code: 1BRS),
lysozyme–antibody D1.3 (PDB code: 1VFB) and trypsin–BPTI (PDB code: 2PTC). The
following protocol for setting up and running the molecular dynamics simulations was followed
in all cases. Hydrogen atoms were added to the protein using the PROTONATE program, which is
part of the AMBER 9 suite of programs. The AMBER force field parameters were assigned to all atoms
using the “parm99” set of parameters. The SYBYL 8.0 program was used for the manipulation and
visualization of all structures and for protonation of the bound ligands. The program LEaP was
used to neutralize the complexes. The complexes of barstar–barnase, antibody D1.3–lysozyme
and BPTI–trypsin were immersed in a box of TIP3P water molecules such that no atom in the
complex was within 12 Å for all complexes from any side of the box. All bonds involving
hydrogen atoms were constrained by using the SHAKE algorithm, affording the use of a 2 fs time
step. The particle mesh Ewald (PME) method was used to treat long-range electrostatics. Water
molecules were first energy minimized and equilibrated by running a short simulation with the
complex fixed by using Cartesian restraints. This was followed by a series of energy
minimizations in which the Cartesian restraints were gradually relaxed from 500 kcal/Å, and
the system was subsequently gradually heated to 300 K via a 48 ps molecular dynamics run.
Another 2 ns simulation was carried out at 300 K for further equilibration.

MD-Based Free Energy Calculations
The method for determining the binding free energy following the MM-PBSA approach has
been described in the past (36,37). The binding free energy is determined by running one or
more molecular dynamics simulations of the protein–ligand complex, and collecting a number
of snapshots from these trajectories. The structure of the ligand (L) and receptor (R) are
extracted from the snapshots of the complex (RL). The MM-PBSA free energy, which consists
of an electrostatic, nonpolar, and entropic component is then computed for complex, receptor,
and ligand. The binding free energy is then computed by taking the difference between the
MM-PBSA free energy of the complex with that of the ligand and receptor:

(4)

where

(5)

where 〈EINT〉 is the internal potential energy determined using the AMBER force field, is

the nonpolar contribution to the solvation free energy and is the electrostatic contribution
to the free energy, and 〈Stot〉 is the configurational entropy of the system given by

(6)

where 〈ΔStrans〉, 〈ΔSrot〉, and 〈ΔSvib〉 are the translational, rotational, and vibrational
components of the absolute entropy. In this work, the MM-PBSA free energies are determined
by extracting 360 snapshots from the multiple trajectories for each complex, while 180
snapshots are used to compute the entropy change with normal-mode analysis. It is worth
mentioning that only a single trajectory is carried out for the protein–ligand complex and that
the free energy of the apo and ligand are determined from structures extracted from the
complex. Furthermore, snapshots are collected from all six 5-ns trajectories except for cases
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where trajectories were deemed unstable. In these cases, only trajectories that were stable were
used in the free energy calculations.

The electrostatic contribution to the solvation free energy is determined by using the PBSA

program in AMBER 9 which numerically solves the Poisson–Boltzmann equations to determine
the electrostatic contribution to the solvation free energy. We used the linear approximation to
solve the Poisson–Boltzmann equation. A 0.5 Å grid size was used, and the dielectric constant
for the solute and solvent were set to 1 and 80, respectively. The effect of salt was not considered
in these calculations. The optimized atomic radii set in AMBER 9 were used, and partial charges
were taken from Cornell et al. for standard residues. The nonpolar contribution to the solvation
free energy was determined by using the MOLSURF program, which is also part of the AMBER 9 suite
of programs. The entropy was computed for each snapshot from normal-mode analyses by
using the NMODE program within the AMBER package.

Disorder Predictions
Distribution of the intrinsic disorder propensities within the protein sequences was estimated
by recently developed PONDR (predictor of natural disordered regions) various short–long,
version 1 (VSL1) algorithm. PONDR-VSL1 is an ensemble of logistic regression models that
predict per-residue order–disorder (38,39). Two models predict either long or short disordered
regions–greater or less than 30 residues–based on features similar to those used by VL-XT.
The algorithm calculates a weighted average of these predictions, where the weights are
determined by a meta-predictor that approximates the likelihood of a long disordered region
within its 61-residue window. Predictor inputs include PSI-blast (40), profiles and PHD (41),
and PSI-pred (42) secondary structure predictions.

RESULTS
Redesign of Protein–Protein Interface for Native Complexes

Before we embark on the grafting of protein interfaces, we sought to put our algorithm and
scoring function to the test by redesigning the interfaces of three protein complexes, barnase–
barstar (PDB ID: 1BRS), trypsin–BPTI (PDB ID: 2PTC), and lysozyme-antibody D1.3 (PDB
ID: 1VFB). The process consists of systematically replacing residues at the interface of these
complexes until a new and more suitable interface is created in the process. In each case more
than 50 complexes were generated. We then ranked these complexes based on the binding
affinity as determined by eq (3). As shown in Figure 2, ΔGbind was 1.0–2.4 kcal · mol−1 lower
than the mean value of the 50 sequences for all three complexes.

It is of interest to note that the identity of the interface residues is very similar to the native
structure even though the interface sequence was randomly selected at the beginning of the
process. The sequence identity is 76%, 50%, 50%, 35%, 38%, and 71% for barstar, barnase,
BPTI, trypsin, antibody D1.3, and lysozyme respectively. The high sequence identities (mean
value 53%) are an indication that both our scoring function and search algorithm are effective
for interface design.

In a further indication of the efficacy of our scoring function and search algorithm, we find
that all the hot-spot residues of BPTI, lysozyme and antibody D1.3 were unchanged during the
search and remained the same as those observed residues in the native structure. For the
barnase–barstar complex, we found two hot-spot residues of barnase were modified. A close
inspection of the structures revealed that one of these mutations is likely benign. In the first
case, Arg59 was mutated to lysine, which is similar to arginine in structure and property. The
mutation in the second case was more significant as Arg87 was mutated to uncharged serine.
Visual inspection of the complexes revealed that, while Arg87 strongly interacts with Asp39
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of barstar, it forms unfavorable electrostatic interaction with Arg83 of barnase. It is possible
that the mutation of Arg87Ser may eventually stabilize the monomeric structure of barnase.
Finally, we also noticed that the hot-spot residue of Tyr29 in barstar was substituted to
phenylanaline. This is consistent with previous experimental observations by Schreiber et al.
(43) that had shown that the mutation of Tyr29Phe slightly increased binding affinity.

Grafting of Barstar
Our grafting algorithm consists of first the identification of hot-spot residues from the native
ligand that will be transferred to the scaffold; the scaffold is the protein framework on which
the native ligand’s binding site is transferred. Once the hot spots are identified, then a database
containing a large number of scaffolds is scanned for proteins that contain residues with a
similar arrangement to that of the hot spots in the native ligand (Figure 1A). Once such scaffold
is identified, the hot-spot residues of the native ligand are transferred to the scaffold (Figure
1B). Subsequently, a complex between the receptor and the scaffold is constructed. This is
done by superimposing the scaffold on the bound native ligand along “key interaction atoms”
from the transferred MBE (Figure 1C,D). Finally, the interaction between the receptor and the
scaffold protein is optimized by redesigning the interface surrounding the hot-spot residues.

In the case of barnase–barstar, we transferred hot-spot residues of barstar to the scaffolds.
Residues Asp39, Asp35, and Tyr29, which strongly interact with barnase, were considered
hot-spot residues and comprised the minimum binding epitope (MBE). Using this information,
we then scanned the surface of the 27 proteins that comprise our scaffold data set for potential
MBEs that mimic those of the ligand protein. We identify eight MBEs on six of the 27 proteins
of our data set (two of the identified scaffold proteins have more than one binding site). We
selected three of those proteins, RNA binding domain of NS1 (1AIL), IF-3 C terminal domain
(1TIG), and allergen PHL P2 (1WHO) based on their predicted affinity. The MBE from barstar
was transferred onto these scaffolds. Oδ1, Oδ2, Cγ of the two aspartic acid residues, Cδ1,
Cε1 and Cε2 of Tyr29 were considered as “key interaction atoms” that are used to superimpose
the grafted scaffolds onto barstar to generate a complex of each scaffold with barnase.

To validate our design procedure, we employ the NMR structure of barstar (1BTA) to serve
as a positive control (instead of the crystal structure). This means that we test whether our
algorithm is able to identify the correct MBE on NMR barstar. We then transfer the MBE of
the crystal structure of barstar into that of the NMR structure of barstar and then dock the
grafted NMR structure of barstar onto barnase using as a guide the “key interaction atoms” of
the transferred MBEs. The rms deviation between the backbone atoms of barstar interface
residues in the correctly predicted binding site and those in the observed crystal structure of
the complex is 0.98 Å. This is similar to the rms deviation between the barstar backbone atoms
in the NMR structure and those in the crystal structure of barstar-barnase (0.90 Å).

In the event that only a few scaffold proteins are available for grafting, one may consider the
grafting of two hot-spot residues instead of three (as was done above). When two of the hot-
spot residues, Asp39 and Asp35, were considered, we found 71 MBEs in the 27 scaffolds
(instead of 8 when three hot-spot residues are considered). Among the 71 MBEs, we selected
three scaffold proteins and grafted the two hot-spot residues onto them; these are scorpion toxin
II (1AHO), DNA binding domain of OMPR (1OPC), and phosphotransferase (1PTF). We
found that the resulting complexes had slightly lower binding affinity (−10.5 kcal · mol−1 on
average) than those of the grafted three hot-spot residues (−11.4 kcal · mol−1), reinforcing the
fact that the transfer of two hot-spot residues may be as effective as the transfer of three sites.
The favorable interactions that are contributed by other designed residues may counteract any
potential loss of affinity due to the omission of one hot-spot residue.
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Grafting of BPTI
We reconstructed the binding interface of BPTI in nonhomologous protein structures using the
procedure described above for the barnase–barstar complex. The hot-spot residues of Lys15
and Ile18 in BPTI (44) served as the MBE that was transferred to the scaffold proteins. The
following were considered as “key interaction atoms”: Cδ, Cε, Nζ of Lys15, Cγ1, Cγ2, and
Cδ1 of Ile18. Among 27 scaffolds, 44 MBEs were found. Among these scaffolds, we selected
three proteins of tenascin (1TEN), CheY (1TMY), and allergen PHL P2 (1WHO). These
proteins were selected as they exhibited a relatively small rms deviation between the key
interactions in the MBEs of the scaffold and ligand proteins. As a positive control, we use the
crystal structure of unbound BPTI (1BPI) and grafted onto it the MBE of BPTI in the crystal
structure. We find that the backbone conformation of the only binding loop at the protein–
protein is almost unchanged in molecular association. As a result, the binding site of BPTI was
correctly predicted (Table 1). The rms deviation between the backbone atoms of the interface
residues in the predicted structure and those in the observed structure was only 0.65 Å.

We then proceeded to redesign the scaffold proteins to optimize its binding affinity to the
receptor. This was done through an extensive series of in silico mutations of residues located
at the interface between the scaffold protein and the receptor. In this process we excluded the
transferred hot-spot residues that constitute the MBE. It was found that during the design
process the binding affinity of the scaffolds to the receptor ranged from −9.0 to −14.5 kcal/
mol. Hence, while favorable, the affinity of the most promising scaffold remained lower than
the affinity of BPTI to its native receptor (−18.4 kcal · mol−1). The lower binding affinity of
the scaffold may be partly attributed to the fact that hydrogen bonding interactions between
trypsin and BTPI (Figure 3A) are not all present in the complex between the scaffold protein
and receptor (Figure 3B). In addition, violations from the target distances are still large for the
strongly interacting atom–atom pairs between tenascin and trypsin (0.68 Å in average) even if
constraints were applied in the energy minimization. Thus the tenascin mutant was found to
exhibit the lowest binding affinity (−9.0 kcal · mol−1) among the three scaffolds. Interestingly,
three hydrophilic pairs, which are not considered as hydrogen bonds due to the large donor–
acceptor distances (about 4.0 Å), were observed between the backbones of CheY and trypsin
(Figure 3B) mimicking BPTI–trypsin in the native structure.

Grafting of Antibody D1.3
One of the fundamental problems with mouse monoclonal antibodies is that administration of
murine Ig induces human antimouse responses and leads to rapid clearance, allergic reactions
and complications relating to hypersensitivity (45). The immunogenicity can be reduced by
transplanting the antigen binding parts of the mouse antibody onto a human antibody. A
potential remedy to this problem is to redesign small proteins that may not engender the same
responses and may hence serve as potential therapeutic agents (46).

We computationally grafted the binding site of antibody D1.3, which binds hen egg lysozyme,
onto small scaffold proteins. The MBE consisted of the hot-spot residues of H100Asp,
H101Tyr, and L92Trp (Figure 4A) (47). Among these residues of the MBE, the atoms Oδ1,
Oδ2, Cγ of H100Asp, OH, Cε1, Cε2 of H101Tyr, Cη2, Cη3, and CH2 of L92Trp were
considered “key interaction atoms”. Among the 27 scaffold proteins, 33 potential binding sites
were identified. Among these, three scaffold proteins were selected for further analysis:
scorpion toxin BJXTR-IT (1BCG), DNA binding domain of MBP1 (1BM8), and α-amylase
inhibitor (1HOE) (Table 1 and Figure 4B).

As in the case of the barstar and BPTI, we tested the performance of our algorithm using
unbound structure of antibody D1.3 (1A7R) as positive control. Unlike the previous systems,
the algorithm missed the correct binding site, where the hot-spot residues H100D, H101Y, and
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L92W were transferred to the native positions of H100, H101, and L92 of the unbound antibody
D1.3 respectively. In fact, the buried surface at the interface of the superimposed D1.3 and
lysozyme was less than 1200 Å2. We attribute the lack of success to backbone flexibility of
the antibody D1.3, which we study below through molecular dynamics simulations. A
comparison between the lysozyme and the D1.3 in its complex and unbound structures revealed
differences in structure. This is evidenced by significant differences in the computed binding
affinities (ΔGbind=−11.5 kcal · mol−1 for the bound D1.3, and −7.4 kcal/mol for the unbound
form). These are likely due to the small size of the interface and potential backbone motion
that are not considered in this first part of the design process. If the backbone conformation,
side chain conformation, and the relative position between the two proteins were refined
simultaneously in the design procedure, we should achieve higher binding affinity.
Nevertheless, the calculated ΔGbind for the three scaffold proteins (Table 1) is approximately
−10 kcal · mol−1, which is within the range of the affinity of therapeutic agents.

MD Simulations of Native and Designer Complexes
We subjected all three of the native complexes (barnase–barstar, lysozyme–antibody D1.3 and
trypsin–BPTI), along with 10 designer complexes to a total of 390 ns of explicit-solvent
molecular dynamics simulation. Each simulation consisted of independently running 6
trajectories 5 ns in length including 2 ns of equilibration. The progression of the conformation
of the complexes was monitored by determining the rms deviation of each structure relative to
the first snapshot in the trajectory (Figure 5). Since 6 trajectories were carried out per structure,
the rms deviation for a representative structure of each complex with respect to time is shown
in Figure 5. For the complexes involving barnase as the receptor (Figure 5A), we found that
the native complex remained stable during the simulations (red). In the case of the barnase
designer complexes, three complexes (NSF1, IF-3, and PHL P2) were found to exhibit
significant motion as evidenced by the large increase in the rms deviation observed during the
course of the trajectory (Figure 5A). One of the designer complexes, however, remained stable
(Figure 5A). Visual inspection of the trajectories provided insight into the type of motion that
led to the large increase in the rms deviation as illustrated in Figure 6. Snapshots along the
trajectory were superimposed to the crystal structure of the receptor (barnase) backbone atoms.
Conformers of the native complex are shown in Figure 6A, and those of the stable designer
complex in Figure 6B. As expected, no significant motion other than the standard thermal
fluctuations were observed. The results for the unstable designer complexes are shown in
Figure 6C. It appears that the ligand undergoes significant motion relative to the receptor when
compared to the native complex, which is eventually seen to culminate in decomposition of
the complex.

The rms deviation was also collected for the lysozyme complexes. The data is shown in Figure
5B. As expected, the native complex remained stable (red). So did the designer complex
between lysozyme and scorpion toxin BJXTR-IT (blue). An illustration of the motion
experienced by these complexes is shown in Figure 7A,B. The other designer complex of
lysozyme with α-amylase inhibitor, however, was unstable (yellow). It showed a significant
increase in the rms deviation starting at 3.5 ns of simulation, suggesting large conformation
change. As shown in Figure 7C, the ligand is indeed found to be highly mobile and experiences
a larger degree of lateral motion relative to the receptor.

Finally, trajectories of four separate trypsin–ligand complexes were carried out. As expected,
the native complex of trypsin with BPTI was stable over the course of the dynamics simulations.
This is evidenced by an rms deviation that remains within 1.5 Å as shown in Figure 5C. Among
the designer complexes of trypsin, two exhibited stable trajectories (CheY and tenascin) while
one (allergen PHL P2) showed increased motion that is indicative of an unstable complex. The
trypsin–CheY and trypsin–tenascin complexes did not show significant increase in the rms
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deviation during the MD simulation of their complexes. The trypsin–allergen PHL P2 complex,
on the other hand, showed greater increase that begins at 3 ns. An extension of the trajectory
beyond 5 ns showed even larger deviation and complex dissociation.

Free Energy Calculations
We exploited the wealth of conformational data that was generated from the molecular
dynamics simulations to conduct post-trajectory free energy analysis following the MM-PBSA
approach. This method has been used in a number of recent studies to study protein–protein
interactions (48–50). It is worth mentioning from the outset that it is well-known that MM-
PBSA free energies do not usually replicate in absolute value the experimental free energy in
absolute value. However, it is well-known that the approach exhibits good correlation with
experiment (48–50). MM-PBSA expresses the free energy as the difference of the free energy
of the complex with that of the receptor and ligand averaged over a number of snapshots
collected from the trajectory. The free energy consists of energy terms from van der Waals
(ΔGvdW) and Coulomb electrostatics (ΔGELE), solvation terms from continuum electrostatics
calculations that arise due to the inherent charge of the surface residues that are buried during
complex formation (ΔGPB), and a nonpolar solvation term that is hydrophobic in nature and
represents the energy required to create a cavity in solution (ΔGSA). Finally, the entropy change
(TΔSNM) assesses the degree of order/disorder that is created upon association of the binding
partners. We set out to compute these components for (i) native complexes, (ii) stable designer
complexes and (ii) unstable designer complexes for all three receptors (barnase, lysozyme and
trypsin). The results are reported in Table 2.

An inspection of the free energy components for the barnase native complex reveals that the
electrostatic component of the free energy of binding (ΔGPBELE) contributes unfavorably to
binding (ΔG > 0). However, the data shows that the nonpolar component ΔGNP systematically
contributes favorably (ΔG < 0) as expected, since formation of complexes reduces solvent-
accessible surface area. Entropy was found to contribute unfavorably to binding. This trend
holds for the designer complexes as well. Closer scrutiny of the data reveals an intriguing
observation, namely that the electrostatic component (ΔGPBELE) is more favorable in the
unstable designer complexes than in the native complex in the case of barnase and lysozyme.
In most cases the electrostatic component of the solvation free energy ΔGPB is consistently
unfavorable, while ΔGELE, the interaction energy due to electrostatic interaction between
receptor and ligand, led to favorable binding. It is worth mentioning that these observations
are consistent with previous calculations of the electrostatic component of the free energy of
solvation. Tidor and co-workers, using a continuum electrostatics model, determined a positive
and unfavorable electrostatics binding free energy of 14 kcal/mol (51,52). Other calculations
by Honig and co-workers, however, appeared to show that the electrostatics and solvation
energies nearly cancel each other (53). More recently Zhou et al. found favorable electrostatics
for the barnase–barstar interaction; these authors, however, note that the interaction is highly
dependent on the dielectric constant used for the calculations (54). Similar calculations have
been carried out in the past for the trypsin–BPTI complex.

The only exception is the lysozyme–MPB1 complex, which exhibits a positive ΔGPB. This is
not unexpected, as the hydrophilic groups at the surface of the binding partners are buried at
the protein–protein interface. In the case of the lysozyme–MPB1 complex, the region on the
binding partners that is buried at the protein–protein interface is hydrophobic in nature, and
hence the desolvation of these groups results in favorable free energy of solvation (ΔGPB), but
unfavorable electrostatics due to intermolecular interaction between receptor and ligand
(ΔGELE).

However, the less favorable electrostatics in each case is compensated by highly favorable
nonpolar component of the free energy ΔGNP. This degree of stabilization by the nonpolar
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interactions is not observed in the unstable complexes. In each case, favorable nature of the
nonpolar interaction mostly originates from the van der Waals interaction energy ΔGvdW, as
opposed to the nonpolar component of solvation ΔGNP. There did not appear to be a clear trend
for the entropy change upon binding (TΔSNM). It remained more favorable for the stable
complex with grafted barstar NMR. This is not unexpected as the stable complexes exhibit
greater ordering and hence a greater entropic penalty for binding.

An analysis of the binding free energy for the lysozyme complexes replicates the trends
observed for the barnase system, namely that the electrostatics components of the free energy
for the unstable complex was more favorable than that of the native complex. One of the
unstable complexes (1HOE in Table 2) exhibited more favorable electrostatics than both native
and stable designer complexes (1BCG and 1BM8 in Table 2). The unfavorable electrostatics
are compensated by highly favorable nonpolar terms ΔGNP that are found to be significantly
larger and less favorable for the unstable complex when compared to the native complex or to
the stable designer complex (Table 2). As in the unstable barnase designer complexes, the
unfavorable nonpolar interaction is due to larger van der Waals energy ΔGvdW. The entropy
was found to be more favorable in the unstable complex, which is consistent with the weaker
overall binding energy that is observed for the unstable complex.

Analysis of the free energy of binding for the trypsin receptor showed similar results for the
electrostatics component of the free energy, except that in this case, the native complex
exhibited the most favorable component. However, the unstable complex (1WHO) exhibited
more favorable electrostatics than the stable designer complexes (1TMY and 1TEN). As in the
previous cases, the unstable designer complexes exhibited the poorest nonpolar contributions
for the free energy.

To provide further insight into the changes that lead a complex to become unstable, we plotted
the components of the MM-PBSA free energy with respect to time over the course of the
trajectories (Figure 8). This is done for both the barnase (Figure 8A) and the lysozyme
complexes (Figure 8B). In each case we considered the trajectory of the native complex (Figure
8, red), a stable designer complex (Figure 8 yellow), and an unstable designer complex (Figure
8, blue). For both the native complexes and stable designer complexes the electrostatic
components (ΔGPBELE) remained consistently greater than the nonpolar components during
the course of the trajectory. These results are consistent with the afore-mentioned analysis of
the components of the MM-PBSA free energy that revealed that the nonpolar component of
the free energy as the dominant factor that promoted stability. Interestingly, for the unstable
complex, significant change in these quantities is observed during the progression of the
trajectory. Surprisingly, the electrostatic component becomes systematically more favorable
over the course of the trajectory, while the nonpolar energy becomes systematically
unfavorable and increases in value. Both electrostatics and nonpolar effects eventually reach
zero, which is when the complex is observed to completely fall apart and dissociate.

Role of Hot-Spot Residues in Binding
We conducted an alanine scanning study, whereby the three hot-spot residues at the barnase–
barstar interface are mutated to alanine in (i) the native complex, (ii) the stable complexes
between barnase and grafted barstar NMR, and (iii) the unstable complex between barnase and
NS1 RNA binding domain. It is worth noting that the mutations are performed on a set of 120
conformers collected from the MD trajectories (60 conformers for the entropy calculations).
Following the mutagenesis, we compute the components of the free energy using the MM-
PBSA approach. The results are shown in Table 3. Analysis of these results reveals that the
free energy cost for mutation of these hot-spot residues is most significant in the native and
stable designer complexes when compared to the unstable designer complex. For example,
mutation of the hot-spot tyrosine is 11 kcal/mol in the native complex, 5.9 kcal/mol in the
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stable designer complex and 1.9 kcal/mol in the unstable native complex. A similar trend is
observed for the remaining aspartic acid residues.

Disorder Predictions at the Protein–Protein Interface
Thornton and co-workers have suggested that two types of protein–protein complexes can be
observed, namely obligate and nonobligate (1). In an obligate complex, the binding partners
are not found as stable structures, while in a nonobligate complex, they adopt a well-defined
structure (1). We sought to characterize the degree of stability in the binding partners using
prediction of disordered structural elements. The potential correlation between the intrinsic
disorder propensities of a given sequence and its behavior in our grafting experiments was
evaluated in order to understand how observed tendencies are encoded in the primary structures
of studied proteins. This analysis was performed using PONDR VSL1 algorithm, which is the
most accurate predictor of intrinsic disorder developed so far (55). For ordered proteins with
overall low disorder propensity scores, the local increase in the intrinsic disorder tendency
often correlates with the increased mobility of a given region. Data summarized in Figure 9,
Figure 10, and Figure 11 show that there is a strong negative correlation between the intrinsic
disorder predisposition of the grafted sequence and the stability of the analyzed complex. For
example, in the barnase–barstar-analogue complexes, the disordered nature of binding regions
estimated as a mean distance from the 0.5 boundary (binding regions shown as shaded areas
in Figure 9) is arranged as follows: 1BRS < 1AIL < 1BTA ≪ 1WHO < 1TIG. This sequence
is close to that charactering the decrease in the complex stability derived from our MD studies.
A similar picture was also observed for antibody–antigen complexes (Figure 10), where the
binding region of the α-amylase inhibitor was predicted to be intrinsically disordered and the
complex of this inhibitor with the antibody was highly unstable. On the other hand, even though
the part of the CheY binding region was predicted to be disordered, it was characterized by
very low disorder propensity scores. As a result, the CheY binding region was predicted to be
rather ordered as a whole. It was even more distant from the 0.5 threshold than the
corresponding region of 2PTC (Figure 11). In agreement with these observations, both trypsin
complexes were stable in MD experiments. These findings emphasize that the intrinsic disorder
propensities of the binding regions (read the predisposition for higher mobility) can be used to
explain the observed stability of complexes: binding regions with higher mobility will give
rise to weaker complexes.

DISCUSSION
Protein–protein interfaces are typically large and do not possess well-defined cavities that can
be exploited by small molecules (4,56). An alternative to small molecules is protein grafting
(17). This can be accomplished by grafting the binding interface of the native complex to the
surface of a stably folded scaffold. The most common approach to grafting is to identify a
secondary structure (such as an α-helix for example) from the ligand of a receptor–ligand
protein–protein complex that appears to be critical for binding. Then the secondary structure
is grafted onto a protein with the expectation that this newly grafted protein replicates the
binding of the native ligand to its receptor (57,58). A number of successes have been reported
using this approach (19–24).

It is worth noting that one common feature of all these studies is that the transferred binding
sites (i) are continuous in sequence such that a single secondary structure of the ligand is
responsible for binding to the receptor, and (ii) were performed on the native ligand that is
already known to bind to the receptor. Typical protein–protein interfaces, however, are large
(between 1,200 and 2,000 Å2) and are not continuous (multiple secondary structures within
the binding partners participate in the binding) (4). These more typical interactions present
significantly greater challenge for computational design of protein scaffold. There are,
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however, some aspects of these interactions that can be exploited as it has been found that
proteins with different sequence, structure and function may still associate in similar ways
(26,27). We have developed an algorithm for the grafting of proteins in a process that is driven
by the identification of a group of hot spots, also known as hot-regions (4), to drive the binding.

We employed our grafting algorithm and scoring function to graft the surface of proteins to
bind to receptors from three well-studied interactions, namely barnase–barstar, lysozyme–
antibody D1.3, and trypsin–BPTI (barnase, lysozyme and trypsin are the receptors). In each
case we identified a series of proteins from an internal database of 27 small scaffold proteins
that were suitable for the transfer of the minimal binding epitope (MBE) from the ligands of
the aforementioned complexes. But the first question that arises upon the design of such
complexes is whether the designer ligands will bind to their receptors as or more tightly than
the native ligand. Typically, designer ligands will be cloned and expressed or chemically
synthesized and tested experimentally. However, given the typically large number of candidate
designer ligands that can emerge from such design effort, it would be highly desirable to employ
more sophisticated computational techniques to filter out the productive complexes from
among the false positives. One option is the use of explicit-solvent molecular dynamics
simulations and free energy calculations. While this approach is significantly more
computationally demanding than the scoring functions employed in this study, the conditions
in MD trajectories replicate closely those encountered in solution. The multiple conformers
that are sampled during the trajectories can also be used to compute the components of the free
energy of binding, making it possible to compare native and designer complexes. We subjected
a number of complexes (native and designer) to explicit solvent molecular dynamics
simulations, followed by post trajectory free energy calculations. Each system was subjected
to multiple nanosecond trajectories. A visualization of our trajectories revealed an unexpected
event, namely that a number of designer complexes decomposed during the trajectory
(unstable) while others did not (stable). Hence, it is clear that despite the favorable free energies
that were predicted by our scoring function, the forces at the interface of the unstable complexes
were not strong enough to withstand the pressures from solution that arise from thermal
fluctuations and interaction with explicit solvent. These forces range from hydrophobic,
electrostatic, to entropy.

It is widely believed that hydrophobic forces play a critical role in the association between
proteins (59,60). As far as electrostatics are concerned, early work suggested a net unfavorable
role of electrostatics in protein–protein association (61). A recent comprehensive
computational study reveals that electrostatics appear to disfavor binding. Others, however
have argued that electrostatics play an important role (61,62), with some even suggesting that
electrostatics play a dominant role (63). It is tempting to assume that tight interactions that
occur at the protein interface due to hydrophobic and/or electrostatic effects will result in
entropic penalty, but it has been shown that in some cases entropy can favor binding (50). An
understanding of the forces in stable versus unstable complexes could provide valuable
information to drive future design algorithms to improve protein grafting efforts.

To that end, we resorted to extensive free energy calculations using the MM-PBSA approach,
which provides a detailed account of the forces involved in binding. In addition, these
calculations incorporate receptor flexibility, which is critical for a deeper understanding of
macromolecular interactions. It is worth mentioning that these calculations were carried out
not only for the designer complexes (stable and unstable) but also for the native complexes.
An inspection of the overall free energy ΔGMMPBSA for all three receptors considered in this
work (barnase, lysozyme and trypsin) revealed it to be consistently lower for the native complex
than that of the unstable designer complexes. These results suggest that the free energy values
may be a good predictor for the stability of designer complexes. It was interesting to find that
some of the stable designer complexes had free energies that were significantly lower than the
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native complex; these include the grafted barstar NMR structure and the scorpion toxin
BJXTR-IT scaffolds that were designed to bind to barnase and lysozyme respectively.

Hydrophobic interactions are thought to play an important role in protein–protein interactions
(60). Our observation that the nonpolar contribution to the free energy (ΔGNP = ΔGvdW +
ΔGSA) is significantly unfavorable in the unstable complexes when compared to either the
native complex, or to the stable designer complex, is consistent with this view. The large
nonpolar free energy change for the unstable complexes originates mostly from unfavorable
van der Waals energy ΔGvdW rather than the change in solvent accessible surface area upon
complex formation (ΔGSA). The van der Waals component is computed using a Lennard-Jones
12-6 type potential that is part of the Amber force field. This function is a direct measurement
of the degree of shape complementarity between the binding partners. Hence an unfavorable
ΔGvdW suggests that the degree of shape complementarity between the binding partners in the
unstable complexes is not optimal. Therefore, more effort should be placed into maximizing
contact at the binding interface in future design efforts, following the docking of the grafting
scaffold on the receptor (during the optimization step).

We next examined the role of electrostatics in native, stable and unstable designer complexes.
It was highly intriguing that for two of the three receptors (barnase and lysozyme) unstable
complexes exhibited more favorable electrostatics than the native complexes. This suggests
that favorable electrostatics do not necessarily translate into strong interaction between
proteins. It would be tempting to claim that favorable electrostatics may likely signify an
unproductive complex based on this data. But comparison of the electrostatics for stable and
unstable complexes showed that some of the stable complexes exhibited more favorable
electrostatics than the unstable complex. Comparison of stable and unstable designer
complexes did not show the same trend, as some of the stable complexes exhibited.

The aforementioned components of the free energy were determined by averaging over a large
number of snapshots. Given that MD data provide snapshots with respect to time, we monitored
nonpolar and electrostatic interactions over the course of a trajectory for unstable complexes
as shown in Figure 5. The results showed that electrostatic interactions become more favorable
as the complex dissociated while hydrophobic interaction consistently opposed decomposition
of the complex. These findings support our earlier findings that nonpolar interactions are the
main driving force for protein–protein complex formation.

More than 10 years ago, it was suggested that protein–protein interactions are driven by key
residues at the interface known as hot spots (64). It was proposed that these residues were
located in a tightly packed environment and surrounded by residues that kept the hot-spot
residues in a solvent-free environment known as O-ring (65). Nussinov and co-workers also
suggested that hot-spot residues acted in concert in what they term hot-spot region (4). This
concept of hot-spot region is a driving force behind our design protocol since this region is
grafted to a scaffold protein. That some of the designer complexes in this work decomposed
is likely due to the fact that these hot spots do not interact as effectively with the receptor as
they do in the native complex or in the stable designer complexes. We tested this hypothesis
by mutating the hot spots in the native complex, in the stable designer complex and in the
unstable designer complex of the barnase–barstar complex. The free energy change due to
mutation was significantly lower in the unstable designer complexes when compared to the
native and stable designer complexes supporting our hypothesis. Further analysis showed that
the greatest change occurred due to unfavorable van der Waals interactions, which suggest that
weak contact between hot-spot residues and surrounding residues may have caused the lack of
binding detected in the unstable complex. Electrostatic effects, which include the potential
energy due to charge as well as the solvation free energy, were significantly more favorable in
the unstable complex, again suggesting that electrostatics do not play a significant role in
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stabilizing protein–protein interactions. The entropy change due to mutation in the unstable
complexes was more favorable than in the native complex. This is consistent with the
unfavorable van der Waals energy, which suggests less than optimal packing and therefore less
order due to binding. Hence, future design efforts should focus on optimizing the interaction
imparted by the hot-spot residues in addition to optimization the interaction of the scaffold
with the receptor.

Our calculations are consistent with results from disorder predictions based on sequence. These
predictors showed that interfaces that led to unstable complexes exhibited greater degree of
disorder at the interface. Indeed our calculations have shown that the energy due to van der
Waals interactions was not optimal in unstable complexes, which is expected to result in greater
flexibility of the residues. Given the inexpensive nature of the disorder predictors, it may be
of interest to incorporate these predictions into future design efforts.
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FIGURE 1.
Schematic representation of the grafting process. (A) Scanning of a large database for scaffold
proteins with minimal binding epitope (MBE); (B) transfer of MBE from bound ligand to
scaffold; (C) superimposition of scaffold to ligand using atoms in MBE; (D) grafting of surface
of scaffold to complement receptor binding surface. (E) Final complex of receptor with grafted
scaffold.
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FIGURE 2.
A comparison of observed and designed interface sequences. Highlighted are the conserved
residues. Hot-spot residues are shown in bold red. A residue is considered hot-spot if the
binding free energy change is greater than 2.5 kcal · mol−1 upon mutation to alanine as reported
for barnase–barstar (43), for BPTI (44), and for lysozyme–antibody D1.3 (47), respectively.
The hot-spot residues of trypsin are not marked since the mutational information is not
available.
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FIGURE 3.
Comparison of trypsin–BPTI and trypsin-mutated scaffold interfaces. (A) trypsin–BPTI; (B)
trypsin–CheY. Proteins are shown in ribbon representation (marine blue, orange, and red for
trypsin, BPTI and CheY respectively). Several residues at the interface are shown in capped
stick representation color-coded according to atom types (yellow, red and blue for C, O, and
N respectively).
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FIGURE 4.
Comparison of the interface between native and designer complex of the antibody D1.3. (A)
Native antibody D1.3/lysozyme; (B) lysozyme/α-amylase inhibitor. Complexes are shown in
ribbon representation with lysozyme shown in orange and antibody D1.3 and α-amylase shown
in deep teal. Hot-spot residues are depicted in capped-stick representation and colored
according to atom types (yellow, red and blue correspond to C, O, and N).
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FIGURE 5.
Root-mean-square deviation with respect to time for (A) five trajectories involving the barnase
receptor, where red, blue, yellow, pink and cyan correspond to the native complex of barnase–
barstar, the designer complexes of barnase–barstar NMR, barnase–NSF1 RNA binding
domain, barnase–IF-3 C-terminal domain, and barnase–allergen PHL P2 respectively; (B) four
trajectories of complexes that involve lysozyme where the red, yellow, blue, and pink lines
correspond to the lysozyme–antibody D1.3 native complex, the designer complexes of
lysozyme with α-amylase inhibitor, scorpion toxin BJXTR-IT, MPB1 DNA binding domain,
respectively; (C) four trajectories of complexes involving trypsin where red corresponds to the
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native trypsin–BPTI complex and blue, yellow, and pink correspond to the trypsin–CheY,
trypsin–allergen, and trypsin–tenascin designer complexes, respectively.
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FIGURE 6.
Stereoview of the three-dimensional structure of (A) native barnase–barstar complex, (B)
banase–barstar NMR stable designer complex, and (C) barnase–allergen PHL P2 unstable
designer complex. The receptor (marine blue) and ligand (yellow) are shown in ribbon
representation.
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FIGURE 7.
Stereoview of the three-dimensional structure of (A) native lysozyme–antibody D1.3, (B)
lysozyme–scorpion toxin BJXTR-IT stable designer complex, and (C) lysozyme–α-amylase
unstable designer complex. The receptor (teal) and ligand (orange) are shown in ribbon
representation.

Liang et al. Page 27

Biochemistry. Author manuscript; available in PMC 2010 January 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIGURE 8.
Electrostatic (solid lines) and nonpolar (dashed lines) components of the free energy plotted
for (A) trajectories involving barnase as a receptor (the red lines correspond to the native
barnase–barstar complex, the yellow lines to the stable designer complex barnase–allergen
PHL P2, the blue lines to the unstable designer complex barnase–NS1 RNA binding domain)
and (B) trajectories involving antibody D1.3 as a receptor (the green line corresponds to the
native complex between antibody D1.3 and lysozyme, the cyan line to the antibody D1.3–α-
amylase inhibitor).
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FIGURE 9.
PONDR VSL1 score distributions for proteins in the barnase–barstar-analogue complexes.
Localizations of the barstar-binding regions are indicated as gray shaded areas. The values of
the mean distance from the 0.5 boundary for each binding region are indicated in the
corresponding plot. In PONDR plot, segments with scores above 0.5 correspond to the
disordered regions, whereas those below 0.5 correspond to the ordered regions.
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FIGURE 10.
PONDR VSL1 score distributions for proteins in the antibody–antigene-analogue complexes.
Localizations of antibody-binding regions are indicated as gray shaded areas. The values of
the mean distance from the 0.5 boundary for each binding region are indicated in the
corresponding plot. In PONDR plot, segments with scores above 0.5 correspond to the
disordered regions, whereas those below 0.5 correspond to the ordered regions.
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FIGURE 11.
PONDR VSL1 score distributions for proteins in the trypsin–inhibitor-analogue complexes.
Localizations of trypsin-binding regions are indicated as gray shaded areas. The values of the
mean distance from the 0.5 boundary for each binding region are indicated in the corresponding
plot. In PONDR plot, segments with scores above 0.5 correspond to the disordered regions,
whereas those below 0.5 correspond to the ordered regions.
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