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Abstract

The development of in vivo brain imaging has lead to the collection of large quantities of digital
information. In any individual research article, several tens of gigabytes-worth of data may be
represented — collected across normal and patient samples. With the ease of collecting such data,
there is increased desire for brain imaging datasets to be openly shared through sophisticated
databases. However, very often the raw and pre-processed versions of these data are not available to
researchers outside of the team that collected them. A range of neuroimaging databasing approaches
has streamlined the transmission, storage, and dissemination of data from such brain imaging studies.
Though early sociological and technical concerns have been addressed, they have not been
ameliorated altogether for many in the field. In this article, we review the progress made in
neuroimaging databases, their role in data sharing, data management, potential for the construction
of brain atlases, recording data provenance, and value for re-analysis, new publication, and training.
We feature the LONI IDA as an example of an archive being used as a source for brain atlas workflow
construction, list several instances of other successful uses of image databases, and comment on
archive sustainability. Finally, we suggest that, given these developments, now is the time for the
neuroimaging community to re-prioritize large-scale databases as a valuable component of brain
imaging science.

Introduction

The increasing ability to obtain digital information in medical and biological neurocimaging
research has lead to a vast increase of scientific data from across a variety of spatial and
temporal scales (Van Essen 2002). With each new technological advance neuroscientific data
may be collected with finer resolution per unit time and render more detailed forms of
biologically relevant information (Bandettini 2007). Occurring simultaneously with advances
in imaging technology has been the advancement of the World Wide Web - whose original
purpose was to permit ease of data exchange between collaborating scientists but now links
people, computers, and information on an unprecedented global scale. From this co-evolution
of neuroscientific and computer network technology is an increased expectation that primary
scientific data be openly shared via readily accessible databases (Koslow 2000). One
particularly notable example is from the domain of human brain imaging where large, three
and four dimensional, volumes of structural and functional brain data are obtained using high-
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resolution magnetic resonance scanners. In any individual research publication, several tens
of gigabytes-worth of data may be represented — collected across normal and patient
populations. However, very often the raw and pre-processed versions of these data are not
available to researchers outside of the team that collected them. Concerns over the sharing of
the primary data may exist that prohibits their availability (Koslow 2002). What are available
may only be lists of local “hot spots” of activity referenced with respect to a triplet of brain
atlas spatial coordinates, perhaps tables of region volumetric results, other summary statistics,
and some very selective graphical renderings. Study meta-data (the data that describes how the
data were obtained, the parameters, experimental design, etc) may be incomplete and limit the
scope of future use. The raw and preprocessed versions of those data may end up being lost
should the post-doc who did the work leave the lab, if the data are archived onto media that
soon becomes outdated, or are unrecoverable following a computer mishap.

If, on the other hand, the data from published as well as ongoing studies can be archived using
a reliable and well maintained framework, then the utility of the data can extend beyond the
intent of their original collection (Van Horn and Gazzaniga 2005). Datasets from diverse
subjects or between patient groups can be mined to examine patterns among the data that would
otherwise go unseen in any individual investigation wherein combining datasets can increase
statistical power to observe more subtle effects. Using centralized (Van Horn, Woodward et
al. 2002) or distributed databasing approaches (Grethe, Baru et al. 2005), research consortia
can better manage work being performed across distant research centers. Importantly, through
the use of databases, federally funded collections of neuroimaging data can reach the widest
numbers of researchers who can turn that data into new knowledge, thereby maximizing their
utility and justifying the cost of their collection.

With the rapid advances being made in neuroimaging technology, data acquisition, and
computer networks the successful organization and management of neuroimaging data has
become more important than ever before (Poliakov, Hertzenberg et al. 2007; Hasson, Jeremy
et al. 2008). Technological advances in computer network throughput, disk storage, and
archival capabilities can be brought to bear so that databases can truly be a resource for
exchange and future use in computational anatomy and modeling (Figure 1). However,
databases still suffer from some reluctance on the part of the community who harbor doubts
about their trustworthiness, the difficulties associated with sharing, and how their data will be
used by others.

During the early years of this decade, considerable attention was given to neuroimaging
databases from the Organization of Human Brain Mapping (OHBM) (Governing Council of
the Organization for Human Brain Mapping 2001), who expressed concern about the quality
of brain imaging data being deposited into such archives, how such data might be re-used, and
the potential for their being represented in new publication. The question of data ownership,
in particular, was a primary concern in initial attempts to archive data (Editorial 2000). A recent
data ownership controversy (Abbott 2008) has highlighted anew the still tenuous nature of data
ownership, re-use, research ethical standards, and the pivotal role that peer-reviewed journals
play in this process (Fox, Bullmore et al. 2008). The implications of disagreements concerning
appropriate data re-use and new publication also impacts the users of neuroscience data
archives and how researchers might independently draw from archives and publish results
independently. While some might view the threat of similar disputes as an argument against
data sharing or large-scale archiving, we believe that this need not be the case and that open
access to primary neuroscience data through curated archives can enhance collaborations, not
hinder them. Leading scientific organizations, working closely with government organizations
and journal publishers, are poised to enact policies that promote the use of databases while
being sensitive to intellectual priority and research ethics. There are many positives to
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databasing neuroimaging data and it is helpful to review these aspects and how they contribute
to the health of the field and encourage new thinking.

In this commentary we examine the various roles that neuroimaging databases play in scientific
data sharing, data re-use, and consider some of the characteristics of trusted data archives. A
spectrum of database models has been proposed that range from simple FTP sites to fully
curated efforts containing data from published studies. We note the importance of thorough
data management and organization. We discuss population-level brain atlases as one natural
outcome of databases - essential for understanding normal and abnormal brain form and
function. We detail our own experiences developing databases and give examples of successful
utility for several large scale neuroimaging initiatives. The processing and examination of
datasets from multiple subjects necessitates clever workflow design, optimization, and
provenance with a view toward promoting independent re-analysis and study replication. We
observe that, among other metrics, databases are only as good as how they are being used and
their effectiveness in generating new science and contributions to education are important
benchmarks of their success. The data present in neuroimaging archives also forms a basis for
content-driven comparison representing new and interesting computational challenges. As
many these resources are of immeasurable value to neuroscience, their long-term sustainability
is imperative. Finally, we discuss the lessons that we, and the community, have learned in the
creation and maintenance of these essential neuroscientific resources. We believe that such
aspects strongly favor scientific organizations, such as OHBM, re-examining the role of
neuroimaging databases and their use in promoting a healthy research enterprise.

The Continuum of Neuroimaging Data Resources

The various levels of data archiving can be seen as forming a continuum (Van Horn, Grethe
etal. 2001). At one extreme, sample or “test” data sets might be located on an anonymous FTP
site that other scientists may use for instruction or for the early assessment of new image
processing algorithms. This may include datasets and their accompanying meta-data from a
particular empirical study which may be publicly advertized with a view toward encouraging
competition between new analysis techniques (as has been done in the OHBM-sponsored FIAC
competition (2006), for instance). At the next level there is the archiving of data from within
one’s own laboratory. Where greater expertise seems necessary to interpret results, a researcher
may wish to share data with a colleague from different laboratory. This may require the
establishment of formal database privileges and a more advanced level of meta-data
description. Finally, following the publication of primary results and their inclusion in the
collective scientific body of work, researchers might submit their data set to a formal archive
specifically designed to accommodate published neuroimaging data. These may not only
include collections of raw data but also summary results (e.g. lists of activation local maxima)
or derived representations (e.g. extracted surface-based representations). These may be
publically accessible databases where other researchers are able to access the data that
generated reported findings and on which they may perform their own independent analyses.
These new analyses may confirm the reported results or offer a new interpretation not discussed
in the original article and can form part of a new published article themselves.

Anonymous FTP sites need little more than an accessible disk space needed to store the
representation of the raw image data. Such databases are low-cost and need little human
supervision. On the other hand, repositories of raw data from published research articles
necessitate detailed demographic and experimental meta-data, considerable computational
resources, and curatorial effort to maintain them. Those that provide minimal curatorial
activities, sparse database normalization, etc. and simply provide a data warehousing service
may also necessitate little supervision. However, these resources are all costly and necessitate
infrastructure considerations as well as support from funding agencies. But it is at this more
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complex and costly end of the spectrum that the greatest potential for advancing neuroscience
exists. It is here that bridges may be constructed to other neuroscientific databases (e.g.
molecular, electroencephalographic, genomic, biobehavioral, etc.) as well as other types of
databases, thereby enabling researchers to gather and cross-reference data descriptions and
identify convergence of findings. The repositories at this end of the spectrum must build a trust
with the communities they seek to serve and provide dependable services to researchers that
are not provided by anonymous FTP sites.

Several factors contribute to a database’s utility, including whether it actually contains viable
data and these are accompanied by a detailed description of their acquisition (e.g. meta-data);
whether the database is well-organized and the user interface is easy to navigate; whether the
data are derived versions of raw data or the raw data itself; the manner in which the database
addresses the sociological and bureaucratic issues that can be associated with data sharing;
whether it has a policy in place to ensure that requesting authors give proper attribution to the
original collectors of the data; and the efficiency of secure data transactions. Several authors
have proposed considerations for how formalized neuroimaging databases might be best
constructed (Van Essen 2002; Keator 2006) and have developed useful implementations of
these systems (Evans 2006; Olabarriaga, Nederveen et al. 2006; Marcus, Olsen et al. 2007).
Clearly, large-scale relational databases offer a highly flexible means for describing data and
the relatedness of their various meta-data characteristics (Hasson, Jeremy et al. 2008).
Moreover, those that have been specifically designed to serve a large and diverse audience
with a variety of needs and that possess the qualities described above, represent the types of
databases that can have the greatest benefit to neuroscientists looking to assess new methods,
examine previously published data, or with interests in exploring novel ideas in cognitive or
patient data (Van Horn, Grethe et al. 2001).

Characteristics of Trusted Data Repositories

Given this range of database formats, the motivation to deposit or obtain data from a digital
resource often comes down to a matter of trust in the resource itself. Arzberger and colleagues
(2004) have noted several characteristics of successful data archiving and exchange efforts that
can form the basis of operating principles for any such archive of scientific data. These include:
1) the openness of the data archive — that access to information contained in a database is
generally unrestricted with respect to its user-base; 2) the database is transparent and there is
evidence of active data dissemination where it is clear what the database contains and that its
contents experience ongoing access over a period of time; 3) that there is an assignment and
assumption of formal responsibilities among the stake holders; 4) that technical and semantic
interoperability exists between the database in question and other online resources; 5) curation
systems governing quality control, data validation, authentication, and authorization are in
place; 6) there is demonstrated operational efficiency and flexibility; 7) the database insists
upon respect for intellectual property and other ethical and legal requirements; 8) there exists
management accountability which includes approaches to funding; 9) the archive is built upon
a solid technological architecture; and 10) users of the archive receive reliable support in data
deposition and access. Beaulieu (2001) has elaborated on many of these characteristics and
how they relate to what constitutes a trusted neuroscience digital resource. Additional issues
involve HIPAA compliance (Kulynych 2002), concern over incidental findings (llles, Kirschen
et al. 2006), anonymization of facial features (Bischoff-Grethe, Fischl et al. 2004; Neu and
Toga 2008), and skull stripping (Zhuang, Valentino et al. 2006). Given the degree of effort
required to curate active data deposition as well as for comprehensively addressing these issues,
the most trusted archives tend to be those whose infrastructure and archival processes are
sufficiently mature and specifically dedicated to the goals of long term community-oriented
databasing.
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Sharing Neuroimaging Data

The National Institute of Health policy on data sharing has recognized that “data sharing is
essential for expedited translation of research results into knowledge, products, and procedures
to improve human

health.” (http://grants.nih.gov/grants/policy/data_sharing/data_sharing_guidance.htm). With
this mandate to share data there has been considerable interest concerning the databasing the
results of and the raw data from studies of human neuroimaging (Fox and Lancaster 2002; Van
Horn, Grafton et al. 2004). However, there are as many barriers to sharing primary
neuroimaging data with established data repositories as there are investigators performing these
studies. The reasons for this have been discussed by us elsewhere (Van Horn and Ball 2008)
but it suffices to say that these reasons all involve the issue of trust: trust in the repository, its
utility, in who is using the data, and in how that data is being used.

But when data have been shared, there are instances of highly positive outcomes. In one
example, data from a large database of functional MRI studies were re-examined to explore
specific hypotheses concerning the differences between young and older subjects as compared
to those with pre-Alzheimer’s dementia related to resting state (“default mode”) processing
(Greicius, Srivastava et al. 2004). Prominent co-activation of the hippocampus, detected in all
groups, implied that the so-called default-mode network (Raichle and Gusnard 2002) may be
closely involved with episodic memory processing. However, the older subjects with dementia
showed decreased resting-state activity in the posterior cingulate and hippocampus, suggesting
that disrupted connectivity between these two regions accounts for the posterior cingulate
hypometabolism commonly detected in positron emission tomography studies of early
dementia. Such a re-analysis of data from a public repository provided a clinically significant
finding beyond the intent of the original investigation and whose outcomes speak directly to
the purpose behind the NIH mandates on data availability.

Neuroimaging Databases and Their Role in Creating Brain Atlases

A detailed listing of a number of leading relevant examples of neuroscientific databases and
their attributes is provided in Table 1. We draw these, admittedly selective examples, from
more comprehensive catalogs of neuroscience database resources which may be found at the
Society for Neuroscience Database Gateway (http://ndg.sfn.org/) and at the Neuroscience
Information Framework (NIF; http://neurogateway.org) websites. Detailed statistics on the
usage, uploads, downloads, etc. of some on this list are maintained by the Neuroimaging
Informatics Tools and Resources Clearinghouse (http://www.nitrc.org/), an important source
for a vast array of neuroimaging tools as well as data. Many of these neuroimaging data
resources cover a variety of funded projects or research studies, provide raw as well as derived
versions of electrophysiological and neuroimaging data, with a few also containing data from
non-human samples. Additionally, as these archives have developed, some have preferred to
remain focused on one human population, for example, where as other have sought to represent
data from multiple diagnostic groups as well as multiple data types (e.g. MRI, EEG). Some
require user registration to obtain data files whereas others serve data directly from within a
web browser interface. This table illustrates a cross-section of the types of neuroimaging
databases, representing intrepid attempts to serve their communities, and which can be utilized
to obtain data from across a range of samples, methods, and applications. Further details for
many of the resources listed here can be located on the NITRC website.

Databases such as these provide a wealth of structural and functional data obtained from across
a range of subjects or specific patient groups. The advantage of having such large collections
of data in one place is that they can be used to construct detailed population-level atlases of
brain morphometry or function. By population-level, we mean any form of brain atlas
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assembled by drawing from neuroimaging data voxel intensity, geometry, or other attributes
from across large, representative samples of human subjects that is warped to fit a known spatial
reference frame. These include probabilistic anatomical atlases (Mazziotta, Toga et al. 1995;
Toga, Thompson et al. 2001; Toga, Thompson et al. 2006), white matter fiber atlases (Wakana,
Jiang et al. 2004; Mori, Oishi et al. 2008), and cortical surface atlases (Van Essen 2005). These
can also refer to functional maps (such as group-level results of function analysis) or to the
relation between functional results and anatomical features. Brain atlases can be constructed
to incorporate data describing multiple aspects of brain structure or function at different scales
from different subjects, at different times, yielding a comprehensive description of the organ
in normal or disease populations (Roland and Zilles 1994; Toga and Thompson 2001).
However, the complexity and variability of brain structure, especially in the gyral patterns of
the human cortex, can present challenges in creating standardized brain atlases that reflect the
anatomy of a population (Toga and Thompson 2002). Based on well characterized subject
groups, age-specific atlases can potentially contain thousands of structure models, composite
maps, average templates, and visualizations of structural variability, asymmetry and group-
specific differences. They correlate the structural, metabolic, molecular and histologic
hallmarks of the disease (Narr, Thompson et al. 2000; Thompson 2003). Figure 2 shows an
example of a typical registration against the ICBM452 average brain atlas. Rather than simply
arithmetically averaging information from multiple subjects and sources, however, new
mathematical workflows can be introduced to resolve group-specific features not apparent in
individual scans (Davatzikos 1996; Thompson and Apostolova 2007). Figure 3, for instance,
demonstrates averaged regional geometric shape parcellation obtained using a boost-
probabilistic voxel assignment approach. High-dimensional elastic mappings, based on
covariant partial differential equations, are developed to encode patterns of cortical variation
(Davatzikos 1997; Weaver, Healy et al. 1998; Thompson, Woods et al. 2000). In the resulting
brain atlas, age-stratified features and regional asymmetries emerge that are not apparent in
individual anatomies. Recently developed pediatric structural and white matter brain atlases
form notable examples (Huang, Zhang et al. 2006; Jelacic, de Regt et al. 2006; Shan, Parra et
al. 2006). Figure 4 illustrates how processing workflows can be specifically designed to draw
from large archives of individual subjects in order to produce customized age-stratified average
brain spaces. The resulting probabilistic atlas can be used to identify patterns of altered structure
and function, and can guide algorithms for knowledge-based image analysis, automated image
labeling, tissue classification, data mining and functional image analysis. These integrative
approaches and their dependence on rich databases of primary data have provided significant
motivation for the human brain mapping initiatives, and have important applications in health
and disease.

Practically speaking, these examples represent standard atlas spaces that can be obtained
without access to any particular database or that are provided without any database schema,
per se. However, with the availability of data repositories containing large numbers of subjects,
it is possible for researchers to create new atlases for specialized purposes or that are
representative of specific disease populations. The creation of stratified brain atlases of the
normal aging process, for example, would be a highly desirable resource for the community
doing research on aging and the study of functional and structural brain changes associated
with aging (for instance, as the leading edge of the “Baby Boomer” generation enters
retirement). Such atlases could be created on an “as needed” basis by drawing from the data
comprising large-scale archives of shared neuroimaging data and be added to the growing
collection of available brain templates against which to spatially warp subject data. They could
be updated periodically as new methods for image warping and synthesis become available.
Additionally, atlases from similar patient samples could be compared across scanners, centers,
countries, or other variables to determine the effects of these variables on atlas construction.
Thus, atlases need not be static entities but, with the aid of available data archives, form the
basis for continually refining knowledge about brain structure and function and play important
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roles in understanding those variables that influence the characteristics of “standard” atlas
spaces.

Data Management and Organization

Digital archiving of scientific information is also an important element for research secondary
to initial publication or description involving large-scale image analysis (mega-analysis),
interactive visualization, and data exploration (Amari, Beltrame et al. 2002). Each of these
areas is large and worthy of its own article describing their dependence on databases. Briefly,
however, the informatics of medical image processing and analysis is subdivided into several
research areas of intense activity (Kanaan, Kim et al. 2005; Maxim, Sendur et al. 2005;
Kriegeskorte, Goebel et al. 2006; Moorhead, Harris et al. 2006). These include; acquisition,
processing and recording of acquisition meta-data; the management of complete study
information, including image summarization and subject anonymization; and the integration
of clinical and other biologically-relevant information. Collectively, each area of informatics
seeks to contribute to a strong web-driven database infrastructure that the community may
seamlessly take advantage of (Grethe, Baru et al. 2005). Yet, the most immediate and important
challenge for many neuroimaging laboratories is the end-to-end scientific data management
from data acquisition and data integration, to data treatment, provenance and persistence.

Local data management architectures have been developed over the past few years that assist
research teams with the management of their acquired primary data. For neuroimaging, notable
examples include BIRN XCEDE (Keator, Gadde et al. 2006), BrainMap (Laird, Lancaster et
al. 2005), and XNAT (Marcus, Olsen et al. 2007). XCEDE is the basis of the Biomedical
Informatics Resource Network’s (BIRN) neuroimage data repository that organizes data from
across the contributing Function BIRN sites. XNAT, on the other hand, was developed to be
deployed at individual sites for local data management. Each of these provides a schema for
containing subject demographic information, analysis annotations, activation threshold
parameters, as well as cluster- and voxel-level statistics. BrainMap, is itself a database of
published activation coordinates and is built around an extensive means for characterizing the
specifics of the underlying cognitive paradigm under study (Fox, Laird et al. 2005).
Additionally, BrainMap tools provide user-friendly means for interacting with prominent
neuroimaging statistical packages such as Statistical Parametric Mapping software
(http://www.fil.ion.ucl.ac.uk/spm/), or for anatomical labeling is via the Talairach Daemon
(http://ric.uthscsa.edu/projects/talairachdaemon.html). Where there exists a well arranged data
and meta-data organization, including linkages to other external resources, this significantly
help to maximize the utility of data present in digital repositories, provide it appropriate context,
and helps to preserve the specific details typically only known to the original collectors of the
data. We note now the approach we have taken toward addressing these goals for the
management of primary neuroimaging research data which we believe is a particularly unique
and successful deployment for data management, organization, and subsequent data re-use.

The LONI Image Data Archive (IDA)

The Laboratory of Neuro Imaging (LONI) has long had a strategy of combining collaborative
research with robust computational resources to foster and environment in which the exchange
of ideas, data, and techniques may flow freely (Toga 2002). An initial component of this
strategy was to develop an infrastructure for storing collaborator data such that the lab’s
computational resources could be leveraged in performing image analysis. The advent of large,
multi-site neuroimaging initiatives in more recent years exposed the need for a reliable and
robust large-scale data repository. As a result, this led to the development of the LONI Image
Data Archive (IDA).
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The LONI IDA serves as a central relational-database repository for dozens of single and multi-
site neuroimaging research studies. The IDA was designed as a long-term archive with
considerable hardware and software resources devoted to ensuring: 1) protection of patient
privacy through integrated data de-identification components. This provides for HIPAA
compliant stripping of sensitive patient meta-data; 2) strict access controls to ensure data are
only accessible to authorized individuals; 3) tracking of all data accesses to provide an audit
trail so that project managers may understand who and in what way their data are being
accessed; 4) ease of use through a platform-independent, user friendly interface; 5) automated
of semiautomated capture of image acquisition and image viewer for evaluating image quality
and a file format translation engine which supplies on-demand image file format conversions.
These qualities help to address the issue of trust in the archive by satisfying depositors that the
data are being securely maintained, dealing expressly with issues of subject identification, and
providing users with easy to use tools for viewing and manipulating the image data.

The contents of the LONI IDA represent several national and international initiatives where
the need for pooling and protecting data were deemed paramount. For instance, the National
Institute on Aging (NIA) funded National Alzheimer’s Coordinating Center (NACC;
http://www.alz.washington.edu/) maintains its own database of demographic, clinical and
pathological data collected by the 29 Alzheimer’s disease Research Centers (ADRC). Many
of the ADRC:s also participate in the Alzheimer’s disease Neuroimaging Initiative (ADNI) in
which detailed brain imaging data is gathered analyzed and then shared with the scientific
community. The ADNI program was established to increase knowledge of the mechanisms of
AD through the use of neuroimaging, thereby informing the development of treatment
strategies aimed at slowing down or preventing neuronal death. With the help of the LONI
IDA, ADNI has been instrumental in helping to identify clinical, neuroimaging, and biomarker
outcome measures and longitudinal changes and the prediction of disease transitions. Users
from around the world have obtained data from this collection for use in new research into the
subtleties of AD (Fletcher, Powell et al. 2007; Boyes, Gunter et al. 2008; Yanovsky, Thompson
etal. 2008). Additionally, the International Consortium for Brain Mapping (ICBM) is a project
involving investigators from the US, Canada, and Europe seeking to combine multi-modal
neuroimaging data to form population-based probabilistic brain atlases as standard references
(Mazziotta, Toga et al. 2001). Table 2 provides a complete listing of the various research
projects and their primary institutions, classified by research domain, that currently take
advantage of the LONI IDA for image data archiving and availability between project
members. Overall, the contents of the LONI IDA encompass nearly 30 large-scale research
projects, containing upwards of 75,000 images (>39,000 raw scans; >29,000 pre-processed
images; ~2,200 post-processed images). There are over 220 users actively uploading images
into the archive on a regular basis and in excess of 350 registered users downloading images
to their local sites (as of 03/09/2009).

The issue of developing trust in the archive has been of paramount importance. This has been
accomplished in several ways. There is no charge to obtain data from the LONI IDA and anyone
may request IDA access via the LONI website. The decision to share data, however, belongs
to the PI or Liaison for the project whose data is present in the archive. LONI curators then
only grant access authorization to study data once the PI and/or Liaison have given expressed
permission for that person. This provides depositors of data with the knowledge that they have
control over who can see and work with the data. In general, there is also no formal charge to
deposit data into the LONI IDA. However, as part of the sustainability model for the IDA,
funded investigators approved as LONI collaborators contribute funds to offset the curatorial
costs associated with data deposition.

As we noted above, we recognize that many other database models exist that cover the spectrum
of potential needs and use cases. The LONI IDA is just one of these models and other
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approaches may provide different or alternative services. But the LONI IDA example serves
as a particularly compelling example of how neuroimaging databases can be developed, can
grow, and can form trusted elements in major scientific initiatives.

Neuroimaging Workflow Description and Optimization

Drawing from databases for the purposes of mining their contents, re-analyzing reported
effects, and combining data from across separate studies requires a careful consideration of the
workflow of processing steps needed to generate an informative final result. Data frequently
need to be registered within and between modalities, to correct inhomogeneities, and for the
fitting of statistical models (VVan Horn and Gazzaniga 2002). Ordering these steps in a logical
sequence wherein the output from one step of processing becomes the input for another step
represents a data workflow and is the underlying basis of all the major data processing packages
currently available. Increased interest in the development of automated workflow
environments, APIs, and graphical methods for the design and execution of data processing
streams has led to the emergence of a range of workflow approaches. For instance, the Swift
system offers a simple scripting language, SwiftScript, seeking to provide a concise high-level
specification of workflows that invoke various application programs drawn from large
quantities of data (Stef-Praun, Clifford et al. 2007). Workflows of linked scripts can be
submitted to distributed computer grids to provide parallel processing performance and
increase analysis throughput (see Hasson et al., 2008, for overview). Likewise, XNAT also
provides a set of routines for the detailed specification of processing steps to be performed on
data contained in an XNAT-based data archive. A final example is that of the FBIRN Image
Processing Scripts (FIPS), a package for the comprehensive management of large-scale multi-
site fMRI projects, and including data analysis using SPM, FSL, and FreeSurfer packages
(Keator, Gadde et al. 2006). It also provides a modular set of scripts so that the user can flexibly
set up their own standardized analysis. Each of these approaches offers users a way to string
together those processing operations that are best suited to their data analysis needs and that
can then be run in an unsupervised fashion over many archived data sets.

The LONI Pipeline (http://pipeline.loni.ucla.edu), for instance, is a simple, efficient, and
distributed computing environment, enabling software inclusion from different laboratories in
different environments (Toga, Rex et al. 2001; Rex, Ma et al. 2003). The primary goals of the
LONI Pipeline are: 1) to create a robust environment for scientific software tool
interoperability, Grid integration and low-cost interactive user interface. For maximum
portability, scalability and efficiency, this environment is built in Java and utilizes XML for
storing and communication of meta-data, and descriptors for tools and services; 2) To enable
expert researchers to quickly design, test and validate novel experimental designs and to rapidly
examine new data analysis protocols. This is achieved via dynamic, responsive and extensible
graphical user interface; and 3) to provide the necessary means for integration of LONI Pipeline
XML workflow descriptions with other established graphical environments for scientific Grid
computing.

The LONI Pipeline provides a visual programming interface for the design, execution, and
dissemination of neuroimaging analyses. Individual executables are represented as “modules”
that can be included, deleted, and substituted for other modules within a user-friendly graphical
user interface. Connections between the modules that establish an analysis methodology are
represented as “workflows”. The environment handles the bookkeeping, controls the details
of the computation, and information transfer between modules and within the workflow. It
permits files, intermediate results, and other information to be accurately passed between
individually connected modules. The DRMAA API (http://www.drmaa.net), backed by the
Sun Grid Engine (http://gridengine.sunsource.net), acts as an interface to grid environments.
Modules and workflows can be saved to disk at any stage of development and recalled at a
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later time for modification, use, or distribution. This functionality facilitates the translation of
existent analysis paradigms from other environments to the LONI Pipeline and vice-versa. An
XML description protocol allows any command-line driven process, web-service or data-
server to be encapsulated into the environment by reference. This is a deliberate design we
have imposed to reduce the integration/utilization costs of including new resources within the
LONI Pipeline environment. This approach provides the benefit of quick and easy management
of large and disparately located resources and data. In addition, this choice significantly
minimizes the hardware requirements for user-client machine (e.g., memory, storage, CPU).
Database server connectivity is a specific design feature that enables a user to construct
workflows that directly act upon data archived in the LONI IDA as well as potentially other
relational-database architectures. Tools such as this will be critical for a future in which data
management and mining are based in web-driven access in addition to infrastructures aimed
at allowing researchers access via GRID/PetaScale computing. Finally, though tools like the
LONI Pipeline are primarily used in the context of neuroimaging, the underlying data-models
can be made agnostic to any particular scientific domain or data type, and so is suitable for use
with many types of scientific data archive, most notably for storing how the data sets were
processed, e.g. the “provenance” of the data.

Neuroimaging Provenance Information and Data Archives

In the biological sciences, a description of how data was obtained is often crucial for assessing
its quality and usefulness, as well as enabling analysis in an appropriate context. Additionally,
the analysis of raw data in neuroimaging has become a computationally rich process with many
individual operations run on increasingly larger datasets (Liu, Meier et al. 2005). Many
commonly available software packages exist that provide either complete analyses or enable
specific steps in neuroimaging data analysis. The recording of the data generation and
processing provenance (Bidgood, Horii et al. 1997; Mackenzie-Graham, Van Horn et al.
2008) is, however, not often practiced. Many software packages, for instance, possess diverse
input and output requirements, utilize different file formats, run only under particular computer
environments, or are appropriate for only certain types of data. The accurate preservation of
data integrity during study data transactions or to document any database normalization
operations also falls under the domain of provenance. Recording the provenance of data, its
processing, curation, alterations or addendums to it and including this information in databases
can aide in the fidelity of the independent reproduction of results or, if viewed as meta-data
itself, can be used as predictor variables in multi-center trials to examine how acquisition or
processing parameters influence experimental results.

Indeed, the provenance of neuroimaging data has recently begun to receive attention in the
fields of neuroimaging (Hasson, Jeremy et al. 2008) and computer science (Moreau, Ludéscher
et al. 2007). Several databases and analysis platforms such as XNAT (Marcus, Olsen et al.
2007), Swift (see above), and Fiswidgets (Fissell, Tseytlin et al. 2003; Fissell 2007) provide
such capabilities. We have addressed this issue ourselves through the use of the LONI Pipeline
(http://pipline.loni.ucla.edu) which has been developed to generate a detailed description of
the data and processing executables used by the LONI Pipeline into the workflow description
files (MacKenzie-Graham, Payan et al. 2008). The efficient but detailed documentation of
neuroimaging provenance description is a presently rich area for neuroimaging databases and
a topic of mutual interest to brain, computer, and information sciences and one that can help
to better capture those details concerning how data are processed that are often not provided
in published research articles.
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Use of Databases in New Scientific Publication

The use of neuroimaging archives such as these to produce new scientific publications has been
noted as being one hallmark of the success of a databasing effort. One example of where this
has been true is that of the BrainMap database of brain activation local maxima. Using mean
activity locations as a basis and considering a rigorous Bayesian probabilistic framework called
activation likelihood estimation (ALE), several novel meta-analyses have appeared that
explore the effects of experimental predictor variables on motor activity (Witt, Laird et al.
2008), differences in patterns of language-related activity in stutters (Brown, Ingham et al.
2005), as well as in the cerebellum’s contributions in auditory function (Petacchi, Laird et al.
2005). A very large number of studies have emerged from LONI that draw from the LONI
IDA, especially from the contributions from the ADNI project (Leow, Klunder et al. 2006;
Boyes, Gunter et al. 2008; Jack, Bernstein et al. 2008; Yanovsky, Thompson et al. 2008). Other
examples also exist from other archives in which previously published studies contained in
databases have been reused or re-purposed to produce new published results (Liou, Su et al.
2006; Chen, Samuraki et al. 2008). The use of databases to broaden the extent of the original
research findings represents their most important advantages to the scientific community.
These successful outcomes are further enhanced with the involvement of scientific publishers.

The relationship between the neuroscience databases and peer-reviewed journals is an
important one. Databases and journals have partnered to examine how such processes might
work in practice. For instance, the partnership between the fMRI Data Center (fMRIDC) and
the Journal of Cognitive Neuroscience (JOCN) was one that other journals publishing
neuroimaging data could adopt for their for their own contributions to the fMRIDC or other
formal data archive (Van Horn, Grethe et al. 2001). As well, the basic model of this partnership
could be adapted easily to accommodate studies and study data from other neuroscientific
domains and modalities. Having software tools that facilitate and make easy the data
contribution process are essential. The process and its eventual outcome represents value-added
for the journal in terms of enhancing what is being made available with each published article.
It also represents the opportunity for researchers in the field to obtain and examine primary
data from the published literature itself, confirming results, testing new hypotheses, or
exploring emerging analytic approaches.

Several articles have appeared in the literature whose secondary analyses of data drawn from
neuroimaging data archives has extended the scope of the original research (Carlson, Schrater
et al. 2003; Mechelli, Price et al. 2003; Aizenstein, Clark et al. 2004) findings (Ishai,
Ungerleider et al. 2000). Recently, Van Horn and Ishai (Van Horn and Ishai 2007) examined
how the data from an earlier article by Ishai and coworkers (Ishai, Ungerleider et al. 2000) had
been re-analyzed by others after that data was made available through an open data archive. It
was observed that the data, originally collected in an experiment of categorical object visual
processing, had been used in the further understanding of underlying cognitive processes but
also new methods development and statistical analyses. The authors argued that the dataset
from the original Ishai article, as evident from these new applications, took on greater value
because its data were openly available. The re-use and re-interpretation of data from published
studies helps to inform and energize subsequent published literature and that helps to enhance
the value of the original research. Importantly, access to data used in a journal article can expose
analysis errors when secondary parties attempt to replicate the published computational and
statistical procedures. We note that such re-analyses are not new or independent studies, per
se, but are complementary treatments of the same data that can provide additional detail on
underlying effects and alternative points of view. Over time, corrected or revised conclusions
about the effects present in the data might be drawn as more people examine them from these
different perspectives.
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Role for Databases in Education

Digital repositories of primary data are particularly well suited to play a role in the education
of the next generation of neuroscientists. To present students with actual data from published
articles or major research initiatives can broaden journal club article reviews in which, not only
do students have the author’s interpretation of the results, they can perform analyses of their
own to confirm the results of the published article or apply alternative methods to look at data
in novel ways. Students may perform meta-analyses that utilize databases as a means for
identifying interesting avenues for subsequent research. Distillation of data into clusters of
similar studies may reveal patterns that would have otherwise gone un-recognized, leading a
student to consider new, testable hypotheses. Additionally, drawing from digital repositories
may aid in computing the statistical power required to find particular effects and can be used
to justify a student’s intentions to obtain new data as part of a Ph.D. dissertation. Already,
genomic and proteomic studies have demonstrated that meta-analytic and informatics-based
research is an important new element for discovery science (Hood 2003) and it is not
unreasonable to consider such approaches as a prelude to formal experimentation and new data
collection. Though, very few papers have been written discussing this role for neuroscience
databases, use in medical education (Gutmark, Halsted et al. 2007) and research training
(http://www.sfn.org/index.cfm?
pagename=PublicEducationOutreach_NeurosciEduResources) is likely to be one of their most
important attributes.

Databases as a Basis for Comparison and Validation

Beyond simply accumulating more and more data, databases also need to look toward providing
a useful basis for comparison with newly collected data. In applying an informatics based
approach to examining new information against large quantities of genomic data, BLAST was
at the forefront of the emerging bioinformatics field which continues to develop into new
domains (Phoebe Chen and Chen 2008). However, database technologies do not yet permit
this type of content-based search. As has been noted by others, databases permit meta-data
searches based on statements to the effect of “show me all the scans from right-handed, male,
schizophrenics, age 30 and over”. These are very useful searches and lists of such use cases is
of particular importance for database developers and ontologists as they decide what meta-data
to gather that describes the main data of interests. However, few, if any, tools are available that
utilize the data itself as the basis of comparison among database records or for permitting a
comparison of an unknown example with the database to identify most similar cases. For
instance, a user might upload a recently collected MPRAGE anatomical volume to a server
where it is digitally dissected, standardized measurements are made upon its elements, and
these are systematically compared against the entire contents of the archive. Results returned
to the user might indicate the degree of geometric similarity between their uploaded data and
its closest counterparts in the archive. Examination of the meta-data for these similar records
from the archive may help to better understand the newly obtained image volume. For instance,
if the uploaded data were most morphologically similar to Alzheimer’s disease patients from
the archive, it may be concluded, along with other evidence, that the uploaded data are also
from a patient with AD. One example of this type of work is presently underway in LONI to
develop online image registration validation tools in which a user can validate the results of
volume registration against the contents of the LONI IDA (Yanovsky, Thompson et al.
2008). A related approach was recently applied toward the development of a new whole brain
human atlas (Shattuck, Mirza et al. 2008). In these ways, neuroimaging databases could provide
a similar role to that played by conducting BLAST searches for genomic data (Altschul, Gish
et al. 1990). Thus, development of comparable tools that can evaluate newly obtained brain
imaging data, not just meta-data, against large digital brain archives will do much to energize
the discipline of neuroinformatics.
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Neuroimaging Database Sustainability

Governmental scientific agencies are encouraging the development and use of these resources
but tend not to be interested in long term support, per se. Curiously, the opposite appears to be
true for brain tissue banks (Haroutunian and Pickett 2007; Graeber 2008). While these are
different types of brain archive, to be sure, both forms of information, physical brain specimens
and their digital representation, have significant value to the neuroscience community. Once
a database has been developed, questions arise as to who is benefiting from the resource, how
is it being maintained, what is the data model underlying its organization, and is it interoperable
with other resources. Failure in any of these areas may mean that the database cannot be
sufficiently continued as a resource.

Many variables come into play when considering database sustainability not the least of which
is ongoing governmental support for database curation and tools development. Others include
an engaged process of curation, systems support, and ongoing scholarly activity that draws
from the resource. Moreover, people are increasingly using these resources to conduct novel
scientific discovery and have come to rely on them. This means that, should they fail to maintain
their sustainability, a certain segment of the neuroscience research enterprise (not just the
database in question) will be affected. Their use in the training of the next generation of
neuroscientists also cannot be overstated. Funding agencies must examine carefully the impact
of initiating such programs, what it will take to continue their momentum following their initial
construction, and who will be inconvenienced should they falter. Very often it is the community
that suffers not just the proprietors of the database in question.

The fMRIDC is an example of what can happen when resources cannot be sustained. Begun
with ample funding, the effort quickly became one of the success stories for the community in
gaining open access to the data from published fMRI studies. Raw, processed, and results image
data and the accompanying meta-data were deposited with the fMRIDC by the authors upon
acceptance of their papers (Van Horn, Grafton et al. 2004). Curatorial experts examined,
catalogued, and packaged the data for dissemination. Complete study data were provided to
users in countries around the world and, as we noted above, re-analyzed to answer new
questions about the cognitive domain during which they were collected or re-purposed to
address new and promising lines of thought. But when funding lapsed, critical curation and
computer systems personnel were lost, and this valuable archive has since struggled.

The issue of database sustainability is of such concern that the International Neuroinformatics
Coordinating Facility (INCF) (Bjaalie and Grillner 2007) recently organized an INCF
Workshop on Neuroscience Database Sustainability (Van Horn and van Pelt 2008). The goal
of the workshop was to deliberate issues related with sustainability of neuroscience databases,
to identify problems, to discuss solutions or approaches to these problems, and to formulate
recommendations to the INCF. The recommendations of meeting participants included greater
transparency into the contents of databases, enhancement of the tools needed to explore the
data collections, development of ways to leverage databases for meta- and mega-analyses, and
the interoperability of databases with each other.

Lessons Learned in Database Development

The intentions and processes behind the creation of databases have been varied and the lessons
learned in their development are important to consider for how new databases might be
designed de novo or how existing resources might be extended. While there are clear
sociological concerns about the impact of databases (Barinaga 2003), we believe that with
careful consideration of several elements some of these concerns can be mitigated. Firstly,
despite interpretive value applied to summary results from neuroimaging studies, the raw data
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provides the opportunity for reprocessing as new methods are developed. One of the first in
the pioneering group of databases emerging during the Decade of the Brain, BrainMap (Fox,
Mikiten et al. 1994) was designed with a focus for meta-analysis but not data mining from the
image data themselves (Fox, Laird et al. 2005). While invaluable for obtaining a meta-analytic
assessment of local maxima results from the published literature and the study factors that
influence them (see discussion above), users are not able to re-apply uniform data processing
workflows or apply alternative approaches to the raw data. Secondly, one must keep in mind
the constituency of the data archive and who is expected to benefit as a result. Under XNAT,
for example, the constituent is the individual laboratory, in which there is interest in better
organization of local data collection activities. In contrast, the fMRI Data Center effort sought
to serve the community more generally by providing users with complete, organized, and
packaged data sets from published studies for them to conduct new analyses or provide
alternative interpretations. Such a model can be successful for data dissemination, but the
individual contributing their data may not see a return on their investment until their data has
been re-used successfully several times in new peer-reviewed publications. Thirdly, focus on
a specific set of achievable deliverables with maximal utility. The BIRN project has been
enormously successful in coordinating effort across collaborating centers with ambitious goals
for databasing and tool delivery. Trying to solve too many problems, however, may result in
overly ambitious expectations at the expense of consortium productivity. Finally, look for
general purpose solutions. The IDA is simply one application but one that has many instances
applied to a number of different large-scale disease-oriented projects. While each sub-project
may remain contained in size, with its own specific needs, the collective IDA database gets
richer with the increasing addition of more projects. Such lessons were learned conjointly with
the growth of the internet as a major means for collaboration and information availability. But
we now know better the potential, as well as the limitations, of the internet and what these may
mean for databases in terms of what data should be made available, how tools for databases
use the web to their advantage without becoming enslaved by it, and what user expectations
are for interacting with data. On this basis, we suggest that it is time for the field to seriously
revisit the notion of neuroscience databases and their potential for the community.

Is it Time to Re-Prioritize Neuroimaging Databases?

In this article, we have reviewed many of the ways in which neuroimaging databases have been
designed and how these resources have been used by others. Despite considerable attention
during the 1990’s through the first several years of the 215t century, neuroimaging databases
have not been fully adopted by the community in the way many proponents had anticipated.
In part, this may be due to lingering sociological concerns or to having no clear message about
the role of these resources from leading neuroimaging organizations. At one time the OHBM
had formed a committee on neuroinformatics whose responsibilities included supporting
database development, content quality and meta-data description, accessibility, standards, and
community interactions (Governing Council of the Organization for Human Brain Mapping
2001). However, in the time since these interests were articulated and the committee formed,
the organization has been mute on its position concerning databases and their advantages and
caveats for the community. Yet, societies like the OHBM are in an important position to raise
awareness of useful data resources, validate leading neuroimaging databases, promote
deposition of data into them, and encourage their use for methods development and in
education. Given the developments of the past several years in the realm of neuroscience
databases, as reviewed here, now may be a good time for the leading organization for brain
mapping to re-visit neuroimaging databases. In addition, recent activities in US biomedical
research funding under the American Recovery and Reinvestment Act
(http://lwww.nih.gov/recovery) seek to support not only new research and but also major
infrastructural projects, including construction of new imaging centers. One can expect that,
in the next two years, neuroimaging research in the US alone will be significantly increased
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and with it the production of large amounts of new data. A revived OHBM informatics
committee could provide guidance standards for new imaging studies and minimal information
requirements necessary for published reports (see, for example, Poldrack, Fletcher et al.
2008), as well as serve to evaluate and endorse neuroimaging databases that meet strict archival
and curatorial standards. The committee could also carry-on what began under the FIAC
competition and encourage contestants to use data from openly available databases to validate,
optimize, and justify their proposed computational approaches. With a concerted effort, the
OHBM can be instrumental in promoting data archives as the indispensible resources for
science and education that they are.

Conclusions

Large-scale neuroscientific archival efforts have now begun to produce significant scientific
rewards for cellular and cognitive neuroscience, and most notably, brain mapping. Other
databases, too, hold great promise for linking images of brain structure and activity with other
useful biological information (e.g. GenBank, GENSAT). The involvement of brain researchers
as well as multiple scientific communities in examining published brain imaging data must be
welcomed and encouraged as this will strengthen and improve the inferences and conclusions
that can be made from these data. As a result of these infrastructural and data resources, novel
research, hypotheses and education using existing data can reach across scientific disciplines
—engaging workers from other fields to apply sophisticated new tools for data analysis and
integration. The human scale of these projects is not insignificant, however, often requiring a
dedicated curatorial staff to manage study deposition and to keep computer systems
operational. The example of the LONI IDA is but one successful effort showing how databases
can benefit the field. The examples provided in Table 1 clearly illustrate that many different
models exist that can satisfy the unique needs of specialized neuroimaging domains. No one-
size-fits-all solution exists, despite what some might contend, and nor should it -- having a
range of databasing approaches represents the health of the field and the interest in exploring
alternative solutions. However, those archives which have a demonstrated long-term
commitment to detailed neuroimaging curation, that have gained the confidence of the
community, and generated are likely to be those that are the most successful examples. But,
despite this healthy intellectual effort to construct useful and trustworthy neuroimaging data
archives, only through a sustained national and international effort will the vision of using,
mining, analyzing, and synthesizing the vast amounts of data being obtained by these rapidly
advancing technologies be realized. Now is the time for the neuroimaging community and its
representative organization to re-prioritize databasing efforts and take stock in their value for
neuroimaging science.
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Data Archival Site

e.g. LONI, BIRN, and
others use Internet 2 and
internal gigabit networks

Figure 1. Neuroimage Data Flow via the LONI Imaging Data Archive (IDA)
The Laboratory of Neuro Imaging (LONI) has established a highly reliable framework for the

efficient archiving, querying, and dissemination of brain imaging data. This model for data
deposition has proven successful across a number of NIH-funded projects and is adaptable to
a wide range of new applications.
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3.

Original Volume 3 Template Atlas

A Volume Warped
(ICBM452)

To Atlas Space

Figure 2.

A) The basic warping of data obtained during imaging experiments has become the de facto
first step for many data processing workflows involving both normal and patient samples.
Affine and non-linear approaches for warping anatomical image volumes (A) to standardized
spaces (B) have been developed, each having certain advantages and disadvantages in terms
of accuracy or computational load. However, the warping of patient data to “normal” template
atlases may lead to improper conclusions concerning localization of brain activity, the degree
of alteration under voxel-based morphometry in patients when contrasted against normative
samples, and other confounds. B) Averaged normal subjects (a—e) drawn from the LONI IDA
registered against an atlas space permits automated extraction of C) “average” brain regional
shapes using sophisticated voxel position and intensity sorting algorithm (Tu, Narr et al.
2008).
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Figure 3.

N=400 Alzheimer’s disease subjects were drawn from the ADNI database housed at LONI/
UCLA, of which examples of N=5 are shown here (A). These data were systematically
submitted to the LONI grid computer cluster via the use of a purpose-built LONI Pipeline
workflow comprised of a heterogeneous collection of processing modules from commonly
available software packages, e.g. AIR, FSL, and related toolsets. The data were spatially
reoriented, warped against an Alzheimer’s disease subject reference volume, a common
realignment solution identified, and so on, to produce a disease-specific Alzheimer’s atlas
volume (C) against which individual variability may be assessed or used for specific studies
underway at other laboratories. The workflow does not contain any operations against a
“normal” brain atlas. The processing of this number of subjects required approximately 50
minutes using the LONI Pipeline and LINUX computational grid.
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6 v o it it 3 @ rie

Figure 4. An example of end-to-end data sharing, databasing, and data processing: A. Archiving
Data

Contribution to the LONI IDA involves two basic steps: De-identification - a HIPAA compliant
manner for removing patient-identifying information involving the LONI Debabeler (Neu,
Valentino, et al., 2005), capable of de-identifying common medical imaging file formats; and
Data Transmission - a storage server that enables an efficient transfer of many files at once,
bundling files together so that file 1/0 is minimized when accessing multiple associated files.
All data are securely transferred using the HTTPS protocol. B. Meta-Data Search. Meta-data
searches include the species, research project, the diagnostic group, gender, scan dates, age,
scanner modality and accompanying scan parameters, among other criteria. C. The LONI
Image Viewer: From the database as a whole or from searches thereof, users can examine data
in multiple planes using a convenient and intuitive web-based viewer. Finally, D. Access via
The LONI Pipeline: The LONI Pipeline interface permits users direct access to the LONI
IDA to create shareable processing workflows on data residing there. These workflows may
themselves be shared with others and serve to record data and processing provenance.
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Source of

PMID

Name Policy Contents File Funding Reference
Format (if available)
ol http://www.brains.rad.msu.edu Experimental Data Public Cat; Morphology;  Alzheimer's; Digital NSF
Collections Human; Anatomy; Schizophrenia; photogra
Database Macaque  Histology; Bipolar; phs;
(BCDB) ; Mouse; Atlas; Depression; Quicktim
Rat; Cortex; MRI;  Epilepsy; e Video
Other Brainstem; Parkinson's
Mammal  Cerebellum;
ian; Nissl;
Other Subcortical;
non- White
human matter;
primate; Imaging
non-
mammali
an
vertebrat
e
sl http://sumsdb.wustl.edu:8081/sums/in Knowledge; Tools;  Public Human; Architecture;  N/A Analyze; NIMH; PMID:
Managemen s [S 95 Experimental data Macaque  Morphology; NIfTI; NASA;NSF;NLM;NPA 16172003
t System ; Mouse;  Anatomy; Various CI;NCI;HBP
Database Rat Atlas; surface
Cortex; MRI; file
Olfactory; formats
Map; fMRI;
Volume;
Talairach;
Connections;
3D Models;
Cerebellum;
Segmentatio
n; White
matter; Gray
matter;
Warping;
Imaging;
Data
managemen
i Data
storage
IR http://www.fmridc.org Knowledge; Tools; Public Human; Anatomy; Normal and  Analyze; N/A PMID:
Data Center Experimental Data Primate Function; various patient  NIfTI 11545705
Ontology; samples
Atlas;
Cortex; MRI;
fMRI;
Volumes;
Talairach;
Brainstem;
Cerebellum;
White
matter;
Neuroinform
atics;  Data
managemen
t Data
storage;
Portal,
Software;
Neuroimagin
8 Brain
Mapping;
Cognition
CIETE R http://www.nbirn.net Knowledge; Tools; Private - Human; Architecture;  Alzheimer's; Analyze; NCRR PMID:
Informatics Experimental data consorti Mouse Morphology;  Schizophrenia; NIfTI 15923720
Research a based Anatomy; Multiple Sclerosis;
Network Ontology; ADHD; Depression;
(BIRN) Histology; Parkinson's; Tumor
Atlas;
Cortex; MRI;
Cellular/Mol
ecular; Glia;
Dendrites;
Map; fMRI;
Volume;
Talairach;
Connections;
Genetics; 3D
models;
Subcortical;
Segmentatio
n; White
matter; Gray
matter;
Warping;
Neuroinform
atics.
058 http://www.cma.mgh.harvard.edu/ibvd Experimental data Public Human; Anatomy; Alzheimer's; Analyze; NIMH; NINDS; HBP
Brain Mouse Volumes Huntington's; NIFTI
Volume Schizophrenia;
Crictnit Neuroimage. Author manuscript; available #*PM@2610 October 1.
(18VD) Depression
LONI Image p:// loni.ucla. data Private - Human; Histology; Alzheimer's Analyze; NCRR
ULIC abases/ access Mouse MRI; (ADNI); DICOM;
Archive with Volume; Schizophrenia; NIfTI;
registrati Datastorage  Epilepsy; Autism; Raw
on and development;
approval bipolar;
depression;  MS;
Huntington’s;
stroke; see Table 2
for complete list.
CICIOEEN  http://brainmap.org/ Knowledge; Tools;  Public Human Atlas; Map; Schizophrenia; Spatial NIH PMID:
Exnerimental data MRIE - PET-  ADHD: Denreccion:  conrdinat 16R07617
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Project Utilizing LONI IDA
Domain Resources

Primary Institution

Reference

* Alzheimer’s Disease
Neuroimaging Initiative (ADNI)

PET Study of 5 - HT1AReceptors in
AD

* .
Brain Info

Chinese Digitized Standard Brain
Atlas

Caring for a child with a serious
illness

* Bipolar Endophenotypes in
Population Isolates

” First Episode Schizophrenia

Genetic influences on the brain: A
twin study

” Human Epileptic Brain: 3DMRI

* Neural Bases of Lexical Processes
in H. Stroke

University of California San
Francisco

University of Toronto, Ontario,
Canada

University of Washington

Shandong University, China

University of California Los
Angeles

University of California Los
Angeles

University of California Los
Angeles

University of Queensland,
Australia

University of California Los
Angeles

Johns Hopkins University
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(Mueller, Weiner et al. 2005)

(Lanctot, Hussey et al. 2007)

(Bowden and Dubach2003)

N/A

N/A

N/A

(Narr, Bilder et al. 2007)

(Lin, Salamon et al. 2007)

(Hillis, Newhart et al. 2005)
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Project Utilizing LONI IDA
Domain Resources Primary Institution Reference

* Volumetrics in Brain Trauma University of California Los (Wu, Huang et al. 2004)
Angeles

Cryosection University of California Los N/A
Angeles

* Multi-center Estriol Study University of California Los N/A
Angeles

*

indicates project having current NIH funding
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