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We developed a simple and fast method to identify temperature-sensitive alleles of essential plant genes. We used primary and
tertiary structure information to identify residues in the core of the protein of interest. These residues were mutated and tested
for temperature sensitivity, taking advantage of the exceptionally rapid 1-week complementation assay in the moss
Physcomitrella patens. As test molecules, we selected the actin-binding proteins profilin and actin-depolymerizing factor,
because they are essential and their loss-of-function phenotype can be fully rescued. Screening a small number of candidate
mutants, we successfully identified temperature-sensitive alleles of both profilin and actin-depolymerizing factor. Plants
harboring these alleles grew well at the permissive temperature of 20�C to 25�C but showed a complete loss of function at the
restrictive temperature of 32�C. Notably, the profilin mutation identified in the moss gene can be transferred to profilins from
other plant species, also rendering them temperature sensitive. The ability to routinely generate temperature-sensitive alleles of
essential plant proteins provides a powerful tool for the study of gene function in plants.

Conditional mutants are powerful genetic tools. In
yeast, temperature-sensitive mutations have yielded
a wealth of information regarding gene function and
have aided immensely in the discovery and elucida-
tion of many molecular pathways (Hartwell, 1967;
Bonatti et al., 1972; Pringle, 1975; Novick and
Botstein, 1985; Johnston et al., 1991; Balasubramanian
et al., 1994; Chang et al., 1996, 1997; Iida and Yahara,
1999). In plants, a number of studies have generated
temperature-sensitive alleles to study processes
ranging from plant morphology to signal transduc-
tion (Lane et al., 2001; Whittington et al., 2001;
Wiedemeier et al., 2002; Quint et al., 2005; Bannigan
et al., 2006, 2007).

In addition to temperature-dependent function,
conditional expression can be generated in a variety
of ways. A common strategy in mouse cells is to
incorporate lox-p sites flanking the gene of interest

(Sauer and Henderson, 1988; Orban et al., 1992; Vidali
et al., 2006). Gene function is conditionally lost by the
expression of cre recombinase that fuses the lox-p
sites, deleting the intervening sequences. This method
and others, such as inducible RNA interference (RNAi;
Ketelaar et al., 2004), require long incubation times
needed for gene expression and protein depletion. Due
to the long time course for these studies, loss-of-
function effects can be complicated with the develop-
ment of the organism. In contrast, temperature-sensitive
mutants are potentially fast acting, losing their function
in some cases within minutes of exposure to the restric-
tive conditions (Novick and Botstein, 1985; Pruyne et al.,
1998).

In most cases, temperature-sensitive mutants are
generated randomly and the elucidation of the gene
harboring the mutation is uncovered by cloning the
mutagenized gene. In plants, this is done by perform-
ing a chromosome walk to the mutagenized allele. In
yeast, due to the ease of performing complementation,
it is also possible to start with a gene of interest,
mutagenize that gene, and screen for temperature-
sensitive alleles (Shortle et al., 1984; Budd and
Campbell, 1987; Mann et al., 1987). In plants, however,
this process has not been widely used, presumably
due to the time-consuming nature of performing com-
plementation studies in planta.

Here, we show that themoss Physcomitrella patens is an
ideal plant suited for screening potential temperature-
sensitive alleles of a gene of interest. To screen for a
temperature-sensitive mutation, loss of the gene of
interest must produce a measurable phenotype that
can be rescued by reintroduction of the wild-type
allele of the gene. We chose two proteins, profilin and
actin-depolymerizing factor (ADF)/cofilin, as test
molecules. Profilin and ADF are well-characterized
actin-binding proteins that are important for cellular
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growth in plants (Staiger et al., 1994; Ramachandran
et al., 2000; Dong et al., 2001; Vidali et al., 2001, 2007;
Chen et al., 2002, 2003; McKenna et al., 2004; Augustine
et al., 2008). In the moss P. patens, both profilin and
ADF are essential for protonemal filament growth.
Loss of profilin or ADF results in severely stunted
plants, composed of morphologically abnormal cells
(Vidali et al., 2007; Augustine et al., 2008). These
phenotypes are fully rescued by expression of wild-
type profilin or ADF, respectively.
Moss has emerged as a facile plant system due to

its ability to integrate exogenous DNA molecules by
homologous recombination at frequencies enabling
gene-targeting studies (Cove et al., 2006). In addi-
tion, moss is amenable to transient RNAi (Bezanilla
et al., 2003, 2005), which enables the study of termi-
nal phenotypes due to loss of essential genes, some-
thing that would not be possible if performing only
gene knockout experiments. We have previously
demonstrated the ability to knock down essential
gene families and obtain quantitative rescue of the
knockdown phenotypes (Vidali et al., 2007, 2009;
Augustine et al., 2008). We have performed these
studies using a rapid transient assay, which enables
knock down and complementation studies to be
performed within 1 week of transformation (Vidali
et al., 2007). This is an extremely rapid assay that is
unparalleled in other plant systems. Here, we use this
complementation assay to screen for temperature-
sensitive alleles of both profilin and ADF. Importantly,
we show that the residue that confers temperature
sensitivity in moss profilin can also render both Arabi-
dopsis (Arabidopsis thaliana) and lily (Lilium longiflorum)
profilins temperature sensitive, demonstrating a wider
applicability to this rapid in planta complementation
system.

RESULTS AND DISCUSSION

Temperature-Sensitive Mutations from Yeast Do Not
Transfer to Plant Proteins

P. patens has three functionally redundant profilin
genes (PRFa, PRFb, and PRFc) and a single essential
ADF/cofilin gene. For profilin, we chose to use PRFa
to screen for temperature-sensitive mutants, since it is
the most abundant profilin gene in protonemal tissue
(Vidali et al., 2007). In fission (Schizosaccharomyces
pombe) and budding yeast (Saccharomyces cerevisiae),
temperature-sensitive alleles of both profilin and cofi-
lin have been identified (Balasubramanian et al., 1994;
Lappalainen et al., 1997; Iida and Yahara, 1999). As an
initial approach, we tested whether the moss proteins
were rendered temperature sensitive if the analogous
yeast mutations were introduced into the moss pro-
teins. For profilin, we generated PRFa-E47K, which
is analogous to the E42K mutant profilin cdc3-124
from fission yeast, which encodes a protein known
to be highly unstable (Balasubramanian et al., 1994;
Lu and Pollard, 2001). Two mutants from budding
yeast cofilin were introduced into moss ADF. ADF-
D12AD13A and ADF-E139AR140AK142A are analo-
gous to cof1-5 and cof1-22, respectively (Lappalainen
et al., 1997).

Table I. PRFa and ADF mutations tested for rescue of the
loss-of-function phenotype and for temperature sensitivity in moss

n.d., Not determined.

Mutation Rescue Temperature Sensitive

PRFa-E47Ka 2 n.d.
PRFa-V103A ++ Yes
PRFa-V103S 2 n.d.
PRFa-V103W 2 n.d.
PRFa-V103K 2 n.d.
ADF-D12AD13Aa ++ No
ADF-E139AR140A ++ No
ADF-E139AR140AK142Aa ++ No
ADF-F29K 2 n.d.
ADF-I30A 2 n.d.
ADF-I30K 2 n.d.
ADF-I30S 2/+ n.d.
ADF-V31A 2 n.d.
ADF-V31W 2 n.d.
ADF-V69A ++ Yes
ADF-I91A 2 n.d.

aAnalogous mutations in yeast are temperature sensitive.

Figure 1. V103 is a buried residue in moss PRFa. A, Primary amino acid
sequence of PRFa. The underlined residue is the analogous amino acid
that is altered in the fission yeast temperature-sensitive profilin allele.
The residue in red is V103, identified by the algorithm of Varadarajan
et al. (1996). B, V103 is indicated with a red asterisk in the Kyte-
Doolittle hydrophobicity plot. C, PRFa homology model with V103
highlighted. D, PRFa-V103A homology model with Ala highlighted.
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For our complementation studies, we cotransform
moss protoplasts with two plasmids: an RNAi con-
struct that targets the untranslated regions of the genes
of interest, and an expression construct of the rescuing
gene lacking untranslated regions (Vidali et al., 2007).
To ensure that plants are silencing the genes of interest,
we use an RNAi system that contains, in tandem, an
internal reporter of gene silencing with sequences of
the genes of interest (Bezanilla et al., 2005). Briefly, the
moss line used for transformation expresses a nuclear-
localized GFP-GUS. The RNAi construct simulta-
neously silences the genes of interest as well as the
nuclear localization signal-GFP-GUS reporter. This is
due to the presence of sequences of the target gene and
GUS in the RNAi construct. One week after transfor-
mation, only plants lacking nuclear GFP are analyzed.
These plants are derived from single protoplasts and
are actively silencing (Bezanilla et al., 2005; Vidali
et al., 2007).

Temperature sensitivity of essential genes is evalu-
ated as follows. Transformed protoplasts are regener-

ated at the permissive temperature in protoplast
regeneration medium for 4 d. Protoplast regeneration
is inhibited at 32�C. Therefore, allowing it to occur at
the permissive temperature enables for efficient re-
generation and transformation. During this time, the
protoplasts rebuild their cell walls and have very
limited protonemal growth. After 4 d, the regenerated
plants are transferred to regular growth medium
containing antibiotic to select for the plasmids. Dupli-
cate plates for each transformation are incubated at
permissive and restrictive temperatures for an addi-
tional 3 d to allow for selection and optimal growth
that occurs after removal from the protoplast regener-
ation medium. Seven days after the transformation,
plants are analyzed for growth and morphology.

PRFa-E47K did not rescue the profilin RNAi
phenotype (Table I). In contrast, the mutants of ADF
derived from yeast cofilin temperature-sensitive al-
leles were able to rescue. However, they were not
temperature sensitive (Table I). These results suggest
that mutations that render yeast proteins temperature

Figure 2. PRFa-V103A is temperature
sensitive. A and B, Three representative
micrographs of chlorophyll autofluo-
rescence from 1-week-old moss plants
grown at the indicated temperatures
and transformed with the indicated
constructs. Panels with a plus sign
show plants transformed with the indi-
cated construct in addition to the PRF-
RNAi construct. Bar = 100 mm. C,
Average area of chlorophyll autofluo-
rescence from silenced plants. Area is
plotted in a logarithmic scale due to
the log normal distribution of the data.
D, Average solidity values. Numbers
above the bars indicate the total num-
ber of plants analyzed for each condi-
tion. Gray and black bars in C and
D represent data acquired at 25�C
and 32�C, respectively. Error bars rep-
resent SE.

Vidali et al.
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sensitive are not necessarily transferable to plant pro-
teins. This could be due to the fact that yeast grows
optimally at different temperatures. Alternatively, the
mutation could affect the interaction with molecular
partners present in yeast but absent in the plant cell.
Thus, the lesions that are not tolerated in one organism
may be tolerated in another.

PRFa-V103A Is Temperature Sensitive

Many temperature-sensitive mutants in yeast have
been identified by random mutagenesis (Bonatti et al.,
1972; Mann et al., 1987). This approach is likely to yield
alleles that are temperature sensitive specifically in
yeast. To find a more generalized strategy, we reasoned
that mutations in the core of the molecule may af-
fect a protein’s stability and activity in a temperature-
dependent manner. If the protein is less stable at
elevated temperatures, it may result in either unfold-
ing or denaturation at the restrictive temperature.
Therefore, one approach is to identify and mutagenize
buried residues in the protein of interest. Using the
same rationale, Varadarajan et al. (1996) developed an
algorithm that identifies buried residues in highly
hydrophobic environments without necessarily know-
ing the three-dimensional structure of the protein.
Using this algorithm, studies have identified residues
within various proteins that, when mutated, render
these proteins temperature sensitive (Varadarajan
et al., 1996; Chakshusmathi et al., 2004). Importantly,
this approach identified temperature-sensitive lesions
in the bacterial ccdB and the yeast Gal4 genes, for
which no temperature-sensitive alleles had previously
been identified (Chakshusmathi et al., 2004).
Using the algorithm of Varadarajan et al. (1996), we

identified Val-103 (V103) as the most buried residue in
PRFa. Hydrophobicity determinations, such as those
developed by Kyte and Doolittle (1982), also identify
this region in the molecule as the most hydrophobic
(Fig. 1B). Additionally, we made a homology model of
PRFa using the Arabidopsis PRF1 crystal structure
(Thorn et al., 1997). Inspection of the three-dimensional
model reveals that V103 is in fact buried in the core of
the profilin molecule (Fig. 1C).
Using site-directed mutagenesis, we replaced

V103 with four different residues, as suggested by

Chakshusmathi et al. (2004). These residues are Ala,
Ser, Trp, and Lys. To determine if the profilin mutants
were functional, we tested whether the mutants could
rescue the profilin RNAi phenotype.

Transformation with PRF-RNAi (untranslated region-
RNAi construct from Vidali et al., 2007) results in
an inhibition of growth (Fig. 2). Cotransformation of
PRF-RNAi with a PRFa coding sequence construct
results in plants that form polarized extensions with
abundant branches indistinguishable from control
plants (Fig. 2). We tested the four profilin mutants to

Figure 3. Val-69 is a core residue in moss ADF. A, Primary amino acid
sequence of ADF. The underlined residues are the analogous amino
acids that are altered in two budding yeast temperature-sensitive cofilin
alleles, cof1-5 and cof1-22. The residues underlined and in blue were
identified as residing in hydrophobic regions of the protein. The residue
in red is Val-69. B, Val-69 is indicated with a red asterisk in the Kyte-
Doolittle hydrophobicity plot. The hydrophobic regions are indicated
with blue asterisks. C, ADF homology model with Val-69 highlighted.
D, ADF-V69A homology model with Ala highlighted.

Table II. Statistical analyses of moss profilin studies

A plus sign indicates that the construct was expressed together with the RNAi plasmid. Adjusted P
values are shown; values in boldface indicate that the difference is statistically significant. The a level was
set at 0.05.

Construct Area Solidity

Control-RNAi 25�C versus control-RNAi 32�C 1 0.4643
PRF-RNAi 25�C versus PRF-RNAi 32�C 0.8549 0.9994
+PRFa 25�C versus +PRFa 32�C 1 0.5754
+PRFa-V103A 25�C versus +PRFa-V103A 32�C ,0.0001 ,0.0001
+PRFa 25�C versus +PRFa-V103A 25�C 0.999 1
+PRFa 32�C versus +PRFa-V103A 32�C ,0.0001 ,0.0001

Rapid Screening for Temperature-Sensitive Alleles in Plants

Plant Physiol. Vol. 151, 2009 509



determine which could rescue the PRF-RNAi pheno-
type at 25�C, the standard temperature for moss
growth. PRFa-V103S, PRFa-V103W, and PRFa-V103K
were unable to restore wild-type growth in the PRF-
RNAi plants (Table I). These plants were very small
and contained spherically shaped cells that pheno-
copied PRF-RNAi plants. In contrast, PRFa-V103A re-
stored wild-type growth to the profilin RNAi plants at
25�C (Fig. 2).

These results indicate that V103 is a critical residue for
profilin stability. Only the most modest modification
(V103A) functions properly at 25�C. Because our inter-
est is to identify at least one useful mutation, we focused
on V103A to investigate its temperature sensitivity.

To test for temperature sensitivity, we analyzed
complementation of PRF-RNAi at permissive (25�C)
and nonpermissive (32�C) temperatures. The comple-
mentation experiments are performed by transform-

Figure 4. ADF-V69A is temperature
sensitive. A and B, Three representative
micrographs of chlorophyll autofluo-
rescence from 1-week-old moss plants
grown at the indicated temperatures
and transformed with the indicated
constructs. Panels with a plus sign
show plants transformed with the indi-
cated construct in addition to the ADF-
RNAi construct. Bar = 100 mm. C,
Average area of chlorophyll autofluo-
rescence from silenced plants. Area is
plotted in a logarithmic scale due to the
log normal distribution of the data. D,
Average solidity values. Numbers
above the bars indicate the total num-
ber of plants analyzed for each condi-
tion. Gray and black bars in C and
D represent data acquired at 20�C
and 32�C, respectively. Error bars repre-
sent SE.

Table III. Statistical analyses of moss ADF studies

A plus sign indicates that the construct was expressed together with the RNAi plasmid. Adjusted P
values are shown; values in boldface indicate that the difference is statistically significant. The a level was
set at 0.05.

Construct Area Solidity

Control-RNAi 20�C versus control-RNAi 32�C 0.045 1
ADF-RNAi 20�C versus ADF-RNAi 32�C ,0.0001 0.0005
+ADF 20�C versus +ADF 32�C ,0.0001 0.2971
+ADF-V69A 20�C versus +ADF-V69A 32�C ,0.0001 ,0.0001
+ADF 20�C versus +ADF-V69A 20�C 0.1464 ,0.0001
+ADF 32�C versus +ADF-V69A 32�C ,0.0001 ,0.0001

Vidali et al.
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ing protoplasts, allowing the protoplasts to recover for
4 d at 25�C and then shifting to the nonpermissive
temperature, 32�C, for 3 d. The control RNAi, the PRF-
RNAi, and PRFa-complemented plants behave simi-
larly at the permissive and restrictive temperatures. In
contrast, cotransformation with PRFa-V103A results in
small plants composed of spherical cells at 32�C (Fig.
2). These plants are very similar in area and morphol-
ogy to the PRF-RNAi plants.

To determine the extent of temperature sensitivity of
this temperature-sensitive allele, we used a quantita-
tive analysis of plant area and morphology. Images of
individual plants were analyzed by automated mor-
phometry using digital images and custom-made
ImageJ macros (Vidali et al., 2007; see “Materials and
Methods”). Plant area is determined from the chloro-
phyll autofluorescence of each plant. The morphology
of the plant is represented by solidity, which is the
ratio of plant area to the convex hull area. A solidity
value of 1 corresponds to a solid object, while decreas-
ing values correspond to objects containing more
branched structures. Quantitative analysis of plant
area and morphology shows that PRFa-V103A signif-
icantly rescues plant growth and morphology at the
permissive temperature but not at the restrictive tem-
perature (Fig. 2; Table II).

These results clearly demonstrate the ability to
generate a temperature-sensitive allele of moss pro-
filin. It is important to note that, in this case, the residue
selection was based solely on sequence information
(Varadarajan et al., 1996). This makes the presented
approach useful for molecules without available three-
dimensional structural information. Additionally, since
the temperature range used in this study does not
hinder wild-type moss growth, it enables future live cell
temperature-shift experiments for detailed analysis of
moss profilin function.

ADF-V69A Is Temperature Sensitive

To further investigate the relevance of this method
to other molecules, we applied it to another actin-
binding protein, ADF. The algorithm of Varadarajan
et al. (1996) identified Phe-29, Ile-30, and Val-31 as hi-
ghly buried residues in ADF (Fig. 3). Using site-
directed mutagenesis, we generated ADF-F29K,
-I30A, -I30K, -I30S, -V31A, and -V31W. None rescued
the ADF RNAi phenotype (Table I). These hydrophobic
residues are also recognized by traditional Kyte and
Doolittle (1982) hydrophobicity plots (Fig. 3). Another
highly hydrophobic and possibly buried region can
be identified in this plot but is not detected by the
algorithm of Varadarajan et al. (1996). We selected Ile-
91 in this region for mutagenesis; a similar mutationFigure 5. Lily and Arabidopsis profilins are rendered temperature

sensitive. A and B, Representative micrographs of chlorophyll auto-
fluorescence from 1-week-old moss plants grown at the indicated
temperatures and transformed with the indicated constructs. Panels
with a plus sign show plants transformedwith the indicated construct in
addition to the PRF-RNAi construct. Bar = 100 mm. C, Average area of
chlorophyll autofluorescence from silenced plants expressed as a
fraction of the area of control-RNAi plants. Area is plotted in a

logarithmic scale due to the log normal distribution of the data. D,
Average solidity values. Numbers above the bars indicate the total
number of plants analyzed for each condition. Gray and black bars in C
and D represent data acquired at 25�C and 32�C, respectively. Error
bars represent SE.

Rapid Screening for Temperature-Sensitive Alleles in Plants

Plant Physiol. Vol. 151, 2009 511



in this residue (I91A) also generated a nonfunctional
protein (Fig. 3; Table I). The lack of complementa-
tion supports the idea that both the algorithm and
the hydrophobicity plots can identify residues in
critical locations, likely the protein core. We con-
firmed that the residues identified were indeed in
ADF’s core by analyzing a three-dimensional model
(see below).

Unfortunately, these results suggest that ADF is
more sensitive to changes in its hydrophobic core
region than profilin. Therefore, we generated a three-
dimensional homology model of moss ADF using the
Arabidopsis ADF1 crystal structure (Bowman et al.,
2000; Fig. 3C). Inspection of this model with Swiss-
PdbViewer (Guex and Peitsch, 1997; Schwede et al.,
2003) revealed that Val-69 might also make a good
target for mutagenesis, since it is located in a buried
region of the molecule. This site had not been identi-
fied previously by the algorithm of Varadarajan et al.
(1996) or by hydrophobicity plots. We generated and
tested ADF-V69A for rescue of the ADF RNAi pheno-
type. At 25�C, ADF-V69A shows weak rescue of the
ADF RNAi phenotype (data not shown). Because of
the weak rescue at 25�C, we reasoned that the rescue
might improve if we lowered the permissive temper-
ature. Thus, we lowered the permissive temperature to
20�C. Using these conditions, we show that ADF-V69A
partially rescues the RNAi phenotype at 20�C and
phenocopies the ADF RNAi phenotype at 32�C (Fig.
4). ADF-V69A plants are slightly smaller and less
polarized than control and ADF-rescued plants (Fig. 4;
Table III). Importantly, they are well polarized when
compared with the ADF RNAi plants.

We believe that due to its small size and compact
structure, ADF is not very tolerant of changes in its
core. It is also important to note that using molecular
modeling we were able to identify additional buried
residues that were not detected by the algorithm of
Varadarajan et al. (1996) or by traditional hydropho-
bicity determinations. We recommend using this
approach in combination with the algorithm of
Varadarajan et al. (1996) to increase the number of
candidate sites for mutagenesis. The original recom-
mendations indicate that four residues should be

selected from each protein (Chakshusmathi et al.,
2004). Because of the small nature of these proteins,
the algorithm of Varadarajan et al. (1996) only pro-
duced one and two major sites for profilin and ADF,
respectively. Larger proteins should easily yield addi-
tional sites for testing. This simple approach, com-
bined with more sophisticated analyses of protein
stability and thermodynamics, should further help
narrow the required number of permutations needed
to identify a temperature-sensitive allele.

Analogous Mutations in Arabidopsis and Lily Profilin

Are Temperature Sensitive

Our data demonstrate the ability to efficiently screen
for temperature-sensitive mutations in the moss pro-
filin and ADF proteins based on alterations to their
core amino acids. To generalize this approach to other
plant proteins, we tested whether other plant profilins
could be rendered temperature sensitive by introduc-
ing mutations analogous to V103A. Our previous
study showed that lily PRF1 (LlPRF1) rescues the
profilin RNAi phenotype in moss (Vidali et al., 2007).
Here, we show that Arabidopsis PRF1 (AtPRF1) also
rescues loss of profilin (Fig. 5).

We introduced analogous mutations to PRFa-V103A
into both the lily and Arabidopsis profilins. In lily, we
replaced Ile-102 with Ala (I102A), and in Arabidopsis,
we replaced Val-102 with Ala (V102A). Both the lily
and Arabidopsis mutants rescued the PRF-RNAi phe-
notype effectively at the permissive temperature
(25�C), generating plants with elongated branched
structures (Fig. 5; Table IV). Interestingly, bothmutants
appeared to have a slight defect in polarization at the
permissive temperature, exemplified by an increase in
solidity values as compared with rescue with the wild-
type proteins (Fig. 5; Table IV). Partial rescue at the
permissive temperature is common for temperature-
sensitive alleles in many systems. In fact, the ADF-
V69A mutant also displays a partial rescue at the
permissive temperature.

Nevertheless, both the lily and Arabidopsis mutant
profilins show a very significant temperature-sensitive
phenotype (Fig. 5; Table IV). Neither mutant was able

Table IV. Statistical analyses of lily and Arabidopsis profilin studies

A plus sign indicates that the construct was expressed together with the RNAi plasmid, in this case PRF-
RNAi. Adjusted P values are shown; values in boldface indicate that the difference is statistically
significant. The a level was set at 0.05.

Construct Area Solidity

+AtPRF1 25�C versus +AtPRF1 32�C 0.0076 1
+AtPRF1-V102A 25�C versus +AtPRF1-V102A 32�C ,0.0001 ,0.0001
+LlPRF1 25�C versus +LlPRF1 32�C ,0.0001 1
+LlPRF1-I102A 25�C versus +LlPRF1-I102A 32�C ,0.0001 ,0.0001
+AtPRF1 25�C versus +AtPRF1-V102A 25�C 0.7319 0.0034
+AtPRF1 32�C versus +AtPRF1-V102A 32�C ,0.0001 ,0.0001
+LlPRF1 25�C versus +LlPRF-I102A 25�C 0.4396 0.005
+LlPRF1 32�C versus +LlPRF-I102A 32�C ,0.0001 ,0.0001

Vidali et al.
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to rescue at the nonpermissive temperature (32�C),
resulting in dwarfed plants that phenocopy PRF-
RNAi. These results are significant because they
demonstrate an effective method to screen for tem-
perature-sensitive alleles in proteins from other plant
species.

CONCLUSION

Here, we present a simple and efficient way to
identify temperature-sensitive alleles of plant genes.
Because of the speed and ease of complementation of
moss plants, this identification can be achieved in 1 or
2 months. By simultaneously silencing multiple genes,
this approach can overcome the difficulty of working
with gene families, a common problem in plants. Most
importantly, if further analysis is going to be per-
formed in Physcomitrella, the temperature-sensitive
allele can be incorporated into the endogenous locus
via homologous recombination. In the case of gene
families, the additional family members would need to
be disrupted by homologous recombination. This
would generate a stable temperature-sensitive line
for detailed characterization of phenotype and gene
function. For example, in the case of profilin and ADF,
their roles in controlling actin dynamics could be
directly evaluated. Having temperature-sensitive al-
leles in hand enables additional studies, such as the
identification of genetic suppressors and enhancers.
When working with other plants, the identified

alleles can be incorporated into knockout or knock-
down lines. For example, in Arabidopsis, we envision
two possible strategies. In one case, a line expressing
the temperature-sensitive allele is generated and sub-
sequently crossed with a heterozygous knockout line
for the essential gene. Subsequent self-crossing would
result in a line producing a homozygous knockout
plant with a copy of the temperature-sensitive allele.
Alternatively, in the case of large gene families and
similar to our strategy in moss, an inducible RNAi
construct (Ketelaar et al., 2004) targeting the untranslated
regions of the mRNAs can be expressed in the presence
of the temperature-sensitive allele, rendering the plant
temperature sensitive after exposure to the inducer.

MATERIALS AND METHODS

Buried Residue Prediction and Identification

Identification of buried residues was done with the program predbur_dos.

exe (Chakshusmathi et al., 2004) running on a personal computer platform. For

moss (Physcomitrella patens) profilin (PRFa), V103 was identified as the residue

with a 90% burial based on average hydrophobicity values. The following

windowwas found: SAF[V]IGL. For moss ADF, this program identified as 90%

buried: Val-29, (AFR[F]IVF), Ile-30 (FRF[I]VFK), and Val-31 (RFI[V]FKI).

Profilin and ADF Models

Moss profilin and ADF were modeled based on the structure of Arabi-

dopsis (Arabidopsis thaliana) profilin 1 (AtPRF1; 1a0k) and ADF1 (AtADF1;

1f7s) using Swiss model (http://swissmodel.expasy.org; Schwede et al., 2003).

Tissue Culture and Protoplast Transformation

All tissue culture and transformations were performed as described

previously (Vidali et al., 2007), with the following modification for temper-

ature sensitivity testing. Plants were plated on regeneration medium for 4 d at

25�C or 20�C. At day 4, they were transferred to permissive temperature or

32�C onmedium containing hygromycin for selection of transformants. Plants

were photographed 3 d after transfer to hygromycin.

DNA Constructs

The PRF-RNAi construct and the PRFa expression constructs were gener-

ated as described previously (Vidali et al., 2007). The ADF-RNAi construct and

the ADF expression construct were generated as described previously

(Augustine et al., 2008). The mutations were introduced into the PRFa, ADF,

AtPRF1, and lily (Lilium longiflorum) LlPRF1 entry constructs before transfer-

ring them to the expression vector, pTH-Ubi-Gateway (Vidali et al., 2007),

using an LR clonase reaction. When possible, the mutation or a closely placed

silent mutation were designed to generate a new restriction site for easy

identification of mutant clones. All mutations were confirmed by DNA

sequencing.

Mutations were introduced by amplifying the plasmid containing the

entry clone with a mutagenizing primer using PCR-based site-directed

mutagenesis (Weiner et al., 1994). Primers used for amplification are presented

in Supplemental Table S1.

Morphometric Analysis

Plants were tested for complementation in the 1-week transient assay. They

were photographed as described previously (Vidali et al., 2007). The algorithm

used for analysis was modified as follows. Plants undergoing active silencing

were manually separated from the background with a selection tool. After

digitally separating the red channel, corresponding to the chlorophyll auto-

fluorescence, the resulting eight-bit image was thresholded by the maximum

entropy method (ImageJ) and binarized. The total area of the plants was

estimated as the number of pixels with an intensity value of 1. The other

parameter that was used was solidity. This parameter is defined as the ratio of

the convex hull area over the area. For this, the area of the largest object in the

selected image was used to calculate both the area and the convex hull area.

All image analysis was done using macros written for ImageJ (http://rsb.info.

nih.gove.ij/). The code for all macros is available upon request.

Statistical Analyses

Statistical analyses were performed as described previously (Vidali et al.,

2007). Briefly, because the distribution of areas was found to be log normal, all

comparisons of area were done using the natural logarithm of the values.

Solidity values are normally distributed and did not need transformation for

comparison. ANOVAwas done with the statistical function of Kaleidagraph,

using the Tukey post hoc tests for multiple comparisons. The level of a for

statistical significance was set at 0.05.

Sequence data from this article can be found in the GenBank/EMBL

data libraries under the following accession numbers: Arabidopsis PRF1,

UniProtKB/Swiss-Prot Q42449, PDB 1a0k; Arabidopsis ADF1, UniProtKB/

Swiss-Prot Q39250, PDB 1f7s; Physcomitrella PRFa, UniProtKB/TrEMBL

A9RDI7; lily PRF1, UniProtKB/Swiss-Prot Q9SNW7; Physcomitrella ADF,

UniProtKB/TrEMBL A9TF31.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Table S1. Primers used in this study.
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