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Abstract
The exact solution to an electrostatic problem of finding the electric potential of point charges inside
a dielectric prolate spheroid is discussed in this note by using the classical electrostatic theory, where
the prolate spheroid is embedded in a dissimilar dielectric medium. Such a problem may find its
application in hybrid solvent biomolecular simulations, in which biomolecules and a part of solvent
molecules within a dielectric cavity are explicitly modeled while a surrounding dielectric continuum
is used to model bulk effects of the solvent beyond the cavity. Numerical experiments have
demonstrated the convergence of the proposed series solutions.
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1. A general electrostatic problem
A finite number of point charges are set inside a dielectric cavity of electric permittivity εi,
which is embedded in a homogeneous, isotropic dielectric medium of electric permittivity εo.
The point charges will polarize the surrounding dielectric medium, which in turn makes a
contribution, called the reaction field, to the electric field throughout the cavity. The electric
field inside the cavity is thus expressed asΨin = Ψs + ΨRF, where Ψs is the Coulomb potential
which can be simply calculated by the well-known Coulomb’s Law, and ΨRF is the reaction
field which will dominate the computational cost for calculating the electric field inside the
cavity. Such a problem could be encountered in many applications such as hybrid explicit/
implicit solvent biomolecular dynamics simulations [1–3]. In particular, in this note we are
interested in the exact solution of the problem when the dielectric cavity is either a sphere or
a prolate spheroid, and the surrounding medium is either the pure water solvent or an ionic
solvent of low ionic strength.

By the principle of linear superposition, the electrostatic problem with a single source charge
q inside a dielectric cavity only needs to be considered. It is then well-known that the total
electric potential Ψin(r) inside the cavity is given by the solution of the Poisson equation
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where rs represents the location of the point charge, and δ(r) the Dirac delta function. Outside
the cavity, on the other hand, by assuming that the mobile ion concentration follows the Debye–
Hückel theory, the electric field Ψout(r) is then given by the solution of the linearized Poisson–
Boltzmann equation (LPBE)

(1)

where λ is the inverse Debye screening length which is proportional to the square root of the
ionic concentration cs measured in molar units [4] (λ = 0 for the pure water solvent). On the
interface Γ of the dielectric prolate spheroid and its surrounding dielectric medium, the
continuity of the tangential component of the electric field and the normal component of the
displacement field requires that

(2)

where n is the outward normal of the interface Γ.

2. A point charge inside a dielectric sphere
In the case of a spherical dielectric cavity, the problem can be solved very easily. Without loss
of any generality, let us consider a dielectric sphere of radius a with a point charge q being
located on the x-axis at a distance rs < a from the center of the sphere, as shown in Fig. 1.

When λ = 0, the analytical solution to this classical electrostatic problem by the famous
Kirkwood expansion [5] is well-documented in the literature. More precisely, with respect to
a spherical coordinate system (r, θ, ϕ) with its origin at the center of the sphere (the pole is
denoted by the x-axis in this note), due to the azimuthal symmetry, the electrostatic potential
at an observation point r=(r, θ, ϕ) is

(3)

(4)

where Pn(x) is the Legendre polynomial, and rK = a2/rs.

When λ ≠ 0, the problem can be solved analytically [6,7] by using the classical electrostatic
theory as well. The exact solution is in fact given as
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(5)

(6)

where u = λa, and kn(r) is the modified spherical Hankel function of order n (also called the
modified spherical Bessel function of the second or third kind) defined as [8]

(7)

where Kn(x) is the modified Bessel function of the third kind.

Moreover, it has been shown in Ref. [7] that, when the ionic strength of the solvent, or
equivalently the inverse Debye screening length λ, tends to zero, Eqs. (5) and (6) can be
identified with Eqs. (3) and (4), respectively.

3. A prolate spheroid immersed in the pure water solvent
To the best of the author’s knowledge, the exact solution to the electrostatic problem that a
point charge is set inside a dielectric prolate spheroid embedded in a dissimilar dielectric has
not been published. Since this is a basic electrostatic problem, and most importantly, since it
has potential applications in hybrid explicit/implicit solvation simulations [1–3] for bio-
macromolecules of irregular shapes, the exact solution should be made known. It should be
mentioned, however, that the exact solution to a similar electrostatic problem in which the
point charge is set outside a dielectric or conducting prolate spheroid can be found in [9–11].
In addition, the electric potential arising from uniform charge distributions bounded by
ellipsoids has been treated on many occasions [12], and potential and energy of much more
complicated spheroidal charge distributions have been investigated in Refs. [13–15].

Let us consider a dielectric prolate spheroid of permittivity εi centered at the origin and
embedded in a homogeneous dielectric medium of permittivity εo. The interfocal distance of
the spheroid is assumed to be a; see Fig. 2.

There are several definitions of prolate spheroidal coordinates, and in this note, the prolate
spheroidal coordinates (ξ, η, ϕ) are defined through

where ξ ∈ [1, ∞) is the radial variable, η ∈ [−1, 1] is the angular variable, and ϕ ∈ [0, 2π] is
the azimuthal variable. Also, the surface of constant ξ is a prolate spheroid with interfocal
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distance a (ξ = 1 corresponds to the line between the foci), the surfaces of constant η are the
two sheets of a hyperboloid of revolution with foci z = ± a/2, and the surface of constant ϕ is
a plane through the z-axis at an angle ϕ to the x–z plane.

Without loss of generality, let the point charge q be located at the point rs = (ξ0, η0, ϕ0 = 0) on
the x–z plane inside the dielectric spheroid defined by the equation ξ = ξ1 (so ξ1 > ξ0 ≥ 1); see
Fig. 2. Outside the spheroid (ξ1 ≤ ξ), the potential must be finite. By the usual procedure of the
separation of variables, it is not difficult to conclude that the electrostatic potential outside the
spheroid takes the form

(8)

where  and  are the associated Legendre functions of the first and the second kind,
respectively, and Amn and Bmn are the unknown coefficients.

On the other hand, the potential inside the spheroid (1 ≤ ξ ≤ ξ1) due to the source point charge
q alone is q/εi|r − rs|. We must superimpose on this a finite reaction potential due to the
polarization of the dielectric. In fact, the total potential inside the spheroid takes the form

(9)

where Cmn and Dmn are the unknown expansion coefficients.

Note that the general expansion of 1/|r − rs| in prolate spheroidal coordinates is given by
[16–18]

where

Here δm0 is the Kronecker delta. Therefore, the total potential inside the spheroid can also be
expressed as
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(10)

The expansion coefficients Amn, Bmn, Cmn and Dmn in Eqs. (8) and (9) are to be determined by
the boundary condition of Eq. (2) which, under the prolate spheroidal coordinates, becomes

(11)

(12)

where hξ is the radial scale factor. Then, by using the orthogonality of cos mϕ and sin mϕ as
well as that of , from Eq. (11) one can obtain

(13)

(14)

On the other hand, further by using the recursion formula

from Eq. (12) one can get

(15)

(16)

where
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From Eqs. (14) and (16), it follows that

And solving Eqs. (13) and (15) leads to

and

In summary, the total potential inside the spheroid is given by

(17)

while the potential outside the spheroid is

(18)

where

In a special case, when the prolate spheroid approaches a sphere, Eqs. (17) and (18) should
reduce to Eqs. (3) and (4), respectively, which in fact can be demonstrated in a similar way as
used in Ref. [9].

4. A prolate spheroid immersed in an ionic solvent
The LPBE has been solved analytically for systems with a spheroidal geometry for simple
boundary conditions, like constant surface charge or potential, or for a mix of these [19–21].
To the best of the author’s knowledge, however, the exact solution to the electrostatic problem
that a point charge is set inside a dielectric prolate spheroid immersed in an ionic solvent has
never been discussed in the literature, perhaps for the reason that the solution is rather
cumbersome.
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Using the spheroidal coordinates, the LPBE of Eq. (1) can be written as

where c = (a/2)λ is the spheroidal parameter. By means of the separation of variables with

where m and n are zero or positive integers with n ≥ m, we obtain the ordinary differential
equations

(19)

(20)

where Smn(ic, η) and Rmn(ic, ξ) are the eigenfunctions associated with the eigenvalue λmn(ic).
As being discussed later, these two equations are those solved by prolate spheroidal wave
functions but with c being replaced by ic. It should be pointed out that, although the equation
governing the angular function Smn(ic, η), Eq. (19), and that governing the radial function
Rmn(ic, ξ), Eq. (20), are similar to each other, Rmn(ic, ξ) may not take a form similar to that of
Smn(ic, η). This is because their domains are different: 1 ≤ ξ < ∞ for the former, and −1 ≤ η ≤
1 for the latter.

4.1. The angular function Smn(ic, η)
In the standard theory, the prolate spheroidal angular wave function Smn(c, η) satisfies the
equation

(21)

We only consider the angular functions of the first kind  since they are regular at η =
± 1, but the angular functions of the second kind  are not. Moreover, since when c
vanishes, Eq. (21) becomes the equation which is satisfied by the associated Legendre
functions, it follows that the angular functions of the first kind must reduce to the associated
Legendre functions of the first kind, as c goes to zero. Therefore, the eigenvalues λmn(c) for
which Eq. (21) admits solutions that are finite at η = ± 1 satisfy
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and the spheroidal angular functions of the first kind are usually expanded into the associated
Legendre functions of the first kind as follows

(22)

Here and in the sequel, the prime over the summation sign indicates that the summation is over
only even values of r when n − m is even, and over only odd values of r when n − m is odd.

The eigenvalues λmn(c) and the angular expansion coefficients  satisfy the following
recursion formula for r ≥ 0 [22]

(23)

in which

(24)

(25)

(26)

The eigenvalues are determined by the condition that  as r → ∞, and various methods
have been proposed to calculate the eigenvalues and the expansion coefficients; see Refs.
[22–30] and references therein.

It has been found that when c is small, the dominant coefficient for given m and n is .
In particular, as c → 0, the only nonzero angular coefficient is then , and hence the
spheroidal angular function collapses to . Moreover, the expansion coefficients may be
normalized so that each spheroidal angular function reduces exactly to the corresponding
associated Legendre function when c becomes zero, which can be ensured by requiring

 when n − m is even and  when n − m is odd [22,23]. Then
it follows that the functions of  form an orthogonal set on the interval (−1,1), namely,
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The angular solution Smn(ic, η) to Eq. (19) that is regular at η = ± 1 can be obtained from the
standard prolate spheroidal angular wave function  with c being replaced by ic, namely,
the corresponding angular expansion coefficients  are obtained from those of the
standard angular expansion coefficients  by replacing c by ic in the recursion formula in
Eqs. (23)–(26).

4.2. The radial function Rmn(ic, ξ)
In the standard theory, the prolate spheroidal radial wave function Rmn(c, ξ) satisfies the
equation

The standard spheroidal radial functions are usually expanded in a basis of spherical Bessel
functions. The expansions are quite simple, because the radial expansion coefficients are
proportional to the angular expansion coefficients. A given set of spherical basis radial
functions (Bessel, Neumann, or Hankel) has corresponding spheroidal radial functions. In
general, the radial functions are written in the form [22]

where the normalization factor ρmn(c) is given by

and  is the kth kind of spherical Bessel function of order n, i.e.,
, and , respectively.

Consequently, the radial solution Rmn(ic, ξ) to Eq. (20) can be expanded in the modified
spherical Bessel functions [19]
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and

(27)

where kn(r) is the modified spherical Bessel function of the third kind as defined in Eq. (7),
and in(r) the modified spherical Bessel function of the first kind defined as

Here, I(x) is the modified Bessel function of the first kind. The fact that the radial functions
can be expanded in the modified spherical Bessel functions can also be understood by noting
that, as a → 0, Eq. (20) reduces to the following modified spherical Bessel equation

indicating that the radial functions should reduce to the modified spherical Bessel functions.

Note that spheroidal wave functions are needed only for expressing the electric potential
outside the prolate spheroid where ξ ≥ ξ1 >1, which should vanish at infinity. Since only

 is finite at ξ = ∞, we shall, therefore, use the radial function  to represent
the potential outside the prolate spheroid.

For convenience, we refrain from appending superscripts (1) and (3) to, as well as including
ic in, the symbols for the angular and the radial functions. Instead, we simply denote

 by Smn(η),  by Rmn(ξ), and  by  for the rest of this note.

4.3. Series representation of the potential
Let us consider again a point charge q located at the point rs = (ξ0, η0, ϕ0 = 0) on the x–z plane
inside the dielectric spheroid defined by the equation ξ = ξ1 (so ξ1 > ξ0 ≥ 1); see Fig. 2. Inside
the spheroid, the total potential still takes the forms in Eqs. (9) and (10). On the other hand,
since the potential outside the spheroid (ξ1 ≤ ξ) must be finite and vanishes at ξ = ∞, it should
take on the form

(28)

where Amn and Bmn are the unknown expansion coefficients.

Once again, by using the orthogonality of cos mϕ and sin mϕ together with the boundary
conditions of Eqs. (11) and (12), we get on the interface Γ
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(29)

(30)

and

(31)

(32)

First of all, from Eqs. (30) and (32), it follows that

It is observed, however, that the left- and right-hand sides of Eqs. (29) and (31) cannot be
matched term by term due to different basis functions on both sides. Nevertheless, using Eq.
(22), we can rewrite Smn(η) in series of , and then it is possible to make use of the
orthogonality of the associated Legendre polynomials  to arrive at equations for the
expansion coefficients.

Recall that the associated Legendre polynomials  have the following orthogonality [18]

where

Also, note that
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Then from Eqs. (29) and (31), we have for n ≥ m

(33)

(34)

For a fixed value of m, Eqs. (33) and (34) for all n = m, m + 1,… constitute a system of an
infinite set of equations, but the system can be completely decoupled into two independent
systems, one for Amm, Am(m+2),…, Cmm, Cm(m+2),…, and the other for Am(m+1), Am(m+3),…,
Cm(m+1), Cm(m+3),…. To solve for the unknown expansion coefficients, it is more convenient
to cast the systems in matrix forms. For i, r = 0, 1, 2,…, let

Then we can write Eqs. (33) and (34) for all n = m, m +1,… as

(35)

where
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and

Let further

Then eliminating Cσ in Eq. (35) leads to

(36)

where

Once having solved Eq. (36) for the expansion coefficients Aσ, the expansion coefficients Cσ
are then calculated by

(37)

where Bσ is a diagonal matrix given by

and
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4.4. Numerical approximation
For each value of m and each value of σ = 0, 1, the system in Eq. (36) consists of an infinite
set of linear equations. However, the series expansion of the angular function Smn(η), Eq. (22),
is presumed to be a convergent representation. Hence, one can perform the computation based
on a finite set of equations. The fact that the coefficients  peak sharply about the value of

 means that the coupling between the finite set of equations and the infinite set of equations
is very small.

Let us assume that, to calculate the electric potentials numerically, the series expansions of the
potentials are truncated as

(38)

and

(39)

where N is an imposed upper limit of n which must be large enough to make the truncation
error negligible for a certain physical application. Then for each fixed m, one needs to evaluate
Sm,m(η), Sm,m+1(η),…, Sm,N(η), and calculate the expansion coefficients Am,m, Am,m+1,…,
Am,N as well as Cm,m, Cm,m+1,…, Cm,N.

More specifically, for each fixed m (0 ≤ m ≤ N), the regular prolate spheroidal wave functions
Smn(η), n = m, m + 1,…, N are truncated as

(40)

where rmn = (N − m) − σ. Here σ = 0 if N − n is even, and σ = 1 if N − n is odd.

On the other hand, the expansion coefficients Am,m, Am,m+1,…, Am,N are obtained by solving
the following truncated form of the system in Eq. (36)

(41)
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where

and

Here  is defined as

if N − m is odd, and as

if N − m is even. Note that when N − m is even, the size of the second system given in Eq. (41)
is one smaller than that of the first system. In particular,  and , which
corresponds to the case of m = N. In this case, only ANN is to be calculated.

Accordingly, the expansion coefficients Cm,m, Cm,m+1,…, Cm,N can be calculated using the
truncated form of Eq. (37)

where
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and

As stated in Section 1, the more general problem in which the dielectric cavity contains a finite
number of point charges can be solved by means of linear superposition. More precisely, let a
total of L point charges q1, q2,…, qL be located at L arbitrary points rl = (ξl, ηl, ϕl), l = 1, 2,…,
L inside the prolate spheroid, although in hybrid explicit/implicit solvent biomolecular
simulations [1–3], these point charges are in general uniformly distributed in the dielectric
cavity. Then at a point r = (ξ, η, ϕ) outside the spheroid the potential takes on the form

(42)

and correspondingly at a point inside the spheroid it takes on the form

(43)

where for each point charge ql, the associated expansion coefficients  and  are
determined by the system in Eqs. (33) and (34). Note that the coefficient matrix of the system
in Eqs. (33) and (34) depends on only the spheroidal surface but not the point charge location.
Therefore, the expansion coefficients  and  for all charges ql can be obtained
simultaneously by solving the system in Eqs. (33) and (34) with the same coefficient matrix
but different right-hand sides.

4.5. Discussions
In a special case, when the dielectric spheroid approaches a sphere, namely, when the interfocal
distance of the spheroid a tends to zero, Eq. (28) shall reduce to Eq. (6) and Eq. (9) shall reduce
to Eq. (5), respectively. In order to avoid unnecessary complications, we shall consider the
case when the charge q is set on the positive z-axis. Since now the problem is axially
symmetrical, only terms with m = 0 remain in the expansions in Eqs. (9) and (28). Moreover,
for a point with prolate spheroidal coordinates ((ξ, η, ϕ) and spherical coordinates (r, θ, ϕ), in
the limit a → 0 one has (a/2)ξ → r and η → cos θ and consequently cξ → λr. (Note that for
the points on the z-axis, outside the line between the foci of the spheroid, one has exactly (a/
2)ξ = r and η = cos θ, regardless of the value of a.) Also, when a → 0, ξ, ξ1 and ξ0 all tend to
infinity.

Note that  as c = (a/2)λ → 0. By using , we have S0n(ic, η) →
Pn(cos θ). Furthermore, since  when r ≠ n − m, from Eq. (27) one can see that
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(44)

Therefore, in this case the expansion in Eq. (28) reduces to a series in terms of the same basis
functions as used in Eq. (6)

(45)

On the other hand, as a → 0, (a/2)ξ → r so ξ → 2r/a → ∞. Therefore,

(46)

Accordingly, the expansion in Eq. (9) reduces to a series in terms of the same basis functions
as used in Eq. (5)

(47)

Therefore, we can conclude that Eq. (28) will reduce to Eq. (6) and Eq. (9) to Eq. (5),
respectively, after the boundary conditions in Eqs. (11) and (12) being applied. This can be
demonstrated in detail by further assuming, like in Ref. [9], that the point charge q is set on
the positive z-axis at z = (a/2)ξ0 (note that then η0 = 1) and applying the facts that

 and

(48)

Finally, as pointed out in Ref. [21], if cξ is small (for example when λ is very small), kn(cξ)
approaches infinity and the expansion in Eq. (27) diverges. In this case another expression for

 is necessary. It is however not the aim of this note to discuss this expansion in detail,
which can be found rather in Refs. [20,21].

4.6. Numerical examples
To illustrate the simulated behavior of the electrostatic potential distribution of point charges
inside a prolate spheroid, we choose the dielectric prolate spheroid given by x2 + y2 + z2/4 =
1 of dielectric constant εi = 2, which is embedded in a dissimilar dielectric medium of high
dielectric constant εo = 8. We first consider the situation that this dissimilar dielectric medium
is a nonionic solvent, in which the electrostatic potential due to a point charge inside the
dielectric prolate spheroid is calculated using the direct series expansions in Eqs. (17) and (18).
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Fig. 3(a)–(d) shows the contour graphs of the electrostatic potential distribution on the x–z
plane due to unit point charges inside this prolate spheroid at four different locations x0 = (0,
0, 0), x0 = (0.5, 0, 0), x0 = (0, 0, 1) and x0 = (0.5, 0, 1), respectively, and on the other hand,
Fig. 3(e)–(h) displays the contour graphs of the potential distribution on the y = 0.75 plane due
to the same point charges. The results are obtained by including in the approximate expansions
those terms given by n = 0, 1,…, N and m = 0, 1,…, n with N = 20. As been exhibited for all
cases, the electric potential is continuous but its normal derivative is discontinuous across the
spheroidal surface.

As can be seen clearly from Eqs. (3)–(6), for the spherical case the series expansions of the
electric potentials in Eqs. (3)–(6) all converge as N → ∞, but the convergence rate depends not
only on the location of the source charge but also on that of the observation point. In particular,
in the case that the source charge is close to the spherical boundary, when calculating the electric
potential at an observation point also close to the spherical boundary, the convergence rate by
the direct series expansions in Eqs. (3)–(6) shall be slow, requiring a great number of terms to
achieve high accuracy in the potential field. For the prolate spheroidal case, the series
expansions in Eqs. (17) and (18) have been shown numerically convergent, and similarly, the
convergence rate depends on the locations of both the source and the observation point. For
example, the L2 norm of the relative error E of the computed electric potential Ψ ̄ (xi) at 1013

observation points xi uniformly located inside the rectangular box [−1.5,1.5]2 × [−2.5, 2.5] for
various N values are shown in Fig. 4, where

Here Ψ(xi) represents the potential at xi obtained by using the series expansions with N = 20.
As shown in Fig. 4, the series solution converges for all four cases, and the error decreases
monotonically as N increases. Moreover, it is very clear that the convergence rate is faster for
the x0 = (0, 0, 0) (ξ0 = 1) or x0 = (0, 0, 1) (ξ0 = 1) case than that for the x0 = (0.5, 0, 0) (ξ0 =
1.04083) or x0 = (0.5, 0, 1) (ξ0 = 1.05769) case.

We then consider the situation that the dissimilar dielectric medium outside the dielectric
prolate spheroid is an ionic solvent with the inverse Debye screening length λ = 4/a (so the
spheroidal parameter c = 2), in which the electrostatic potential due to a point charge inside
the prolate spheroid is approximated using the direct expansions in Eqs. (38) and (39). Fig. 5
(a)–(d) shows the contour graphs of the electrostatic potential distribution on the x–z plane due
to unit point charges inside this prolate spheroid again at four different locations x0 = (0, 0, 0),
x0 = (0.5, 0, 0), x0 = (0, 0, 1) and x0 = (0.5, 0, 1), respectively, and on the other hand, Fig. 5
(e)–(h) displays the contour graphs of the potential distribution on the y = 0.75 plane due to
the same point charges. The results are obtained by including in the approximate expansions
those terms given by n = 0, 1,…, N and m = 0, 1,…, n with N = 20.

Likewise, the series expansions in Eqs. (38) and (39) have been shown numerically convergent,
and similarly, the convergence rate depends on the locations of both the source and the
observation point. For instance, the L2 norm of the relative error E of the computed electric
potential at 1013 observation points uniformly located inside the rectangular box [−1.5, 1.5]2

× [−2.5, 2.5] for various N values are shown in Fig. 6, where again the results obtained by using
the series expansion with N = 20 are treated as the exact solutions to calculate the errors of
various approximations. As shown in Fig. 6, the series solution converges for all four cases,
and the convergence rate is faster for the x0 = (0, 0, 0) (ξ0 = 1) or x0 = (0, 0, 1) (ξ=0 = 1) case
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than that for the x0 = (0.5, 0, 0) (ξ0 = 1.04083) or x0 = (0.5, 0, 1) (ξ0 = 1.05769) case. Moreover,
the nonionic- and the ionic-solvent cases have comparable accuracy and convergence rate,
although the former appears to be a little more accurate.

5. Conclusions
In this paper, by using the classical electrostatic theory, the series expansions of the electric
potential of point charges inside a dielectric prolate spheroid are obtained in terms of the
associated Legendre functions or the spheroidal wave functions, depending on whether the
surrounding dissimilar dielectric medium of the spheroid is ionic or nonionic. Numerical
experiments have demonstrated that the series solutions are convergent, and the convergence
rate is faster when point charges are near the center than when the point charges are close to
the boundary of the prolate spheroid.
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Fig. 1.
A point charge and a dielectric sphere.
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Fig. 2.
A point charge and a dielectric prolate spheroid.
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Fig. 3.
The contour graphs of the electrostatic potential distribution on either the x–z or the y = 0.75
plane due to a unit point charge at x0 inside a prolate spheroid of dielectric constant εi = 2. The
spheroid is embedded in a nonionic solvent of high dielectric constant εo = 8. Panels (a)–(d):
on the x–z plane; panels (e)–(h): on the y = 0.75 plane.
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Fig. 4.
The relative error E of the computed electric potential for the nonionic-solvent case.
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Fig. 5.
The contour graphs of the electrostatic potential distribution on either the x–z or the y = 0.75
plane due to a unit point charge at x0 inside a prolate spheroid of dielectric constant εi = 2. The
spheroid is embedded in an ionic solvent of high dielectric constant εo = 8 and the inverse
Debye screening length λ = 4/a. Panels (a)–(d): on the x–z plane; panels (e)–(h): on the y =
0.75 plane.
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Fig. 6.
The relative error E of the computed electric potential for the ionic-solvent case.
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