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Abstract

Lipopolysaccharide (LPS), the Gram-negative bacterial outer membrane glycolipid, induces sepsis through its interaction
with myeloid differentiation protein-2 (MD-2) and Toll-like receptor 4 (TLR4). To block interaction between LPS/MD-2
complex and TLR4, we designed and generated soluble fusion proteins capable of binding MD-2, dubbed TLR4 decoy
receptor (TOY) using ‘the Hybrid leucine-rich repeats (LRR) technique’. TOY contains the MD-2 binding ectodomain of TLR4,
the LRR motif of hagfish variable lymphocyte receptor (VLR), and the Fc domain of IgG1 to make it soluble, productive, and
functional. TOY exhibited strong binding to MD-2, but not to the extracellular matrix (ECM), resulting in a favorable
pharmacokinetic profile in vivo. TOY significantly extended the lifespan, when administered in either preventive or
therapeutic manners, in both the LPS- and cecal ligation/puncture-induced sepsis models in mice. TOY markedly attenuated
LPS-triggered NF-kB activation, secretion of proinflammatory cytokines, and thrombus formation in multiple organs. Taken
together, the targeting strategy for sequestration of LPS/MD-2 complex using the decoy receptor TOY is effective in treating
LPS- and bacteria-induced sepsis; furthermore, the strategy used in TOY development can be applied to the generation of
other novel decoy receptor proteins.
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Introduction

Sepsis caused by Gram-negative bacterial infection is a life-

threatening disease characterized by profound inflammatory

responses, multi-organ dysfunction with marked thrombus forma-

tion, and a high mortality rate (,60%) [1]. Lipopolysaccharide

(LPS), the Gram-negative bacterial outer membrane glycolipid,

induces sepsis through its interaction with LPS-binding protein

(LBP) or CD14 prior to subsequent formation of a complex with

myeloid differentiation protein-2 (MD-2) and Toll-like receptor 4

(TLR4) [2–12].

Human TLR4 contains a 608-residue extracellular domain, a

single transmembrane domain, and a 187-residue intracellular

domain [13]. Crystal structural analysis has shown that TLR4

adopts the characteristic horseshoe-like shape of the LRR

superfamily, with N-terminal (amino acids 27–202), central (amino

acids 203–348), and C-terminal (amino acids 349–582) domains

[14,15]. MD-2 binds to the concave surface of the N-terminal and

central domains of TLR4 [14]. In addition to TLR4-bound MD-

2, the MD-2 protein is also secreted into the extracellular milieu in

a soluble form, which is present in circulating blood [16,17]. MD-

2 has a b-cup fold structure that forms a hydrophobic pocket for

LPS binding [14,18]. Binding of the LPS/MD-2 complex

to TLR4 causes TLR4 dimerization, and results in the activation

of NF-kB leading to acute and severe inflammation and sepsis

[7–9,19].

In this regard, blocking TLR4 signaling activation using a decoy

receptor could be an effective way to prevent LPS- or Gram-

negative bacteria-induced sepsis if applied prior to or after

challenge. Although two research groups have tried to generate

the extracellular domain of TLR4 protein as a decoy receptor for

MD-2 [17,20], it proved difficult to generate a substantial amount

of the protein because it is insoluble, its production rate is

extremely low, and it is hard to purify due to its intrinsic

biochemical properties. Therefore, the trial of blocking TLR4

using a decoy receptor in preventing sepsis under in vivo conditions

has not been achieved until now. To overcome these problems, we

recently developed a novel method, ‘the Hybrid LRR Technique

[14]’, to generate a massive amount of soluble extracellular

domains of TLR4 protein. Variable lymphocyte receptors (VLRs)

are a new type of immune receptors in jawless fish. These

receptors resemble the adaptive immune receptors in jawed

vertebrates. VLRs and TLRs commonly contain the LRR domain

in the extracellular fragment, which is composed of a signal

sequence, an N-terminal cap (LRRNT), several LRR modules,

and a C-terminal cap (LRRCT) [14,21]. Therefore, stable TLR4-

VLR hybrid proteins can be generated in large amounts without

any loss of the intrinsic structural integrity of TLR4 by replacing
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some LRR modules and LRRCT of TLR4 with those of VLR,

termed TV3 and TV8 [14]. The TV3 and TV8 proteins are able

to complex with MD-2 and Eritoran (a synthetic LPS antagonist)

[22]. By fusion of the Fc domain of IgG1 to TV3 and TV8, we

were able to generate dimeric TLR4 decoy receptor TOY, which

is effective in treating LPS- and bacteria-induced sepsis.

Results and Discussion

We fused human IgG-Fc to the carboxy-terminal portion of

TV3 and TV8, and named the resulting products TLR4 decoy
receptor-3 and -8 (TOY3 and TOY8) (Figure 1A). As a control,

we also produced a fusion of IgG-Fc to the TLR4 full-length

ectodomain (TFE; Figure 1A). We used computer modeling

based on crystal structures to illustrate the potential structures of

the three constructs (Figure 1B). We were able to produce the

TFE, TOY3, and TOY8 proteins in CHO cells at rates of 0.1,

,20, and ,15 mg/L. The production rates of TOY3 and TOY8

are currently amplified by the methotrexate selection process [23].

The purified TFE, TOY3, and TOY8 under reducing conditions

revealed predominantly single bands of the expected molecular

masses of ,110, ,65 and, ,105 kDa, respectively (Figure 1C).

Under non-reducing conditions, the recombinant proteins were

present as disulfide-linked dimers due to the presence of the Fc

domain (Figure 1C). In vitro binding analysis revealed that TFE,

TOY3, or TOY8 could interact not only with MD-2 but also with

LPS/MD-2 complex (Figure 2 and Figure S1). Surface plasmon

resonance analyses revealed that all three proteins directly

interacted with MD-2, and the KD of TFE, TOY3, and TOY8

binding to MD-2 was ,81, ,76, and ,56 nM (Figure 2C).

Thus, the VLR component in TOY did not substantially alter the

binding affinity for MD-2. In vitro analyses demonstrated that both

Figure 1. Structures of TFE and TOY constructs. (A) Schematic diagrams of the constructs showing the relative sizes of the human TLR4
ectodomain (TLR4), VLRB.61 fragment (VLR) of hagfish, and human IgG-Fc (Fc). Numbers indicate amino acids of the parental proteins. (B) Crystal
structures based on computer modeling. The domains depicted are TLR4 (red), VLR (yellow), and Fc (blue). (C) Each 2 mg of reduced (R) and
nonreduced (NR) proteins was separated by SDS-PAGE and stained with Coomassie blue. Molecular masses (kDa) are indicated at left.
doi:10.1371/journal.pone.0007403.g001

TOY Attenuates Sepsis
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TOY3 and TOY8 largely inhibited LPS-induced NF-kB activa-

tion in primary cultured lymphatic endothelial cells (Figure 3A
and 3B) and also diminished LPS-induced TNF-a secretion in

macrophages (Figure 3C).

The isoelectric point (pI) of a recombinant protein affects its

bioavailability and pharmacokinetics in vivo. High-pI proteins

suffer from poor bioavailability because they adhere nonspecifi-

cally to the negatively charged proteoglycans of the extracellular

matrix (ECM). While the theoretical pI values of TFE, TOY3, and

TOY8 are 5.7, 11.8, and 6.0, their actual pI values are 5.0, 5.2,

and 5.5, possibly due to abundant N-linked glycosylation

(Figure 4). Indeed, the ECM binding assay demonstrated that

TFE, TOY3, and TOY8 had minimal binding to ECM, whereas

Flt1-Fc (pI 9.1) bound strongly to ECM (Figure 5A). To examine

the in vivo pharmacokinetic profiles of the proteins, we performed a

single intraperitoneal injection (5 mg/kg) of TOY3, TOY8, or

Flt1-Fc recombinant protein into mice. TOY3 and TOY8 proteins

were rapidly absorbed from the peritoneal cavity into systemic

circulation. The proteins reached maximum levels in blood at

1,2 hr after injection, and their half-lives (t1/2) were ,2 days

(Figure 5B). In mice (n = 4), TOY3 had a maximal concentration

(Cmax) of 7.0060.13 mg/ml and AUC (total ‘‘area under the curve

of concentration’’) of 20.5060.96, TOY8 had a Cmax of

7.0360.85 mg/ml and AUC of 18.2761.24, and Flt1-Fc had

Cmax of 5.2860.49 mg/ml and AUC of 9.9660.84. Thus, the

pharmacokinetic profiles of the proteins were correlated to their in

vitro ECM adhesion properties. TOY3 and TOY8 have relatively

high bioavailability and excellent pharmacokinetic profiles in vivo,

raising the possibility that TOY could block LPS/MD-2/TLR4

signaling in vivo by providing a decoy for TLR4.

To explore whether the TOY proteins could ameliorate sepsis in

vivo, eight experiments were performed. For the first and second

experiment, 20 mg/kg of TOY3 or TOY8 was given to mice at

30 min prior to or at 1 hr after administration of LPS (15 mg/kg)

(‘preventive model’ or ‘therapeutic model’). Both TOY3- and

TOY8-treated mice had an extended lifespan compared to Fc-

treated mice (50% survival: ,58 hr versus ,22 hr, P,0.001 in

the preventive model; ,49 hr versus ,22 hr, P,0.001 in the

therapeutic model) (Figure 6A and 6B). For the third and fourth

experiment, 20 mg/kg of TOY3 or TOY8 was given to the mice

at 1 hr prior to or at 1 hr after generation of acute peritonitis by

cecal ligation and puncture (CLP) (‘preventive model’ or

‘therapeutic model’). Both TOY3- and TOY8-treated mice had

a prolonged lifespan compared to Fc-treated mice (50% survival:

Figure 2. In vitro binding analysis reveals that LPS binds to TFE, TOY3, or TOY8 through MD-2 and BIAcore analysis of interaction
between TFE, TOY3, or TOY8 and MD-2. (A) 200 ng of Fc, TFE, TOY3, or TOY8 were coated onto 96-well plates. FITC-labeled LPS (10 mg/ml) was
incubated in the presence or absence of MD-2 (1 mg/ml) in each indicated well for 2 hr. The fluorescence signal was measured by IVIS imaging. (B)
Fluorescence was quantified and expressed as radiance (photon/sec/cm2/steradian). Bars represent means 6 S.D. (n = 4). *, P,0.05 versus Fc+hMD-
2+FITC-LPS (1). The x-axis numbering represents the number of each well in (A). (C) Sensorgrams for the association and dissociation of MD-2 on
immobilized TFE, TOY3, or TOY8. One microgram of TFE, TOY3, or TOY8 was immobilized on a Sensor Chip CM5 (BIAcore) using N-hydroxysuccinimide
(NHS) and 1-ethyl-3(3-dimethylaminopropyl) carbodiimide (EDC) amine coupling reagent at approximately 2,000 resonance units (RU). As a control,
BSA protein was immobilized on another portion of the same chip. Recombinant MD-2 proteins were then applied onto the immobilized TFE, TOY3,
or TOY8 surfaces, and the amount captured was recorded in sensorgrams as RU. All samples were in running buffer to minimize bulk effects. The
kinetic parameters of the binding interactions were calculated from the sensorgrams by nonlinear curve fitting using BIAEVALUATION software
(BIAcore). RU represents resonance units.
doi:10.1371/journal.pone.0007403.g002
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,74 hr versus ,29 hr, P,0.001 in the preventive model; ,60 hr

versus ,32 hr, P,0.001 in the therapeutic model) (Figure 6C
and 6D). Thus, surprisingly, both TOY3 and TOY8 showed

prominent preventive and therapeutic effects in the LPS- and

CLP-induced sepsis models. For the fifth experiment, 20 mg/kg of

TOY3 was given to the mice at 1 hr and 12 hr after

administration of LPS (15 mg/kg) (‘repeated treatment to

therapeutic model’). The TOY3-treated mice had a markedly

extended lifespan compared to Fc-treated mice (50% survival:

,60 hr versus ,26 hr, P,0.001), and the 40% of TOY3-treated

mice were completely rescued to live (Figure 6E). For the sixth

experiment, 20 mg/kg of TOY3 was given to the mice at 1 hr and

12 hr after generation of CLP (‘repeated treatment to therapeutic

model’). The repeated administration of TOY3 led to a dramatic

increase in survival up to 96 hr after CLP (TOY3 versus Fc; 60%

versus 0%, P,0.001) (Figure 6F). Thus, the repeated treatments

with TOY3 markedly attenuated lethality in both the LPS- and

CLP-induced sepsis models compared to the single treatment of

TOY3 (50% survival: ,60 hr versus ,50 hr, P,0.01 in the LPS-

induced sepsis model; 70% survival: ,60 hr versus ,50 hr,

P,0.01 in the CLP-induced sepsis model). For the seventh and

eighth experiments, 20 mg/kg of TOY3 was given to mice at 6 hr

and 12 hr after administration of LPS (15 mg/kg) or the CLP

procedure (‘clinically relevant model’). These repeated adminis-

trations of TOY3 also significantly improved survival compared to

the controls in both the LPS- and CLP-induced sepsis models

(50% survival: ,69 hr versus ,21 hr, P,0.001 in the LPS-

induced sepsis model; ,84 hr versus ,32 hr, P,0.001 in the

CLP-induced sepsis model) (Figure 7A and 7B). These repeated

treatments with TOY3 markedly attenuated lethality in both the

LPS- and CLP-induced sepsis models compared to the single

treatment of TOY3 (50% survival: ,70 hr versus ,50 hr, P,0.01

in the LPS-induced sepsis model; ,84 hr versus ,60 hr, P,0.01

in the CLP-induced sepsis model). Therefore, repeated treatments

with TOY3 could ameliorate sepsis even in a more clinically

relevant situation.

Figure 3. Pre-incubation of TFE, TOY3, and TOY8 markedly attenuates LPS-induced NF-kB activation in primary cultured
lymphatic endothelial cells and TNF-a secretion in peritoneal macrophages. LEC (primary lymphatic microvascular endothelial cells
derived from human adult dermis) were purchased from Cambrex Inc. (East Rutherford, NJ) and maintained in endothelial cell basal medium-2
with growth supplements (EBM-2 MV). Passage 4–6 LEC were incubated in EBM-2 MV containing 1 % FBS for 8 hr and then with 1 mg/ml of Fc, TFE,
TOY3, or TOY8 for 15 min, and then the LEC were treated with LPS (500 ng/ml) for 30 min. (A) For determination of NF-kB activation, nuclear
translocalization of p65 (a subunit of NF-kB) was analyzed by immunostaining (green). Nuclei were counterstained with DAPI (blue). Arrows
indicate nuclear translocalization of p65. Scale bars, 100 mm. (B) Cells positive for p65 intranuclear staining (white arrows) were counted among
100 cells arbitrarily chosen in 4 different regions, and the values presented as a percentage of the total cell number. Bars represent means 6 S.D.
(n = 4). *, P,0.05 versus Fc. (C) Primary cultured macrophages from mouse peritoneal cavity were pre-treated with 1.0 mg/ml of Fc, TOY3, or TOY8
for 30 min, and then were treated with LPS (100 ng/ml) for 4 hr. Culture media were sampled, and levels of TNF-a were measured. Bars represent
means 6 S.D. (n = 5). *, P,0.05 versus Fc.
doi:10.1371/journal.pone.0007403.g003
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Gram-negative bacterial sepsis is characterized by increased

secretions of proinflammatory cytokines and thrombus formation

in blood vessels, and both effects are brought through activation of

NF-kB [2,24]. To determine whether TOY attenuates NF-kB

activation and subsequent secretion of proinflammatory cytokines

and thrombus formation, we monitored these parameters in the

LPS ‘therapeutic model’ using NFkB-RE-luc [25] and wild-type

mice. At 24 hr after LPS (1 mg/kg) administration, the lumines-

cence signal examined by IVIS imaging system was markedly up-

regulated in most regions of NFkB-RE-luc mice, whereas the signal

was barely detected in PBS-treated NFkB-RE-luc mice (Figure 8A
and 8B). Both TOY3 and TOY8 significantly attenuated the

LPS-induced up-regulation of the signal in the NFkB-RE-luc mice

(Figure 8A and 8B). At 6 or 24 hr after LPS (7.5 mg/kg)

Figure 4. Isoelectric focusing and glycosylation analysis of TFE, TOY3, and TOY8. (A) 20 mg of the indicated protein was loaded on an
IsoGel Agarose IEF Plate and run at 50 mA constant current for 3 hr. The gels were stained with Coomassie blue. Each bracket marks the pI range of
the indicated protein. Reference pI values are indicated by the standard marker proteins (SMP). (B) 2 mg of the indicated protein was digested with O-
glycosidase (O) and PNGase F (N) and was separated by SDS-PAGE and stained with Coomassie blue. Each undigested protein was used as control (U).
Molecular masses (kDa) are indicated at left.
doi:10.1371/journal.pone.0007403.g004

Figure 5. TOY3 and TOY8 have low binding affinity to ECM in vitro and display excellent pharmacokinetic profiles in vivo. (A) ELISA
analysis depicting the binding affinity for different concentrations (0.3, 1, 3, 10, 30 nM) of each indicated protein to ECM. Values are given as means 6
S.D. (n = 4). *, P,0.05 versus Fc. (B) Pharmacokinetic profiles. The indicated protein (5 mg/kg) was injected intraperitoneally into C57BL/6 mice. Then
blood samples were taken from the tail vein at 1, 2, 4, 8, 12, 24, 48, 96, and 144 hrs, and serum levels of the proteins were measured by ELISA. Values
are given as means 6 S.D. (n = 4). *, P,0.05 versus Fc.
doi:10.1371/journal.pone.0007403.g005

TOY Attenuates Sepsis
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administration, levels of TNF-a, IL-1b, and IL-6 in plasma and

thrombi in the blood vessels of liver, adrenal cortex, lung, and

brain were profoundly increased in the wild-type mice (Figure 8C
and 8D). The mice treated with either TOY3 or TOY8 had

markedly reduced levels of TNF-a, IL-1b, and IL-6 in plasma

(Figure 8C), and fewer thrombi in the blood vessels (Figure 8D).

Thus, TOY attenuated LPS-induced NF-kB activation, which

increases the secretion of proinflammatory cytokines and results in

thrombus formation in multiple organs.

In this study, we report for the first time the production of a

TLR4 decoy receptor, TOY, which can be easily generated in

large amounts. We also show for the first time that a modified

decoy receptor of TLR4, TOY, is effective not only for prevention,

but also for treatment of LPS- and bacteria-induced sepsis in mice.

Because TOY would be used only once or twice during treatment

of a life-threatening septic condition, the immune reaction against

to TOY is not being considered. TOY3 and TOY8 produced

almost identical effects in preventing sepsis; since TOY3 bears

only the ‘A patch’ of the TLR4, this result implies that the ‘A

patch’ of the TLR4 ectodomain is sufficient for MD-2 binding in

vivo [14]. These findings give us additional structural information

in TLR4 biology which shows that further application of TLR4

Figure 6. TOY attenuates lethality in two sepsis mouse models and is effective in both prophylactic and therapeutic treatments.
(A–D) 20 mg/kg of Fc, TOY3, or TOY8 was given intraperitoneally to mice 30 min before (A) or 1 hr after (B) intraperitoneal administration of LPS
(15 mg/kg). The protein is given 1 hr before (C) or 1 hr after (D) generation of CLP. (E and F) 20 mg/kg of Fc or TOY3 was given intraperitoneally to
the mice at 1 hr and 12 hr after intraperitoneal administration of LPS (15 mg/kg) (E) or at 1 hr and 12 hr after generation of CLP (F). % Survival
represents remaining live mice from total mice (n = 10–11).
doi:10.1371/journal.pone.0007403.g006
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can be achieved with only the MD-2 minimal binding portion.

Considering that TOY3 has a slightly higher production rate and

smaller molecular size, it will be the most favorable construct for

therapeutic use of TOY in the future. Recently, Roger et al.

reported that a blocking antibody against the N-terminal and

central domains of TLR4 also produced preventive and

therapeutic effects in LPS- and bacteria-induced sepsis models

[26]. Thus, targeting TLR4 either by the blocking antibody or

decoy receptor such as TOY could be an amenable tool to relieve

LPS- and bacteria-induced sepsis [26,27]. In comparison, several

lipid A analogs that are competitive inhibitors of LPS [22,28] are

able to target only LPS-free MD-2, but not LPS-bound MD-2,

whereas TOY could sequester both free and bound forms of MD-

2. Furthermore, since LBP and CD14 play accessory roles in LPS

recognition by TLR4/MD-2 while MD-2 binds to LPS directly

and induces TLR4 dimerization [8,9], the efficacy of targeting

TLR4/MD-2 using TOY could be different from that of blocking

LBP [29] or CD14 [30]. Therefore, the effectiveness of TOY and

blockers of LBP or CD14 should be carefully compared in future

studies. Taken together, TOY would be an effective alternative

therapeutic molecule for treatment of patients with bacterial sepsis,

and our method provides a new platform biotechnology to

generate novel decoy receptor from TLR proteins.

Materials and Methods

Generation of recombinant proteins
Gene constructs encoding different sizes of the ectodomain of

human TLR4 [TFE (amino acid residues 27–631), TOY3 (amino

acid residues 27–227), and TOY8 (amino acid residues 27–527)],

the LRR module of hagfish VLR-B.61 (VLR), and the Fc domain

of human IgG (Fc) were cloned into the pCMV-dhfr vector.

Recombinant Chinese hamster ovary (rCHO) cells expressing

TFE, TOY3, or TOY8 were established following a previously

described method [23]. Briefly, the cells were established by

transfection of a vector containing the dihydrofolate reductase

(dhfr) and TFE, TOY3, or TOY8 gene into dhfr-deficient CHO

cells (CRL-9096, American Type Culture Collection). This was

followed by dhfr/methotrexate (MTX)-mediated gene amplifica-

tion. Stable rCHO cells secreting the highest amount of TFE,

TOY3, or TOY8 were selected with serially-increasing concen-

trations of MTX (0.001–0.08 mM, Sigma-Aldrich). Then the cells

were grown and maintained in HyQ SFM4CHO (Hyclone)

supplemented with 1% dialyzed fetal bovine serum (Invitrogen)

and 0.08 mM MTX. After 4 days, the culture media containing

recombinant proteins were harvested, and the recombinant TFE,

TOY3, or TOY8 proteins were purified by using Protein-A

sepharose affinity chromatography with subsequent acid elution

and neutralization. After purification, each protein was quantitat-

ed using the Bradford assay and confirmed with Coomassie blue

staining of an SDS-PAGE gel.

In vitro binding assay
200 ng of BSA or MD-2 was coated onto 96-well plates. After

blocking with 1% BSA for 1 hr, 40 mg/ml of Fc, TFE, TOY3, or

TOY8 was incubated in each well for another 1 hr with or without

FITC-labeled LPS (10 mg/ml). An HRP-conjugated anti-Fc

antibody was incubated in each well for 1 hr, and then HRP

substrate was added to each well. The fluorescence signal was

measured by IVIS imaging, and the absorbance was measured by

microplate reader (Bio-Rad).

Surface plasmon resonance assay and isoelectric
focusing

Binding between TFE, TOY3, or TOY8 and MD-2 were

analyzed with the BIAcore 3000 (BIAcore AB). One microgram of

TFE, TOY3, or TOY8 was immobilized on a Sensor Chip CM5

(BIAcore) using N-hydroxysuccinimide (NHS) and 1-ethyl-3(3-

dimethylaminopropyl) carbodiimide (EDC) amine coupling re-

agent at approximately 2,000 resonance units (RU). As a control,

BSA protein was immobilized on another portion of the same

chip. Recombinant MD-2 proteins were then applied onto the

immobilized TFE, TOY3, or TOY8 surfaces, and the amount

captured was recorded in sensorgrams as RU. All samples were in

running buffer to minimize bulk effects. The kinetic parameters of

the binding interactions were calculated from the sensorgrams by

nonlinear curve fitting using BIAEVALUATION software

(BIAcore). To measure isoelectric points, 20 mg of each protein

sample and standard marker proteins were loaded on an IsoGel

Agarose IEF Plate pH 3–10 strip (Cambrex) and run at 50 mA

constant current for 3 hr using 1 M phosphoric acid at the anode

and 1 M sodium hydroxide at the cathode. The gels were stained

with Coomassie blue.

Glycosylation analysis of recombinant proteins
Two mg of TFE, TOY3, or TOY8 was incubated with O-

glycosidase or PNGase F (QA-Bio) according to manufacturer’s

Figure 7. TOY ameliorates sepsis in clinically relevant models. (A and B) 20 mg/kg of Fc or TOY3 was given intraperitoneally to mice at 6 hr
and 12 hr after intraperitoneal administration of LPS (15 mg/kg) (A) or generation of CLP (B). % Survival represents remaining live mice from total
mice (n = 5).
doi:10.1371/journal.pone.0007403.g007

TOY Attenuates Sepsis
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protocol, and then the protein was run on SDS-PAGE and the

glycosylation pattern was analyzed by the migration shift after

Coomassie blue staining.

In vitro assays for NF-kB and TNF-a
NF-kB activity was assessed by immune-localization of p65 in

nuclei of primary cultured lymphatic endothelial cells according to

methods previously described [31]. Briefly, LEC (primary

lymphatic microvascular endothelial cells derived from human

adult dermis) were purchased from Cambrex Inc. (East Ruther-

ford) and maintained in endothelial cell basal medium-2 with

growth supplements (EBM-2 MV). Passage 4–6 LEC were

incubated in EBM-2 MV containing 1 % FBS for 8 hr and then

with 1 mg/ml of Fc, TFE, TOY3, or TOY8 for 15 min, and then

Figure 8. TOY attenuates LPS-induced NF-kB activation, secretion of proinflammatory cytokines, and thrombus formation. (A and B)
NFkB-RE-luc mice were injected intraperitoneally with control PBS (C) or 20 mg/kg of Fc, TOY3 (T3), or TOY8 (T8) at 1 hr after intraperitoneal
administration of C or LPS (1 mg/kg). At 24 hr later, the luminescence signals from the whole body were examined by IVIS imaging (A). The
luminescence was quantified and expressed as radiance (photon/sec/cm2/steradian) (B). Bars represent means 6 S.D. (n = 3–4). *, P,0.05 versus C+C;
#, P,0.05 versus C+LPS or Fc+LPS. (C and D) Wild-type mice were injected intraperitoneally with C or 20 mg/kg of Fc, T3, or T8 at 1 hr after
intraperitoneal administration of LPS (7.5 mg/kg) or C. At 6 and 24 hr later, plasma levels of TNF-a, IL-1b, and IL-6 were measured (C). Bars represent
means 6 S.D. (n = 4–5). *, P,0.05 versus Fc+LPS. At 24 hr after treatment, the mice were anesthetized, and samples of liver, adrenal gland, lung, and
brain were H&E stained (D). Arrows indicate thrombi in the blood vessels. Scale bars, 100 mm.
doi:10.1371/journal.pone.0007403.g008

TOY Attenuates Sepsis
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the LEC were treated with LPS (500 ng/ml) for 30 min. Primary

cultured macrophages from mouse peritoneal cavity were used to

assay TNF-a secretion. Three days after intraperitoneal injection

of 1 ml of 3% thioglycolate into 9-week-old male C57BL/6 mice,

we harvested macrophages by peritoneal lavage with PBS. We

incubated 16106 macrophages per experimental condition in

RPMI 1640 (Lonza) supplemented with 10% dialyzed fetal bovine

serum (Invitrogen). The macrophages were pre-incubated for

30 min with 1 mg/ml of Fc, TOY3, or TOY8, and then treated

with LPS (100 ng/ml) for 4 hr. Culture media were sampled, and

levels of TNF-a were measured by ELISA (R&D systems).

ECM binding assay and pharmacokinetic analysis
ECM-coated 96-well plates (Becton Dickinson) were used for

ECM binding assays. Each recombinant protein (100 mg of Fc,

TOY3, or TOY8) was injected subcutaneously into 8-week-old

male C57BL/6 mice (,25 g body weight), then the amount of

each recombinant protein in blood was measured at the indicated

times by sandwich ELISA.

Animals
Specific pathogen-free 8–9-week-old male C3H/HeN mice and

NFkB-RE-luc [25] (Balb/C) mice were used. Animal care and

experimental procedures were performed under approval from the

Animal Care Committees of KAIST. To generate the LPS-

induced sepsis model, mice were injected intraperitoneally with

15 mg/kg of LPS (E. coli O111:B4; List Biological Laboratories).

To generate the CLP-induced sepsis model, mice were anesthe-

tized, and ,75% of the cecum was ligated and punctured with a

21-gauge needle. The mice received 20 mg/kg of Fc, TOY3, or

TOY8 into the peritoneal cavity prior to or after the generation of

sepsis.

Monitoring NF-kB activation, measurement of
proinflammatory cytokines, and histology

NFkB-RE-luc [25] and wild-type mice were given 1.0 and

7.5 mg/kg of LPS 1 hr prior to administration of 20 mg/kg of Fc,

TOY3, or TOY8. At 24 hrs after the LPS administration, the

luminescence signal was examined by the IVIS imaging system

(Xenogen). Plasma was sampled at 6 and 24 hrs, and levels of

TNF-a, IL-1b, and IL-6 were measured by ELISA (R&D systems).

Mice were sacrificed 24 hours after LPS treatment, and their

livers, adrenal glands, lungs, and brains were harvested for

histological studies. Harvested organs were fixed using 4% PFA

dissolved in PBS at 4uC overnight and embedded in paraffin

blocks. Sections (4-mm) were stained with H&E and analyzed

under a phase-contrast light microscope.

Statistics
Values are presented as means 6 S.D. Significant differences

between means were determined by analysis of variance followed

by the Student-Newman-Keuls test. For analysis of survival curves,

a log-rank test was performed.

Supporting Information

Figure S1 In vitro binding analysis reveals that TFE, TOY3, or

TOY8 could interact not only with MD-2 but also with LPS/MD-

2 complex. (A) BSA or MD-2 was coated onto 96-well plates and

40 mg/ml of Fc, TFE, TOY3, or TOY8 was incubated in each

well with or without FITC-labeled LPS. An HRP-conjugated anti-

Fc antibody was incubated in each well, and then HRP substrate

was added. The fluorescence signal of each well is shown. (B)

Fluorescence and absorbance were measured. Fluorescence is

expressed as radiance (photon/sec/cm2/steradian) on the left y-

axis, and absorbance is shown on the right y-axis. Bars represent

means 6 S.D. (n = 4). *, P,0.05 versus hMD-2+Fc (5); #, P,0.05

versus hMD-2+FITC-LPS+Fc (9). The x-axis numbering repre-

sents the number of each well in (A).

Found at: doi:10.1371/journal.pone.0007403.s001 (1.28 MB TIF)
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