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ABSTRACT

Based on the conservation of nucleotides at splic-
ing sites and the features of base composition and
base correlation around these sites we use the
method of increment of diversity combined with
quadratic discriminant analysis (IDQD) to study
the dependence structure of splicing sites and
predict the exons/introns and their boundaries for
four model genomes: Caenorhabditis elegans,
Arabidopsis thaliana, Drosophila melanogaster and
human. The comparison of compositional features
between two sequences and the comparison of
base dependencies at adjacent or non-adjacent
positions of two sequences can be integrated auto-
matically in the increment of diversity (ID). Eight
feature variables around a potential splice site are
de®ned in terms of ID. They are integrated in a
single formal framework given by IDQD. In our cal-
culations 7 (8) base region around the donor (accep-
tor) sites have been considered in studying the
conservation of nucleotides and sequences of 48 bp
on either side of splice sites have been used in
studying the compositional and base-correlating
features. The windows are enlarged to 16 (donor),
29 (acceptor) and 80 bp (either side) to improve the
prediction for human splice sites. The prediction
capability of the present method is comparable with
the leading splice site detectorÐGeneSplicer.

INTRODUCTION

The more comprehensive and accurate initial computational
analysis performed for new genomic sequences, the less time-
consuming and costly experimental work will have to be done
to determine their functions. Several complex systems for
predicting gene structure have been developed in recent years.
The gene sequence often includes non-coding regions, called
introns that are removed from the primary transcript during
RNA splicing. The precise removal of introns from mRNA
precursors is de®ned mainly by the highly conserved
sequences near the ends of introns. Analysis shows that the
overwhelming majority of splice sites contain conserved
dinucleotides GT-AG: they start with the GT consensus

dinucleotide (at the 5¢ boundary) called a donor site and end
with the AG consensus dinucleotide (at the 3¢ boundary)
called an acceptor site. And the other major group includes
GC-AG pairs and a small number of other non-canonical
splice sites.

The donor and acceptor splice signals are probably the most
critical signals for accurate exon prediction. However, the
splice signal alone is not enough for exon/intron boundary
determination since many false splice sites are incorrectly
predicted. To eliminate false positives and ®nd missing true
splice sites other information is needed. In fact, there are
different compositional features between exons and introns
(1,2). The standard method computes the probabilities of the
bases in each position of junction region as if they were
independent of adjacent bases (3). Most previous probabilistic
models have assumed either independence between positions,
e.g. the weight matrix method (WMM) model or dependencies
between adjacent positions only, e.g. the weight array method
(WAM) model (4,5). Inspired by the observation of apparent
consensus at donor and acceptor sites researchers also
proposed to make prediction using neural networks and
Markov models (6,7). However, further studies showed that
there are strong dependencies between non-adjacent as well as
adjacent position around splice sites. Especially in donor sites
almost three out of four of all base pairs exhibit signi®cant
dependence (8). The dif®culty is further complicated by the
limitation of high-quality data set. It was indicated that a
training set of several hundred is not enough to estimate the
transition parameters of high-order Markov models (9). To
solve the problem, several new algorithms such as the
maximal dependence decomposition method (MDD) (10),
the Bayes network model (11) and the maximum entropy
modeling combined with Bahadur expansion (9), etc., were
proposed to improve the prediction. The latter two attempted
to module splicing sites with pairwise correlations. Employing
a combination of MDD and Markov modeling techniques,
GeneSplicer introduced a new computational tool for detect-
ing splice sites in eukaryotic mRNA (12). The comparison of
GeneSplicer to other splice site predictors, such as
NetPlantGene (13), NetGene2 (6,13), HSPL (14,15),
NNSplice (16), GENIO (17,18), SpliceView (19), etc.,
indicates that GeneSplicer performs comparably with the
best predictors for both human and Arabidopsis data.

Due to complex dependencies existing among most base
pairs in splicing sites, and de facto impossibility of obtaining a
large enough high-quality data set at the present stage, the
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accurate splice site determination is still a dif®cult problem
and the development of new methods or improvement of
existing methods is continuing to be expected (9,20).

Current gene prediction programs are sophisticated systems
that integrate many different methods for identifying elements
of genes. The widely used and recognized approach for
genome annotation consists of employing ®rst, homology
method, also called `extrinsic methods' or `similarity
measure', and secondly, ab initio recognition of gene elem-
ents, also called `intrinsic methods' (21,22). In addition, two
different types of information are currently used to locate
genes in a genomic sequence. (i) Content sensors are measures
that try to classify a DNA region into types, e.g. coding versus
non-coding by use of statistical information. Many coding
measures have been published (23,24). (ii) Signal sensors are
measures that try to detect the presence of the conserved or
functional sites speci®c to a gene (21,25). The combination of
the above methods and information will achieve valuable
improvements in prediction accuracy. In fact, any successful
program for gene identi®cation contains two important
aspects: one is the type of information used by the program,
and the other is the algorithm that is employed to combine that
information into a coherent prediction.

In this article we shall introduce a new prediction model
based on diversity measure that can synthesize different types
of information, the splicing signals and the compositional and
base-correlating features of exons and introns, and employ two
types of method, intrinsic and extrinsic, automatically and
simultaneously in a simple and uni®ed approach. The diversity
measure was ®rst introduced and employed in biogeography
(26,27). Recently, it was also applied in the recognition of
protein structural class (28,29) and the combination of
classi®ers to improve the performance since the measure
quanti®es the dependence between classi®ers (30). In the
study of biogeography, the geographical distribution of
species (the absolute frequencies of the species in different
locations) forms a source of diversity. The more diverse the
distribution is, the larger the diversity measure. To compare
the distribution of two species one de®nes the increment of
diversity (ID) by the difference of the total diversity measure
of two systems and the diversity measure of the mixed system.
It can be proved that the higher the similarity of two sources,
the smaller the ID. So, the increment of diversity of two
sources is essentially a measure of their similarity level. Here,
we generalize the diversity increment method and combine it
with the quadratic discriminant analysis (31) (called IDQD,
increment of diversity combined with quadratic discriminant
analysis) to identify and predict the splice sites. The
comparison of compositional features and the base dependen-
cies at adjacent or non-adjacent positions of two sequences
(for example, one sequence before exon/intron boundary and
one sequence after exon/intron boundary, or one standard set
of exons or introns and another set of sequence whose property
is to be predicted, etc.) can be integrated automatically in the
diversity increment. Simultaneously, since in de®ning diver-
sity increment a standard set of exons or introns is introduced
and another sequence to be predicted is compared with the
standard set, the method has followed the extrinsic as well as
the intrinsic approach. Therefore, different kinds of sequence
information and two types of methods have been integrated in
a single formal framework, they are easy to implement and

interpret. We will use 3000 genes in four model organisms to
train and test the new system, namely Caenorhabditis elegans,
Arabidopsis thaliana, Drosophila melanogaster and human.
The method can be applied also to the detection of non-
canonical sites but this work is dealing mainly with canonical
ones.

MATERIALS AND METHODS

Gene collections

We used the Exon-Intron Database (32) to collect con®rmed
genes in several model genomes that include C.elegans,
A.thaliana, D.melanogaster and human. The original data
were taken from http://mcb.harvard.edu/gilbert/EID on
December 27, 2002. Only fully annotated genes with experi-
mental supporting evidence are collected. To decrease the
possible errors in the data, we removed genes with unknown
bases, genes containing a partial coding DNA sequence
(CDS), genes whose total length of all coding sequences is not
3-multiple and genes with sequence overlapping to others. We
also removed all genes with non-canonical (non GT/AG)
splicing. After removing above entries, we have 185 genes
of C.elegans, 749 genes of A.thaliana, 1196 genes of
D.melanogaster and 1231 genes of human. Genes in each
species are divided in 10% groups and a jack-knife procedure
(10-fold cross-validation test, i.e. nine in ten groups for
training and the other for test) will be done. The numbers of
genes, exons and introns for each species are shown in
Supplementary Material.

De®nitions

Let mi the absolute frequency of the i-th category. There are t
categories corresponding to a space (called category space) of
t dimension. Set S: {mi | i = 1, ¼, t} the source of diversity and

D�S� � M log M ÿ
X

i

mi log mi

�M �
X

i

mi� 1

the measure of diversity, which is a function of source S
(26,27).

In general, for two sources of diversity in the same space of
t dimension, X: {n1, n2, ¼, nt} and S: {m1, m2, ¼, mt}, the
increment of diversity is de®ned by

ID(X,S) = D(X + S) ± D(X) ± D(S) 2

where D(X + S) is the measure of diversity of the mixed source
X + S: {n1 + m1, n2 + m2, ¼, nt + mt}. Note that ID is a function
of two sources. It can be proved that the increment of diversity
satis®es

0 < ID(X,S) < D(N,M) 3

where D(N,M) is the maximum of ID(X,S),

D(N,M) = (N + M)log(N + M) ± Nlog N ± MlogM 4
(M = Smi, N = Sni).
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Suppose that we shall distinguish with exons and introns.
For the purpose of predicting a property of sequence S we
should compare S with a standard set, which consists of
sequences with property having been known. By calculating
the number of four bases in three codon positions (or ideal
codon positions) for all exons and introns we deduce two
standard sources of diversity, X: {Nja

X | j = 1,2,3; a = A,C,G,T}
for exons and Y: {Nja

Y | j = 1,2,3; a = A,C,G,T} for introns.
Two standard measures of diversity [D(X) and D(Y)] corres-
ponding to two standard sources of diversity can be deduced
by use of similar equations as Equation 1, namely

D�x� � M log M ÿ
X

ja

N
x
ja logN

x
ja �x � X; Y�

�M �
X

ja

N
x
ja� 5

Suppose that S is a DNA sequence the class of which is to be
predicted. It also de®nes a source of diversity S in the same
category space as X or Y and has a measure of diversity D(S).
The increment of diversity for two sources of diversity S and X
(or Y) is

ID(x,S) = D(x + S) ± D(x) ± D(S) (x = X,Y) 6

If

ID(l,S) = Min{ID(X,S), ID(Y,S)} 7

then the sequence S is predicted to be in the class l.
The measure and the increment of diversity described above

(Equations 5 and 6) are de®ned based on the diversity source
in the category space of 12 dimensions, three codon positions
and four bases. The increment of diversity will be denoted as
ID {3 3 4} (the notation in curved bracket after ID gives the
dimension of category space for the corresponding diversity
source). It can be generalized to several other forms in its
application to gene recognition and splicing selection. Its
possible generalizations are:

(i) ID {m 3 4} (the increment of diversity for consensus
sequences). In intron/exon boundary there is a conservative
segment of length m. The frequencies of four bases occurred in
the s-th site of all m-long sequences, Nsa (s = 1, ¼, m; a =
A,G,C,T), form a diversity source. The measure of diversity is

D�S� � N log N ÿ
X

sa

Nsa log Nsa

�N �
X

sa

Nsa� 8

Accordingly, the increment of diversity ID {m 3 4} is
de®ned.

(ii) ID {C2
m 3 42}. The diversity source is composed of

frequencies of 16 kinds of base-pair correlation occurred in
m(m-1)/2 double-sites in all m-long sequences.

(iii) ID {C3
m 3 43}. The diversity source is composed of

frequencies of 64 base-triplets occurred in m(m-1)(m-2)/3! tri-
sites in all m-long sequences.

(iv) ID {43}. The diversity source is composed of the
frequency of 64 codons or 64 triplets in a given DNA segment.

There are several types of information currently used to
locate genes in a genomic sequenceÐthe intrinsic content
sensors, the extrinsic content sensors and the signal sensors,
etc. (20,21). The privilege of the diversity measure method is
the synthesis of different types of information in a single
approach. ID {3 3 4} is useful in studying base composition in
three codon positions and ID {43} useful in studying base
composition and correlation in triplet, they are suitable for
using content sensors in gene prediction; ID {m 3 4}, ID {C2

m

3 42} and ID {C3
m 3 43} are the increment of diversity for

consensus sequences, they are suitable for using signal sensors
in boundary determination. Moreover, since the diversity
source is de®ned for some standard set composed of sequences
of a given class the corresponding ID method implies a
similarity based approach. In combining above diversity
measures and increments through IDQD (31) one can
differentiate between exons and introns and ®nd their
boundaries.

IDQD of splice sites by using increment of diversity

The information used in exon/intron identi®cation is mainly
extracted from two classes of diversity source. The ®rst class
source is built from base composition, pairwise correlation
and triplet correlation at seven sites in donor consensus
sequence (namely, XGTXXXX), and eight sites in acceptor
consensus sequence (namely, XXXXXXAG). They describe
the base conservation near splice sites. The second class
source is built from triplet frequency in L1-base-long sequence
before exon/intron or intron/exon boundary (including AG in
intron/exon boundary, called L1 sequence) and that in L2-base-
long sequence after exon/intron or intron/exon boundary
(including GT in exon/intron boundary, called L2 sequence).
L1 = L2 = 48 will be taken in the following calculation. They
describe the compositional and base-correlating feature in a
sequence around splice site. The ®rst class increment of
diversity includes ID {m 3 4}, ID {C2

m 3 42} and ID {C3
m 3

43} with m = 5 for donor case and m = 6 for acceptor case. The
second class increment of diversity includes ID{43} in
different combinations of the standard source of diversity
and the diversity source of DNA sequence to be predicted.
(ID{3 3 4} instead of ID{43} has been used in our calculation.
But the latter is better, so we will con®ne ourselves in ID{43}.)
Plainly saying, in our algorithm for exon/intron identi®cation
(IDQD) eight feature variables around a potential splice site
are de®ned by eight increments of diversity ID1 to ID8. They
are listed in Table 1. For example, the ®rst variable ID1 is the
increment of diversity of ID{m 3 4} type, which is de®ned by
two sources, a diversity source constructed from the consensus
sequence with potential splice site (GT or AG) and a standard
source of diversity constructed from all consensus sequences
of true (donor or acceptor) splice sites in training set. The
quantity can be calculated by use of Equation 6 where the
diversity measure is deduced from Equation 8.

Since there are eight feature variables for a sample to be
identi®ed, each potential splice site is then characterized by a
vector of eight dimensions, corresponding one-to-one to the
eight variables (ID1 to ID8) de®ned above. We compute the
vector values for all the potential splice sites in the training set,
and divide in two groups: true and false splice sites. Next,
given a problem (or a test) of splice site, we apply IDQD to
classify it as a true or false splice site, according to its vector
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values. The increment of diversity (IDj, j = 1, ¼, 8) averaged
over true group or false group in training set is denoted by m1

and m2, respectively. The corresponding covariance in true
group or false group is represented by 8 3 8 matrix S1 or S2,
respectively. For a potential splice site to be identi®ed, the
increment of diversity is denoted by X. Following IDQD (28),
the discriminant function that differentiates with the potential
site X belonging to true group or false group is given by

x � ln
p

q
ÿ d1 ÿ d2

2
ÿ 1

2
ln
j S1 j
j S2 j ;

di � �X ÿ mi�0Sÿ1
i �X ÿ mi� �i � 1; 2�: 9

where p and q denote numbers of samples in the true and false
group respectively and |S| is the determinant of matrix S. Due
to the mutual independence among these eight variables we
have not found the singularity of matrix S. So there is no
problem in calculating Equation 9. di is the squared
Mahalanobis distance between X and mi with respect to Si. In
the common use of IDQD the threshold of x is 0; that is, the
discriminating rule assigns X to true group if x >0. The
decision rule is simply based on the comparison of posteriori
probabilities of two groups for given X. However, in present
case the 5¢ splice site and 3¢ splice site should match each other
to make a correct exon/intron identi®cation. We lose the
optimal condition x >0 introduced for 5¢ splice site or 3¢ splice
site alone. Let the threshold of x being xD for donor and xA for
acceptor, that is, the potential 5¢ splice site is assigned to the
donor candidate group if x > xD, and the potential 3¢ splice site
is assigned to the acceptor candidate group if x > xA. Then
from the matching between these two groups in a gene we
determine the splice sites. Both parameters xD and xA are
computed from the training set. In the jack-knife procedure,
the 10-fold cross-validation test will be done and the optimal
values xD and xA will be chosen through the comparison of
®tted values in 10 computations (see Supplementary Material).

RESULTS

The prediction accuracy for the splice sites of genes in training
set and testing set are estimated by two approaches. In the ®rst

approach (on the exon basis), we compute the number of exons
whose boundaries are both predicted correctly, denoted by N1,
and the number of exons whose only one boundary is
predicted correctly, denoted by N2. The number of observed
exons is denoted by Nexon and the number of predicted
exons by Npre-exon. We de®ne sensitivity and speci®city as
follows

Sn = (2N1 + N2)/2Nexon

Sp = (2N1 + N2)/2Npre-exon. 10

In the second approach (on the nucleotide basis), we check the
assignment of each base to exon or intron one by one. For a
nucleotide in exon or intron, if the assignment is true we
denote it as Et or Ot; otherwise, Ef or Of. The percentages of
nucleotides predicted correctly in exon and intron are

Ac(e) = (number of Et) / (number of Et + number of Ef)
Ac(o) = (number of Ot) / (number of Ot + number of Of),

respectively. The percentage of nucleotides predicted
correctly in whole genes is

Ac(all) = (number of Et + number of Ot) / (number of Et +
number of Ef + number of Ot + number of Of). 11

The prediction sensitivity, speci®city and accuracy are
dependent on parameter xD and xA. They are computed from
the maximization of the prediction accuracy in training set.
The optimal values are: (xD, xA) = (±10,±4) for C.elegans,
(±5,±5) for A.thaliana, (±3,±5) for D.melanogaster and (±4,±1)
for human (see Supplementary Material).

Given the values of parameter xD and xA as above the
prediction results for C.elegans, A.thaliana, D.melanogaster
and human in 10-fold cross validation are shown in Table 2.
The average sensitivity, speci®city and accuracy are shown in
third to seventh columns of the table and their standard
deviations given in brackets. For comparison the sensitivity,
speci®city and accuracy are also calculated in setting
xD = xA = 0 and the results are listed in the lower half of the
table.

Table 1. Eight increments of diversity used in exon/intron identi®cation

ID notation ID type Source of information ID de®ned by two sources
First source Second source

ID1 ID {m 3 4} 7 or 8 bases around splice site Potential splice site region All true splice site region
ID2 ID {C2

m 3 42} 7 or 8 bases around splice site Potential splice site region All true splice site region
ID3 ID {C3

m 3 43} 7 or 8 bases around splice site Potential splice site region All true splice site region
ID4 ID{43} 48 bases before potential and true boundary Potential splice site region All true splice site region

(L1 sequence) (L1 sequences)
ID5 ID{43} 48 bases before potential and after true boundary Potential splice site region

(L1 sequence)
All true splice site region
(L2 sequences)

ID6 ID{43} 48 bases after potential and before true boundary Potential splice site region
(L2 sequence)

All true splice site region
(L1 sequences)

ID7 ID{43} 48 bases after potential and true boundary Potential splice site region
(L2 sequence)

All true splice site region
(L2 sequences)

ID8 ID{43} 48 bases before and after potential boundary Potential splice site region
(L1 sequence)

Potential splice site region
(L2 sequence)

The de®nitions for eight IDs are shown in the table. The second column gives the ID type. The third column gives the location of the source of information
that is necessary for de®ning ID. As a rule, each ID is de®ned by two diversity sources (Equation 2 of the text). The last two columns indicate two sources
where `potential splice site region' refers to a sequence to be identi®ed and `all true splice region' refers to all sequences (exons or introns) in standard set.
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To compare our approach with current splice site detectorÐ
GeneSplicer, we use a 3-fold cross-validation in all above data
to estimate the splice site detection accuracy following the
method given in (12). The data set includes all sequences
containing the consensus GT or AG dinucleotide. The set is
randomly divided into three disjointed subsets and the
numbers of gene, true and false donor and true and false
acceptor present in the data are shown in Supplementary
Material. Here `false' splice site means a sequence containing
the consensus GT or AG dinucleotide that was not annotated
as a splice site. For a given subset in the partition, we use all
data outside the subset to train and then test the program on the
data in the subset. The reported accuracy represents the
average of the accuracies computed on all three subsets. As in
(12), for a given false negative rate (the percentage of true
sites missed) we calculate the false positives as a measure to
estimate the prediction accuracy. In this estimation of
prediction accuracy the matching between donor and acceptor
has not been considered. So, in calculating the false positives

we use IDQD by setting xD = xA = 0 to distinguish between
true and false. The results for C.elegans, A.thaliana,
D.melanogaster and human are given in Table 3. The
prediction for A.thaliana and human by use of GeneSplicer
was made before and the results were published in (12). For
comparison they are also listed in brackets in the table. (Note
that the false negative rate has been set to be the same in two
works and the comparison should be carried out for false
positives.)

To generalize our method to non-canonical splice site
prediction we collected 103 genes containing non-standard
splicing for human, 65 for D.melanogaster, 143 for A.thaliana
and 22 for C.elegans, called non-standard set (32).
Considering GT/AG and GC/AG consensus sequences as the
potential splice sites, using the same method given above and
the same parameters obtained from previous training set we
identify the splice sites (GT/AG type and GC/AG type only,
other types of non-canonical splicing not considered) in non-
standard set. The results are: accuracy Ac(all) on nucleotide

Table 2. The accuracy of prediction for splice sites in 10-fold cross validation

Species (xD xA) Sn (%) Sp (%) Ac(e) (%) Ac(o) (%) Ac(all) (%)

C.elegans (±10,±4) 94.6(1.32) 96.6(0.88) 97.4(2.28) 96.7(1.87) 96.9(1.82)
A.thaliana (±5,±5) 92.6(0.96) 94.8(0.71) 97.8(0.93) 97.6(0.96) 97.7(0.65)
D.melanogaster (±3,±5) 95.4(1.16) 97.6(0.63) 96.9(1.75) 96.6(2.82) 96.8(1.70)
Human (±4,±1) 86.8(0.75) 89.6(1.68) 91.0(1.50) 94.3(0.93) 93.8(0.95)
C.elegans (0,0) 88.5(2.30) 97.7(0.98) 95.8(1.62) 95.0(2.39) 95.3(1.51)
A.thaliana (0,0) 86.3(0.89) 96.0(0.67) 94.8(1.03) 94.0(1.85) 94.5(1.23)
D.melanogaster (0,0) 92.3(1.75) 98.1(0.52) 94.4(2.38) 94.9(2.38) 94.6(2.08)
Human (0,0) 82.4(1.06) 91.9(1.21) 89.0(1.44) 94.2(0.83) 93.4(0.87)

The average and deviation (in parentheses) for each accuracy parameter in 10 computations in 10-fold cross
validation are listed. In the upper half of the table the parameters (xD xA) are computed from training set and
in the lower half they are assumed to be 0.

Table 3. False negative and false positive rates for acceptor and donor site detection in four species

True sites missed False positives (%)
(%) C.elegans A.thaliana D.melanogaster Human

Acceptor site (ag) detection 3 1.69 6.65(11.7) 1.70 4.52(9.3)
5 0.72 2.89(4.9) 0.79 2.26(5.8)
7 0.29 1.92(3.3) 0.48 1.46(4.7)
8 0.26 1.65(2.9) 0.42 1.22(4.3)

10 0.14 1.25(2.4) 0.33 0.92(3.7)
15 0.05 0.74(1.6) 0.22 0.49(2.6)
20 0.02 0.54(1.1) 0.13 0.30(1.9)
30 0.02 0.31(0.7) 0.07 ±
40 ± ± ± 0.09(0.8)

Donor site (gt) detection 3 5.59 3.93(4.7) 2.09 10.07(14.7)
5 3.36 2.37(2.8) 0.93 7.00(6.4)
7 2.47 1.69(1.9) 0.61 5.28(4.8)
8 2.08 1.52(1.7) 0.55 4.86(4.1)

10 1.36 1.27(1.4) 0.40 3.97(3.5)
15 0.72 0.83(0.9) 0.29 2.44(2.5)
20 0.51 0.61(0.6) 0.19 1.57(1.8)
30 0.23 0.37(0.4) 0.09 ±
40 ± ± ± 0.31(0.7)

For C.elegans the data include 953 donor and 953 acceptor sites, 51 624 false donors and 36 642 false
acceptors; for A.thaliana 3533 donors and 3533 acceptors, 141 850 false donors and 91 525 false acceptors;
for D.melanogaster 2526 donors and 2526 acceptors, 229 344 false donors and 118 631 false acceptors; for
human 5604 donors and 5604 acceptors, 765 291 false donors and 511 333 false acceptors. For a given false
negative rate (the percentage of true sites missed) the false positives are calculated. The values in parentheses
are taken from (12) for comparison.
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basis, 93.6% for human, 88.2% for D.melanogaster, 93.4% for
A.thaliana and 97.8% for C.elegans; sensitivity Sn on exon
basis, 71.9% for human, 67.6% for D.melanogaster, 76.9% for
A.thaliana and 80.1% for C.elegans; and speci®city Sp on
exon basis, 74.7% for human, 72.4% for D.melanogaster,
79.5% for A.thaliana and 81.5% for C.elegans.

In the above IDQD algorithm, seven sites in donor
consensus sequence, eight sites in acceptor consensus
sequence and 48-base-long L1 and L2 sequences around splice
sites are studied. If the widths of window are enlarged,
namely, enlarged to 16 sites around donor, 29 sites around
acceptor and 80-base-long L1 and L2 sequences, then the
prediction capability will be further improved. [These width
values are comparable with those adopted in (12).] To lessen
the labor we applied the same algorithm but 2-fold cross
validation to human case. By utilizing information stored in
sequences in the enlarged windows we obtain the prediction
accuracy as follows: sensitivity Sn = 90.7%, speci®city Sp =
95.4%, accuracy on nucleotide basis Ac(all) = 92.3%. In above
statistics the best-®t parameters are calculated from the
training set, xD = ±9, xA= ±2. If xD = ±4, xA = ±1 are taken
(as in previous smaller window case), then the prediction
accuracy changes to Sn = 88.3%, Sp = 96.3%, Ac(all) = 91.4%.

DISCUSSION

Based on the conservation of nucleotides and the feature of
base composition and base correlation around splice sites GT/
AG, we applied the method of increment of diversity
combined with IDQD to the prediction of gene structure and
identi®cation of exon/intron boundaries for four model
species. In the method, only two parameters xD and xA are
introduced and need to be decided for a given species. We
have studied the dependence of prediction sensitivity, speci-
®city and accuracy on the choice of xD and xA. In the range of
xD from 0 to ±10 and xA from 0 to ±5 (for human xA from 0 to
±3) the prediction sensitivity changes about 4±7 points,
speci®city changes about 1±11 points and the prediction
accuracy Ac(all) about 2±3 points. For human the accuracy
parameters decrease rapidly as xA < ±3. We also found that
these accuracy parameters could not increase as xD and xA

further changed (up to ±15 for xD and ±10 for xA). By
calculating the average of Sn and Sp, (Sn + Sp)/2, and Ac(all)
in the test set and comparing the best-®t values of xD and xA in
10 computations we obtain the optimal values for these two
parameters in four species (see Supplementary Material).
Using these values as input we obtain the prediction accuracy
for test set Sn = 94.6%, Sp = 96.6% and Ac(all) = 96.9% for
C.elegans; Sn = 92.6%, Sp = 94.8%, Ac(all) = 97.7% for
A.thaliana; and Sn = 95.4%, Sp = 97.6%, Ac(all) = 96.8% for
D.melanogaster. For human, we obtain Sn = 86.8%, Sp =
89.6% and Ac(all) = 93.8% (lower than other three species).

The above results are obtained in 10-fold cross validation.
However, the reported accuracy does not much depend on the
design of the test. We have made the same calculations in
2-fold cross validation. The results of prediction sensitivity,
speci®city and accuracy are in full agreement with those in
10-fold cross validation (differences lower than 1±2 points for
most cases). So, in using enlarged window to improve the
prediction we are restricted to the 2-fold cross validation.
Utilizing the information in the enlarged window and making

the 2-fold calculation for human we obtain the prediction
sensitivity, speci®city and accuracy all higher than 90%.

From Table 2 we also ®nd that even in xD = xA = 0 case, in
the non-parametric discrimination, the prediction accuracies
are not low. This indicates the ef®ciency of the IDQD method.
However, introduction of adjustable parameters xD and xA

would increase prediction accuracy Ac(all) by 1±3 points and
sensitivity Sn by 3±6 points.

The prediction capability of a splice site detector can be
estimated by different methods. Apart from the method we
proposed in the article one may calculate the false positives for
a given false negative rate, since under given false negative
rate (missing a given number of true splice sites as the
threshold) the false positive rates of a splice site detector
re¯ect its prediction capability. The lower the false positive
rate, the higher the prediction accuracy. Pertea et al. intro-
duced the GeneSplicer, a leading detector, to predict the splice
site for A.thaliana and human (12). By setting the false
negative rate to be the same as other detectors and then
comparing the differences in false positives, GeneSplicer
reported fewer falsely predicted sites in many cases. By use of
the same method we calculated the false positive rate under
given false negative rate and compare our algorithm with
GeneSplicer. For A.thaliana, 15 in 16 cases the false positive
rate obtained from IDQD is lower than that deduced from
GeneSplicer. For human, the number is 12 in 16. Moreover,
the score is counted based on non-parametric discrimination.
In fact, introduction of parameters xD and xA in IDQD would
further increase prediction accuracy Ac(all) and sensitivity Sn.
Thus, the prediction capability of the present IDQD method
is comparable with the leading splice site detectorÐ
GeneSplicer.

Using the false positive rates as an index of the prediction
capability, from Table 3 we ®nd the prediction capability of
IDQD for 3¢ splice sites (acceptor) generally higher than 5¢
splice sites (donor). But for A.thaliana, the donor prediction
seems better than acceptor on average. For acceptor, the order
of prediction capacity from high to low is: C.elegans ®rst, then
D.melanogaster, human and A.thaliana. For acceptor, the
order is: D.melanogaster ®rst, then A.thaliana, C.elegans and
human.

Most splice site prediction methods published previously
have not been applied to cases with non-canonical (non-GT/
AG type) splicing. However, in principle, the non-canonical
splicing sites can be predicted by IDQD method. We have
reported the preliminary results of non-canonical splice site
prediction with a considerable accuracy. If all non-canonical
splice sites in non-standard set in addition to GC/AG type are
considered, we expect the prediction accuracy will be further
increased.

Bernaola-Galvin et al. used Jensen-Shannon divergence to
®nd the border between coding and non-coding in a DNA
sequence (33). The divergence is de®ned by the entropic
difference between the total sequence and its two segments.
This is an `entropic segmentation method' as they stated.
However, the ID de®ned in our paper is related to the
difference between the entropy sum of a sequence and a
standard set of coding sequences (exons) or non-coding
sequences (introns) and the entropy of the mixed system. So,
the ID is essentially a measure of entropy increase as a
sequence merged to a standard source. Two methods are
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different in their application though both they start from the
Shannon entropy. In fact, the information contained in a single
DNA sequence is not enough to make a differentiation
between exons and introns of that sequence. Following our
experience, it is possible probably to differentiate between
coding and intergenic segments in prokaryotic and the yeast
genome by only using the information of a single sequence
(24), but it is impossible to differentiate between exons and
introns and ®nd their borders in a genome of higher organism
without reference to homology comparison or similarity
measure. The advantage of the ID method is the utilization
of content measure, signal measure and similarity measure
synthetically in a simple and uni®ed approach. From a
theoretical point of view the source of diversity is essentially
an informational source and thus the ID is a quantity based on
the comparison of two informational sources. One knows that
the mutual information is such a quantity that describes how to
extract information regarding b from source a if the condi-
tional probability p(b|a) is known. But, different from mutual
information, ID describes other relations between two inform-
ational sources. So, the use of ID provides new possibilities for
investigators.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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