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ABSTRACT

Genes and proteins are organized on the basis of
their particular mutual relations or according to
their interactions in cellular and genetic networks.
These include metabolic or signaling pathways and
protein interaction, regulatory or co-expression net-
works. Integrating the information from the different
types of networks may lead to the notion of a func-
tional network and functional modules. To ®nd
these modules, we propose a new technique which
is based on collective, multi-body correlations in a
genetic network. We calculated the correlation
strength of a group of genes (e.g. in the co-expres-
sion network) which were identi®ed as members of
a module in a different network (e.g. in the protein
interaction network) and estimated the probability
that this correlation strength was found by chance.
Groups of genes with a signi®cant correlation
strength in different networks have a high prob-
ability that they perform the same function. Here,
we propose evaluating the multi-body correlations
by applying the superparamagnetic approach. We
compare our method to the presently applied mean
Pearson correlations and show that our method is
more sensitive in revealing functional relationships.

INTRODUCTION

Biological systems are functionally organized in different
related networks de®ned by the type of their particular
interaction, such as metabolic or signaling pathways and
protein interaction, regulatory or co-expression networks.
Metabolic networks are known to be subjected to conditional
activity control, implemented by a variety of mechanisms such
as transcript regulation, chemical modi®cation, protein±
protein interaction or signal cascades. No clearly separated
networks exist in the cell. While metabolic pathways often
contain protein complexes with strong protein±protein inter-
actions, they are regulated by product feedback inhibition and
are subject to common transcriptional regulation.

Single biomolecular networks are currently investigated in
terms of topology (1,2), motifs (3), correlation structure (4)

and modular properties (5±7) which are related to function. A
functional module (5) is de®ned as a group of genes or their
products which are related by one or more genetic or cellular
interactions, e.g. co-regulation, co-expression or membership
of a protein complex, of a metabolic or signaling pathway or
of a cellular aggregate (e.g. chaperone, ribosome, protein
transport facilitator, etc.). An important property of a module
is that its function is separable from other modules (5) and that
its members have more relations among themselves than with
members of other modules, which is re¯ected in the network
topology. The separability may stem from, for example,
cellular localization or speci®c interaction of proteins or
speci®c regulation of genes. Modules can be understood as a
separated substructure of a network or pathway, e.g. the
complex of fatty acid synthetase subunits may serve as an
example of a module of the fatty acid biosynthesis pathway
and the protein complex is a module of a protein interaction
network (6). In principle, the large-scale cellular networks are
robust due to their hierarchical, scale-free organization (2).
Genes with related functions may have similar expression
pro®les, i.e. may be members of a module of the co-expression
network. Co-expression is regulated in yeast by the modular
action of transcription factors showing a strong correlation
with gene function (8).

Presently, large amounts of data related to functional
properties of genomes, e.g. gene expression and protein
interaction data, are being generated. Expression data are
analyzed in an unsupervised way by ®nding a similarity measure
between gene expression pro®les by clustering or biclustering
the data with hierarchical, k-means clustering or more
appropriate clustering like CLICK (9) and superparamagnetic
clustering (10,11).

To obtain more reliable information than using these
distinct data sets alone and to obtain insights into functional
modules we integrate independent but biologically related
data sets or different genetic and molecular networks (12). So
far, an integrative data analysis has been performed with
correlation mapping (13) and mean Pearson correlations
(14,15). The main drawbacks are that the present integrative
methods rely on clustering procedures which are not suf®-
ciently robust against noise, fail for complex non-spherical
data structures, or are dependent on external parameters like
the prede®ned number of clusters. Furthermore, multi-body
correlations are often estimated by averaging, but averaging
does not re¯ect any realistic correlation structure of the data.
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The integration could be done, on the one hand, by
combining each binary interaction (16). On the other hand, we
can ®nd clusters, structures or modules in one particular
network and see if the components (proteins or genes) of these
structures are signi®cantly related in any other network. In the
present paper we propose a method for the latter strategy
which can be used to integrate genetic, metabolic and
regulatory information as well as functional classi®cation
(17) to ®nd functional modules.

Outline of the method

Our method can be used: (i) to reduce the rate of false
functional assignments; (ii) to analyze expression data in a
more sensible way compared to statistical evidence only;
(iii) to ®nd hypotheses for functional modules and new
complexes and to assign unknown genes a function. To
provide an example we integrated protein interaction and co-
expression networks. Having identi®ed a module of the
protein interaction network or using a protein complex we
calculated the signi®cant correlation strength of the corres-
ponding gene expression pro®les. For this purpose we
employed the de®nition of the correlation of superpara-
magnetic clustering (18), a very successful algorithm (19,20),
very effective for expression analysis (10,11) and clustering of
genetic networks (32). Besides its advantageous features,
including its robustness against noise, it is able to de®ne the
correlation strength of a group of gene expression pro®les or,
more generally, of a group of nodes in a sparse network such
as the co-expression network (Materials and Methods). The
corresponding P value (probability that the correlation
strength is a random coincidence) is calculated according to
the rationale described in Jansen et al. (14). We calculated the
distribution (a histogram) of the correlation strengths of all
possible groups with the same number of genes. The area of
the distribution greater than the correlation strength of our
module consisting of the same number of genes is then the
de®nition of our P value (see Materials and Methods). In
contrast to Jansen et al. (14), we include the structure of the
co-expression network. Its nodes are the genes which are
connected for the most similar pairs of expression pro®les.
With the help of the superparamagnetic approach we looked
for signi®cant substructures. Highly signi®cant correlation
may be resulting in direct neighborhood of two nodes or
membership of a larger (dense) substructure of the co-
expression network where the gene expression pro®les of
the resulting complex are connected by a transitivity relation
(21). In contrast to Jansen et al. (14), our method is not only
applicable in the supervised mode, introducing prior know-
ledge, it can subsequently be used in an unsupervised way.
First, the protein interaction network and its clusters are tested
for signi®cant co-expression, leading to a hypothesis of
protein complexes and, second, we obtain not only the most
signi®cant co-expressed protein complexes but also their
corresponding gene expression pro®les.

MATERIALS AND METHODS

Expression data and co-expression network

We used two independent yeast expression data sets to
evaluate our method. The ®rst one is data on cell cycle-related

pro®les using alpha, cdc15 and cdc28 synchronization (22,23).
Each time series was used separately. The second is the
Rosetta Compendium, which includes 300 deletion and drug
treatment experiments (24). The expression data is available in
the form of a matrix having N rows and D columns. The
columns represent the tissues in a special condition and the
rows represent the gene pro®les. The data used in the
calculations had already been preprocessed. We normalized
them in a z-score fashion such that the average expression ratio
of one pro®le is 0 and the standard deviation is 1. From the
expression data a sparse co-expression network was con-
structed using the K mutual nearest neighbor criterion (25).
For every gene expression pro®le a list of the K nearest
neighbor pro®les was produced. The nearest neighbor of one
expression pro®le is de®ned as the most similar pro®le
measured, for example, as the Euclidean distance. Two nodes
were connected if they were on each others' list. The optimal
K is ~15, as discussed in Agrawal and Domany (26).

Protein interaction data

The protein interaction data set is taken from the MIPS
database (17). As an example we used the yeast two-hybrid
(Y2H) data of Ito et al. (27) and von Mering et al. (28) as
well as the complex catalog (17). The correlation structure
has been investigated by Maslov and Sneppen (4). In
principle, protein complexes and modules can be found by
clustering the protein interaction network (29,32) or by
clustering according to functional assignments (30). A protein
in a complex is a densely connected subnetwork, but a
member directly interacts with no more than a few members of
the same complex.

The superparamagnetic approach

Superparamagnetic clustering (18) has been successfully
applied to arti®cial and real data (19,20) as well as to
expression data (10,11) and is based on a physical analog, the
magnetic phase transitions of spin systems. We brie¯y
describe the algorithm which is able to partition a network
into clusters, i.e. highly connected subgraphs. The algorithm is
very suitable for our analysis because it establishes a hierarchy
of clusters, a dendrogram. A dendrogram is formed if we are
looking at a system with different resolutions: at low
resolution the whole network is one cluster. At higher
resolutions it decays into multiple other clusters until at the
highest resolution every node is its own cluster. There exists a
particular resolution where a cluster disappears, which we call
the critical resolution. With the help of the algorithm we
determined the correlation for a number of nodes in the
network (see below), which is the probability that the nodes
belong to a common cluster. We de®ne the correlation strength
of a module or group of nodes as the critical resolution where
its correlation drops to zero. Finally, we calculated the
distribution of the correlation strength of all pairs, triplets, etc.
of nodes.

After having constructed the co-expression network
according to the K mutual nearest neighbor criterion (see
above), we assigned every node an integer label Si = 1¼q
(equivalent to a Potts spin with q different states), where q is
an integer. The nodes representing the expression pro®les i
and j are connected with edges weighted with the coupling
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constant Jij, for which we use a fast decreasing Gaussian decay
(10)

Jij =(1/K)exp[±(dij
2/2 dÅ2)].

Here, dij is the Euclidean distance between the gene expres-
sion pro®les of gene or node i and j, dÅ is the mean distance
between all neighbors and K is the mean number of neighbors.
The coupling is only non-zero for connected nodes. For
unweighted networks, e.g. the protein interaction network, Jij

may be 1 or 0.
We calculate the correlation of a certain number of nodes

(gene expression pro®les) of the network using a Monte-Carlo
simulation, the Swendsen±Wang algorithm (31). Starting from
a random con®guration (random label Si = 1¼q on each node
i), the algorithm assigns node i and j the same label with the
probability pij = 1 ± exp(Jij/t), where Jij/t is the effective
coupling between node i and j and t (the temperature of the
physical spin system) is de®ned as the resolution (see above)
with which we investigate the system. Having gone over all
edges of the network, every area with the same label forms a
cluster. The integer q is not related to the number of clusters. A
new con®guration is generated by giving every node in a
cluster a new random label. Averaging over several of these
con®gurations gives the probability of a number of nodes
being in the same cluster, which is de®ned as the correlation
function. The algorithm includes a transitivity rule: if node A
has the same label as B and A the same as C, then B and C also
have the same label; A, B and C are strongly correlated.
Increasing the resolution t we decrease the effective coupling
Jij/t, which leads to hierarchically related nodes. The effective
coupling and thus the correlation of a group of nodes decreases
with increasing resolution. We de®ne their correlation strength
TM as the critical resolution where the correlation of a group of
nodes drops to 0 (the correlation as a function of the resolution
is actually a step function). It is dependent on the coupling of
two or more nodes and is a collective measure as well. The
more densely connected these nodes are the higher is their
correlation strength.

To assess the correlation strength of genes which are
members of the same module of a different genetic network
we de®ne a P value which gives the probability that the
strength of the correlation was found by chance. Therefore, we
calculate the distribution r or histogram of the correlation
strength T of all possible groups with the same number of
genes. The one-sided P value is then de®ned as the area of the
distribution r above the correlation strength of the module,
divided by the normalization r0 (the number of all possible
modules),

P(TM) = (1/r0) òTp

TM
r(T)dT

where TM is the correlation strength of the tested module and
Tp the maximal possible correlation strength in the network.

RESULTS

We constructed a graph of co-expressed genes (see Materials
and Methods) for the cell cycle as well as the Rosetta data set,
in which the nodes are the genes. Two nodes are connected if
they ful®ll the mutual nearest neighbor criterion (see Materials

and Methods). Such networks have been investigated in detail
in Agrawal (25). The de®nition of the co-expression network
is similar to the transitivity relations of Zhou et al. (21). We
adopted the de®nition of the collective multi-body correlations
from the superparamagnetic clustering (18) and calculated the
correlation strength for modules of random genes described in
detail in Materials and Methods.

A distribution or histogram of the correlation strength is
displayed in Figure 1 (top) for groups of two to six gene
expression pro®les for the cell cycle experiment (a arrest). In
Figure 1 (bottom) we show the corresponding one-sided P
value which is de®ned similarly to in Marcotte et al. (12) (see
Materials and Methods). As expected, the weight of the
distribution is shifted to the left if the number of members of a
module increases. Most of the larger modules have a lower
correlation strength, but to ®nd a large group with a high
correlation strength gives a lower P value than for ®nding a
smaller module.

Given the distribution of the correlation strength based on
the expression data we were able to test the protein interaction
data for signi®cant co-expression. First, we tested the binary
data of Hughes et al. (24) and von Mering et al. (28) and,
second, the complex data. Figure 2 shows the distribution of
the correlation strength (co-expression) of members of Y2H
data and members of a ribosome complex in comparison to the
random background. The Y2H data shows, in accord with
Marcotte et al. (12), almost no deviation from the random
background, although the distribution is slightly shifted to the
right to a higher correlation strength. By choosing a certain P
value it is possible to obtain a signi®cantly co-expressed part
of the protein interaction network (see below). The situation is
different in that only the open reading frames (ORFs) of the
ribosome were chosen. As shown in Figure 2, most of
the ribosome is highly co-expressed and so the weight of the
distribution is shifted to a higher correlation strength. Figure 3
displays the distribution of the correlation strength of six gene
expression pro®les (with squares representing the random
background). It is clearly shown that the nucleosomal
complex and parts of the ribosome are highly signi®cantly
co-expressed.

Details of single complexes are annotated in Table 1 for the
Rosetta Compendium and the alpha, cdc15 and cdc28
synchronization time series. Only complexes which have a P
value <1E ± 3 are displayed. Mainly those complexes are
signi®cant which are constantly needed in the cell, as
expected, using an expression pro®le over many experiments
or during the cell cycle. A part of the cycline complex is co-
expressed in the a, cdc15 and cdc28 experiments. They are not
signi®cant in the Rosetta Compendium, which does not
include any cell cycle synchronization and thus averages over
the cell cycle. The nucleosomal protein complex is also very
tightly co-expressed. It is co-regulated in all the expression
experiments as well as parts of the cytochrome c oxidase, the
mitochondrial and the cytoplasmic ribosomes. The respiration
chain complex F0/F1 ATP synthase is only signi®cantly co-
expressed in the Rosetta Compendium. In summary, we found
signi®cant co-expression in many permanent complexes,
similar to Jansen et al. (14). Since we did not average over
the correlation of all members, we immediately obtained those
parts of the complexes with the highest correlation strength. In
agreement with Jansen et al. (14), we found that transient
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complexes mostly have no signi®cant co-expression. The
signi®cant co-expression of the 20S proteasome and of the
19/22S regulator was found for the cell cycle data but not in
the Rosetta data. We found a qualitatively similar result as

Jansen et al. (14). Quantitative differences are related to the
fact that we included transitive similarities of expression
pro®les (not directly similar, but similar to the same set of
pro®les).

Figure 2. Distribution of the correlation strength for pairs of expression pro®les which are members of a ribosome protein complex (triangle), a Y2H
interaction (circle) (27) and the random control (square).

Figure 1. Normalized distribution r/r0 or histogram of the critical resolution or correlation strength T (top) and P value (bottom) for groups of two to six
(circle, square, diamond, star and triangle) expression pro®les. The weight of the distribution is shifted to the left side. The larger the group the lower the
correlation strength.
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Table 1. List of protein complexes with more than two open reading frames (ORF) with signi®cant
co-expression (P < 0.001)

Complex n alpha Cdc15 Cdc28 Rosetta

Alpha, al-treh. anchor (50) 4 75% 75%
AnaPromCom (60) 11 27%
Cacinerum B (100) 3 67% 67%
Chaperone containing T-complex TRiC (130) 8 50% 25%
CDc28p (133.10) 10 20% 50% 20%
Pho85p (133.20) 6 33%
Actin-associated proteins (140.20.20) 24 25%
Glycine decarboxylase (200) 3 67%
ATPase (210) 4 100% 50%
ATPase (220) 15 27% 40%
TRAPP (260.60) 10 40%
Vps4p ATPase (260.70) 3 67%
Arp2p complex (260.90) 6 33%
TOM (290.10) 9 22%
Nucleosome protein (320). 8 100% 87% 37% 75%
20 S proteasome (360.10.10) 15 13% 40% 33%
19/22S regulator (360.10.20) 18 17% 28% 44%
Replication complex (410.35) 13 39% 23% 15%
Cytochrome bc1 complex (420.30) 9 44% 78% 78%
Cytochrome c oxidase (420.40) 8 50% 38% 88% 50%
F0/F1 ATP synthase (complex V)(420.5) 15 60%
Ribonucleoside reductase (430) 4 50%
Nuclear processing (440.10.10) 5 40%
Cytoplasmic ribosome large subunit (500.40.10) 81 33% 21% 21% 47%
Small subunit (500.40.20) 57 37% 16% 18% 49%
Mitochondrial ribosome large subunit (500.60.10) 32 16% 53% 43% 31%
Small subunit (500.60.20) 14 14% 42% 21% 29%
RNA polymerase I (510.10) 8 38% 38% 50%
RNA polymerase II (510.40.10) 9 44%
RNA polymerase III (510.120) 12 17% 33% 17%

The percentage of the ORFs which are signi®cant is indicated. The table lists, from left to right, the name and
MIPS classi®cation number, the number of ORFs and the percentage of ORFs which are signi®cant for the
alpha, cdc15, cdc28 and Rosetta data set. Not displayed are non-signi®cant protein complexes, e.g., SAGA
complex, CCR4 complex, SWI/SNF transcription activator, TAFIIs and RSC complex.

Figure 3. Distribution of the correlation strength of a group of six expression pro®les for the a cell cycle data which are members of the small mitochondrial
ribosome subunit (star), large mitochondrial ribosome subunit (empty square), the nucleosome complex (thick line) and the random control (®lled square).
The correlation strength of the complex data is shifted to the right. The correlation strength of the complexes is much higher compared to the random control.
The highest correlation strength is found for the nucleosome complex with the peak at T = 0.225.
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Our approach has the advantage that it is possible: (i) to
display the result as a substructure of the co-expression
network, e.g. to detect those pro®les which are transitively
related; (ii) to ®nd parts of the protein interaction network with
a signi®cant correlation strength in the co-expression network.
As an example we show two subnetworks in Figures 4 and 5.
The result is a subnetwork of the protein interaction network
(28) which is related to cell cycle (alpha) expression data
(Fig. 4) where only the highest signi®cant correlation strength
(lowest P value) is taken into account. This network is still
connected and mirrors parts of a RNA metabolism complex,
nucleosomal protein complex and a protein synthesis turnover
complex. Interactive interfaces to the data can be used to
obtain hypotheses of protein complexes and to ®nd essential
parts of the protein interaction network, reducing its high false
positive rate.

The parts of the co-expression network that we display in
Figure 5 correspond to the subnetwork of the Rosetta
expression data, which includes the six genes of the signi®cant
nucleosome protein complex. The correlations that we found
can be mapped to known and unknown functional interactions.
For instance, a non-histone protein and genes with unknown
function, as well as cell cycle genes and genes related to
budding, correlate with the gene expression pro®les of the
complex. One gene is annotated as an endochitinase (17), a
function that does not ®t into the experimental context.

CONCLUSION

It remains a challenging task to interpret expression data in the
context of known functional relations. Systematic approaches
which integrate different types of functional information
representing cellular networks are still needed in the post-
genomic sector to understand the functional context of genes
and to uncover functional modules. Almost no protein or gene
performs its function in isolation, thus most of the existing
interactions have to be discovered or con®rmed. Currently,

groups of gene expression pro®les are clustered according to
their similarity and are related to function or protein
interaction afterwards. Our method starts from different
groups with known interacting proteins and looks at whether
they are also signi®cantly related in other experimental data.
In the case that a group or subset of the data correlates in a
dense co-expression subnetwork, unknown genes that are
members of such a subnetwork are candidates for interaction.

We integrated cellular networks with gene expression
based on the correlation de®ned in the superparamagnetic
approach, a very successful clustering procedure (10,11,32),
which includes transitive co-expression. Furthermore, the
method is robust against noise and is able to calculate multi-
body correlations and their strength. Having de®ned in our
examples a module or complex in the protein interaction
network, we evaluated the correlation strength of this module
in the co-expression network. By calculating the distribution
of the correlation strength of all groups of gene expression
pro®les (nodes of the co-expression network) we were able to
evaluate P values for any module of a given size. Since the set
of the known or predicted correlations is small compared to
the combinatorial number of all possible correlations, we
generally avoided most false positive signals by calculating
the strength of a correlation to all groups and comparing it
to the strength of any chosen module. The P value is
the probability that the observed strength was by random
coincidence.

The main advantage of the method is the use of multi-body
correlations in contrast to the averaging used earlier (14,15).
The latter mixes strong with weak correlations, which does not
re¯ect the network structure of the data. In addition, when
compared to the Pearson correlation, the superparamagnetic
approach takes into account the co-expression network. For
instance, some pair could have a low Pearson correlation but
could be a member of the same process because the partners
are related by transitivity (21). The superparamagnetic
approach would not miss these correlations.

We applied our new method to combine protein interaction
and expression data from independent experiments. The
correlation of protein complexes signi®cantly overlapping
with interaction data appears to be a logical consequence of
the need to co-express tightly interacting and functionally
dependent proteins. However, in most cases such correlations

Figure 4. Y2H data (28) which are highly signi®cantly co-expressed. A net-
work which is part of a RNA metabolism complex, a nucleosome protein
complex and a protein synthesis turnover complex are identi®ed. The nodes
are the ORFs and the edges represent protein interaction.

Figure 5. Co-expression cluster of the nucleosome protein complex (ORFs
are labeled 320) which are signi®cant in the Rosetta data set. Co-expressed
with the complex are unclassi®ed genes, a non-histone and genes which are
cell cycle related. All genes except YLR286 (endochitinase) are localized in
the nucleus. The nodes are the ORFs and the edges indicate co-expression.
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are found by intuition rather than statistical correlation. It has
been shown that we can map correlated structures, e.g.
complexes, to correlated structures of the co-expression
network, which leads to the identi®cation of functional
modules. We provide a systematic, generally applicable
approach which integrates different genetic information and
expression pro®les and which is able to test and reveal
hypothetical functional modules. These features cannot be
supplied by other frequently applied methods like mean
Pearson correlations (14) or mapping of clusters (13). With a
growing number of known interactions and co-expression, a
larger number of hypotheses can be tested. In addition, we
employed con®dence values correlating to the nature of the
interaction data (e.g. high for many known complexes but low
for Y2H data).

The method is well suited to application to other combin-
ations and is directly extendable to any set of cellular and
genetic network data. Future work will be directed at
systematic application of the method to the different func-
tional classi®cations available (e.g. 17). Starting from well-
known correlations we will attempt to de®ne, for example,
co-expressed modules exhibiting signi®cant P values, and to
annotate them as experimentally con®rmed functional depen-
dencies. Our method provides a framework and generator of
hypotheses to be con®rmed or rejected. It is applicable to the
large amount of experimental high-throughput functional data
to come.
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