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Abstract
The blood vessel diameter is often measured in microcirculation studies to quantify the effects of
various stimuli. The intravital video microscopy is used to measure the change in vessel diameter by
first recording the video and analyzing it using electronic calipers or by using image shearing
technique. Manual measurement using electronic calipers or image shearing is time-consuming and
prone to measurement error, and automated measurement can serve as an alternative that is faster
and more reliable. In this paper, a new feature-based tracking algorithm is presented for automatically
measuring diameter of vessels in intravital video microscopy image sequences. Our method tracks
the vessel diameter throughout the entire image sequence once the diameter is marked in the first
image. The parameters were calibrated using the intravital videos with manual ground truth
measurements. The expriment with 10 synthetic videos and 20 intravital microscopy videos,
including 10 fluorescence confocal and 10 non-confocal transmission, shows that the measurement
can be performed accurately.
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1 Introduction
In microcirculation studies, the blood vessel diameter is often measured to help quantify the
effects of various stimuli [12]. Typically, intravital video microscopy is used to observe blood
vessels in vivo [5]; video image sequences are recorded of the subjects and analyzed using
electronic calipers or image shearing to obtain diameter measurements [7]. Image sequences
frequently span several minutes of time resulting in the acquisition of several thousand images.

The current manual measurement methods utilize the unsurpassed pattern recognition ability
of the brain to align targets during the viewing of the video sequence. For the operator to
measure the diameter in this manner is a time-consuming task that is prone to measurement
error and operator fatigue. To solve these problems, we have utilized a new feature-based
tracking algorithm that permits diameter tracking in low contrast, moving vessels. In this paper,
a computer algorithm is presented which, once the diameter is marked in the first image frame,
automatically computes the diameter for all subsequent image frames. The automated method
uses an image feature tracking algorithm based on the seed points in the first image frame.

While the specific task of measuring vessel diameter in intravital microscopy image sequences
using computer vision techniques has not received much attention, there have been many
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proposed algorithms and techniques for object tracking and vessel measurements for other
applications in other imaging modalities which may be adapted to the problem domain of this
paper.

Magers et al. [10] proposed a method for measuring microvascular diameters in video
microscopy. Their algorithm used feature tracking with cross-correlation in one dimensional
search space. Due to the constrained search space, the method would not be able to deal with
the shifting of the vessel. They validated the method with 3 video microscopic images, and the
manual repositionings of the wall locations were required.

Many previously proposed methods attempt to locate the boundary of the vessel lumen and
tissue using optimization algorithms. Schmugge et al. [14] proposed a method for segmentation
of vasculature in intravital microscopy. They first segmented the vessels with sharp edges using
a snake-based algorithm. The vessels with less sharp edges were then located based on the
”bridges” between the segmented vessels. ROC analysis showed that their algorithm is able to
get more vessels with lower sharpness.

Sonka et al. [15] developed an automated method for analysis of brachial ultrasound image
sequences. Vessel tracking is achieved using a knowledge-based method. The method first
identifies the vascular region of interest (ROI). This is followed by automated learning of
vascular border properties which involves fine-tuning several matching parameters. The vessel
borders are then detected in the image sequence using the globally optimal graph-search based
border detection approach. Their automated method showed more accurate vessel diameter
measurements in synthetic images than the two human observers. For the ultrasound image
sequences, the method outperformed manual methods by displaying a decrease in analysis bias
and increased reproducibility.

Tyml et al. [16] proposed a method to measure arteriolar diameter and hemodynamic resistance
in intravital video microscopy images. Their algorithm required several markings of each edge
along the lumen. The locations of vessel walls were estimated based on these markings, and
the perpendicular distances between two walls were used to get a diameter estimate. Their
method would require markings on every image frame of the sequence, thus making it
unsuitable for automatic measurement in a sequence of multiple frames.

The algorithms using boundary determination to measure the vessel diameters work well only
if there is a clear distinction between the lumen and tissues surrounding the vessel. The previous
methods using feature-based tracking cannot deal with shifting of the vessels which is common
in intravital video microscopy images. Our work focuses on the accurate measurement of the
vessel diameter using image registration and image feature tracking that can deal with the
shifting vessels.

1.1 Image registration
Image registration is a technique used when comparing the images taken at different times, by
different sensors or from different viewpoints.[1] The registration algorithm tries to find the
optimal transformation of an image with respect to the reference template. Image registration
can be thought of as image template matching where the template of interest is the entire image.

Image registration is widely employed in various modalities of medical images such as X-ray,
computed tomography (CT), magnetic resonance (MR), and ultrasound.[2,3,8,9] The need for
image registration arises in clinical settings as proper integration of useful data obtained from
the separate images is often desired.[11] Pluim et al.[13] proposed a rigid registration method
for 3D clinical images including MR, CT, and positron emission tomography (PET). Their
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registration algorithm used both mutual information and gradient information present in the
images.

For processing of temporal image sequence, such as intravital video microscopy, each image
frame needs to be registered to the first frame of the sequence. Ideally, the outcome of the
registration on an intravital video microscopy would be a video with no vessel movement.

1.2 Image template matching
The task of vessel diameter tracking can be thought of as tracking top and bottom vessel wall
locations throughout the image sequence. Image template matching is a simple algorithm that
is widely used to track an object of interest within a temporal sequence of images. The template
matching algorithm finds the optimal match of the template according to a similarity measure.

The template matching algorithm has four main components: feature space, search space,
search strategy, and similarity metric.[1] The feature space refers to the information present
within the template, and the search space defines the area within which to search for the best
match. The search strategy and the similarity metric determine how to search for the best match
and how to determine the similarity between the reference template and each match candidate.

There are various similarity measures to consider for template matching. Some widely used
metrics include sum of absolute differences, sum of squared differences, and cross-correlation.
For 2D discrete signals, such as image pixels, SSD and correlation can be computed from
Equations 1 and 2, respectively.

(1)

(2)

where I1 and I2 are two m × n subimages that are being compared.

Cross-correlation is known to be sensitive to noise and intensity variation, and normalized
correlation is often used as a more robust measure. Normalized correlation can be computed
from Equation 3.

(3)

where σI1 and σI2 are the standard deviation of the pixel intensities within the subimages I1 and
I2, respectively.

This paper is organized as follows. Section 2 contains the details of our algorithm, calibration
of the algorithm parameters, design of the experiment, and description of the data sets. Section
3 reports the results from the synthetic and intravital microscopy image sequences. A discussion
of the results follows in Section 4. Section 5 concludes with the relevance of the results to the
problem of vessel diameter measurement.
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2 Methods and Materials
Figure 1 shows a typical intravital image as seen through the microscope. The algorithm has
been developed to fit the specific need of tracking vessel diameters in intravital image
sequences. Our automated method is composed of three steps: image registration, patch
definition, and diameter tracking. The overview of the method is outlined as a flowchart in
Figure 2.

2.1 Image Registration
First, the image sequence is registered to reduce horizontal shifts among image frames. Each
image frame is shifted appropriately so that it yields the least difference when compared to the
first frame of the sequence. The sum of squared differences in pixel intensities was used to
compare images.

The effect of running image registration is illustrated in Figure 3. A black border is created as
a result of shifting the image frame toward the best location. Registering the image sequence
results in less horiozontal movement of the vessel within the image sequence and therefore
allows for smaller horizontal search space and faster tracking.

2.2 Patch Definition
After the image registration process, the user must define two points in the first frame indicating
the lumen diameter, one point on each side of the vessel lumen. For each point specified by
the user, a surrounding box is established. Throughout this paper, we refer to these boxes as
“patches”. The properties of the patches are determined by the user-specified parameters
(Figure 4). The algorithm attempts to find the locations of the two patches in new frames based
on the reference patches. The reference patch can be the corresponding patch in the first frame
of the sequence, previous frame, or the blend of both. The details for defining reference patch
is discussed in Section 2.3.

The Euclidean distance between the two patches is considered the vessel diameter. It should
also be noted that most of the interesting features lie outside of vessel walls. Blood may be
flowing within the vessels, or the vessel may be so narrow that the patches include the opposite
vessel wall. The patches may need to be shifted outward to reduce errors due to these
distractions. The amount of shifting is user-specified with the parameter in, as shown in Figure
4.

The patch size and search space can be determined by observing each image sequence before
running the tracking. The patch size needes to be thick enough to include the vessel wall and
surrounding tissues and to be reasonably wide without overlapping any background patterns.
The search space should be established so that the maximum movements of the patches were
covered.

2.3 Tracking
After two patches have been established, we search for new patch locations in the subsequent
frames that best match the reference patch. Our approach is depicted in Figure 6 and outlined
in Figure 5 as a flowchart. Starting with the seed points in the first frame of the video, we
establish reference patches (Section 2.3.1) and locate upper and lower patches based on the
reference patches (Section 2.4). The diameter is then computed in each frame by taking the
distance between top and bottom patches.
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Algorithm 1
Linear exhaustive search with linked patches

Matchmax = –1

p1 = p(x, y1)

p2 = p(x, y2)

for all xi ∈ search area do

    y1j = argmaxy{Match(p1, p(xi, y)) | y ∈ search area}

    y2j = argmaxy{Match(p2, p(xi, y)) | y ∈ search area}

    Matchi = Match(p1, p(xi, y1j)) + Match(p2, p(xi, y2j))

    if Matchi > Matchmax then

        Matchmax = Matchi

        x′ = xi; y1
′ = y1 j; y2

′ = y2 j;

    end if

end for

p1′ = p(x ′, y1
′)

p2′ = p(x ′, y2
′)

To track the patches, we need to determine how to define the reference patch and how to
evaluate the similarity of the new patch candidate to the reference patch. In other words, we
need to know where to compare each candidate to (reference patch) and how to compare them
(matching metric).

2.3.1 Reference patch—Determining the best frame from which to get the reference patches
is not an easy task and can vary for different cases. Always using the patches in the first frame
may work well for the cases where the shapes of vessel walls do not vary across the image
sequence. Using the patches in the previous frame has an advantage that it can adapt to varying
intensities throughout the sequence. It may also be useful to define the reference patches to be
a blend of these two options.

To paramaterize how the reference patches are defined, we introduce a variable α. Equation 4
show how α is used to define the reference patch at frame t.

(4)

where RP (t) is the reference patch used in frame t, and P(t) is the best matching patch in frame
t using RP(t) as a reference. P(1) and RP(1) correspond to user-defined seed points in the first
frame of the sequence. Both RP and P represent the set of pixel intensities for given patches,
and the operations in Equation 4 are done for each pixel in the patches.

α controls how much patch information is coming from the located patches from the previous
frame and how much is coming from the reference patches used for the previous frame. The
reference patch will always be the first frame's patch when α is zero and the previous frame's
patch when α is one.

2.3.2 Matching metric—Two possible options for the matching metric are SSE (sum of
squared errors) and correlation. Equations 5 and 6 show how these metrics are computed. The
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correlation metric (Equation 6) is based on Pearson's product-moment coefficient. Both metrics
are normalized to range from 0 to 1. The user can specify which metric is used for locating the
best matching patches in the image frames.

(5)

(6)

where X represents the current patch of interest being compared to the reference patch Y. In
both equations, X and Y represent set of pixel intensities for given patches, and the operations
are done for each pixel in the patches. In Equation 5, MAX is the maximum possible SSE
between X and Y and is used as a normalizing constant (for an 8-bit image, 255 ×
patch_area). The implicit assumptions are that the gray level pattern is approximately constant
between successive frames and that local texture contains sufficient unambiguous information
[6].

2.4 Linked Tracking
If separate feature tracking is used for each patch, it is possible that two patches will drift toward
opposite directions as image frame progresses (Figure 7a). This is especially true for image
sequences with shifting vessels. This will cause inaccurate estimation of vessel diameter, as
we want to measure the length of a line perpendicular to vessel walls. To address this problem,
the horizontal motion of the two patches is linked. Because the patches are linked, a new
matching metric has to be introduced. Our algorithm uses the sum of the matching metrics for
two patches being considered.

Instead of finding the best x and y coordinates separately for each patch, the best x coordinate
is sought to maximize the matching metric for both patches, while for each patch the best y
coordinate is sought separately within each x coordinate in search space. In other words, given
two patches p1(x, y1) and p2(x, y2), the best matching locations p1′(x′, y′1) and p2′(x′, y′2) in
the following frame are found using linear exhaustive search. The procedure for carrying out
linear exhaustive search is outlined in Algorithm 1. Linking the patches in this way prevents
them from drifting toward opposite directions. If the region of interest has shifted horizontally
in the following image frame, both patches will shift horizontally by the same amount. Figure
7 shows the effect of linking the patches.

2.5 Parameter Optimization
Three parameters have been optimized for tracking vessel diameter: reference frame, matching
metric, and patch size. To optimize tracking parameters, 6 intravital image sequences, 3
transmission and 3 fluorescence, were manually measured by an experienced rater.

The interactive web-based marking interface was developed for this purpose. The rater's task
was to identify the same two points in all frames for each intravital sequence. For each case,
a line was drawn in every 10 frames to indicate the diameter of the vessel. For these cases,
mean errors for the diameter measurements were computed with respect to the manual ground
truth, while varying the parameters to find the optimal value.
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2.5.1 Reference frame and matching metric—First, the optimal values for reference
frame (α) and the better matching metric to use for tracking were determined. The patch size
was fixed to 125×20 pixels, and the diameter was tracked with five different α values in
increments of 0.25 using both SSD and correlation metrics. This gave the trackings with 10
different parameter settings. SSD matching metric was used for the parameter sets 0-4, and
correlation metric was used for the parameter sets 5-9. The α = 0 was used for the sets 0 and
5. The value of α was incremented by 0.25 for the sets 1-4 and 6-9. Table 1 summarizes 10
different parameter sets.

2.5.2 Patch size—The patch height should be tall enough to cover the entire vessel wall area
and was fixed to 20 pixels. The optimal value of patch width was found by comparing the
measurement results from the trackings with different patch widths. The α was set to zero, and
the correlation metric was set to the optimal one for each image type as found in the previous
section. The patch width was varied from 25 pixels to 250 pixels in increments of 25 pixels.
For each case, mean error was calculated based on the ground truth measurements.

2.6 Experimental Design
The experiments were designed to determine whether our tracking algorithm correctly
measures the vessel diameter through each intravital microscopy image sequence. Better
tracking of the vessel should result in more accurate and consistent determination of the vessel
diameter. The automated method was evaluated with 10 synthetic image sequences and 20
intravital image sequences.

For each image sequence, two seed points were determined by the author so that the points lie
on the borders between the lumen and the vessel walls. The optimized parameters, as
determined in the previous section, were used to run trackings. The SSD matching metric was
used for tracking transmission microscopy images, and the correlation matching metric was
used for fluorescence images. For all images, the patch size used for the experiments was
175×20 pixels, and the α value was set to 0.0.

2.6.1 Synthetic Image Sequences—The automated method was first tested with the
synthetic sequences to evaluate the accuracy of the measurements. The ground truth measures
were known for the synthetic data, and mean error was calculated for each sequence.
Establishing ground truth for the intravital image sequences is a difficult task due to large
number of image frames per case.

2.6.2 Intravital Image Sequences—To evaluate the performance on the intravital cases,
the rater qualitatively evaluated the tracking results for 20 cases. The rater visually inspected
the tracking results and rated each case on a scale of 1-5. The description of the scale is outlined
in Table 3. The scores 4-5 were given to usable diameter measurements, the scores 1-2 were
given to unusable results, and the score of 3 indicated the midpoint between usable and unusable
results.

2.7 Data Sets
All images were acquired on an Olympus BX50WI microscope through an Olympus
UMPlanF1 water immersion objective (20x, 0.5 NA). Images were directed to a Nipkow disk
scanning confocal head (CSU 22, Yokogawa) connected to an intensified CCD camera (XR
Mega10, Stanford Photonics). The 10-bit images were digitally streamed to a terabyte RAID
disk as 16-bit TIFF files at 30 frames per second (Piper software, Stanford Photonics).

There were two categories of intravital microscopy images, transmission and fluorescence.
Fluorescence confocal images were collected from endothelial cells loaded with the calcium-
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sensitive fluorophore, fluo-4 [4] that were excited with the 488 nm laser line from Argon laser
(DLS300Ar, Dynamic Laser). Non-confocal transmission images were acquired through the
confocal optical path using brightfield illumination. Diameter changes were invoked with a
pressure pulse of acetylcholine (20 pounds/in2, 0.5 seconds).

Confocal and transmission images were processed and converted to 8-bit TIFF stacks using
ImageJ software macros. A rectangular region of interest along the vessel was clipped from
each image sequence and rotated so that blood flow along the vessel was orientated left-to-
right, cropped to 512×256 pixels, and scaled from 10-bits to 8-bits and temporally filtered (5
frame median) resulting in a final 6 frames per second. The final images had 410 frames with
the resolution of 0.69 μm/pixel. The images were then uploaded to the server using a web-
based interface.

Both types of microscopy images were used for automated measurements of vessel diameter.
The complete intravital microscopy data set was composed of 10 transmssion microscopy
images and 10 fluorescence microscopy images. Figure 8 shows the example of transmission
and fluorescence images that have been pre-processed.

In addition to intravital images, 10 synthetic image sequences were created. Each synthetic
image sequence had 30 frames with resolution of 256×128 pixels. The synthetic sequences
were created by taking a portion of the background from a real image sequence and overlaying
two higher intensity lines meant to represent the vessel walls. The width of the walls was varied
randomly by one pixel in either direction along the length of the vessel. The diameter of the
vessel was also randomly varied throughout the sequence by up to five pixels per frame, and
the entire vessel was shifted randomly in horizontal direction. Gaussian noise with varying
variances were then applied to the images. To better model the intensity profile of the real
vessel walls, Gaussian blurring with a σ of 1.0 was applied to the final images. A frame from
one of the generated synthetic image sequences is depicted in Figure 8c.

3 Results
3.1 Parameter Optimization

Three parameters have been calibrated for tracking vessel diameter: reference frame, matching
metric, and patch size. Total of 6 intravital image sequences were used to optimize tracking
parameters.

3.1.1 Reference frame and matching metric—Figure 9 shows mean errors for 6 cases
tracked using 10 parameter sets when compared to the manual ground truth. To compare the
overall performance for the parameter sets, average mean error for all 6 cases was computed
for each parameter set (Figure 10a). Further, the performance on two types of images,
transmission and fluorescence, were also plotted against 10 parameter sets (Figures 10b,c).
When all 6 cases were considered altogether, using the correlation metric with α = 0.0 tracked
the diameter with the smallest error. However, when only transmission microscopy cases are
considered, tracking using the SSD metric with α = 0.0 gave the best performance. For
fluorescence microscopy cases, tracking using correlation metric with α = 0.0 resulted in the
best performance.

The trackings with the best performance were always run with α value of 0.0. This indicates
that the diameter measurement yields the least error when the reference patch is taken from
the previous frame. For each of the matching metrics (with α = 0.0), the mean measurement
error is reported in Table 2 for transmission, fluorescence, and all image types. From Table 2,
it is evident that using SSD based metric is optimal for tracking the vessel diameter in
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transmission microscopy, while correlation based metric is optimal for tracking in fluorescence
microscopy.

3.1.2 Patch size—The average error for measurements in 6 cases was plotted against the
patch width (Figure 11). Since robustness is important for measuring vessel diameter, the
maximum error in six cases was also plotted against the patch width (Figure 12).

The range of the average errors was under 0.1 μm for the patch width greater than 100 pixels.
Small patch width, such as 25 pixels, resulted in the worst average performance, as expected
since not enough features are included in the patch. The maximum error among the six cases
is also worth considering for assessment of the algorithm's robustness. It is suspected that the
tracking is not as robust when ran with the large patch width because it may include the
background pattern that does not belong to the vessel wall itself.

The smallest maximum error was observed for the tracking with the patch width of 175.
Although the smallest mean error was not observed with this patch width, it deviated by less
than 0.1 μm from the best one. Therefore, 175×20 pixels was determined to be the optimal
patch size and was used for the experiments.

3.2 Synthetic image sequences
All synthetic image sequences were tracked successfully with the automated method. For
synthetic cases, the results were very similar when using different paramter settings, and we
report the numbers for the trackings using SSE matching metric and α value of 0. The average
mean error in 10 cases was 0.0 pixel, indicating that the algorithm was able to track diameter
correctly for all the frames in all cases. The resulting plot of the automated diameter
measurements in a synthetic image sequence is shown in Figure 13.

3.3 Intravital image sequences
For intravital image sequences, mean errors for the diameter measurements were computed
with respect to the manual ground truth. Figure 9 shows mean errors for 6 cases tracked using
10 parameter sets. To compare the overall performance for the parameter sets, average mean
error for all 6 cases was computed for each parameter set (Figure 10a). Further, the performance
on two types of images, transmission and fluorescence, were also plotted against 10 parameter
sets (Figures 10b,c). When we consider all 6 cases together, using the correlation metric with
α = 0 tracked the diameter with the smallest error. However, when only transmission
microscopy cases are considered, tracking using the SSE metric with α = 0 gave the best
performance. For fluorescence microscopy cases, tracking using correlation metric with α = 0
resulted in the best performance.

The result of qualitative evaluation on 20 intravital cases is shown in Table 4. Trackings on 19
intravital images were evaluated with scores 4 or above, and there was one case with the score
of 3. The resulting plot of the automated diameter measurements along with the screenshots
of different frames is shown in Figure 14 (transmission image) and Figure 15 (fluorescence
image).

4 Discussion
The automated method was able to successfully track vessel diameter on all synthetic image
sequences in the presence of random translational movement and varying amounts of noise.
The mean error of 0.0 pixel was achieved with the automated method for 10 synthetic cases,
indicating the high accuracy of the measurements.
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For the qualitative analysis on 20 intravital cases, the diameter trackings on 19 cases were
evaluated as “usable” (score of 4 or higher) by an experienced rater. However, the tracking
result for one case received a score of 3 (Figure 16), indicating that there were frames where
the measurements were off by 3 or more pixels. For this particular case, there was a noticeable
intensity change in bottom half of the lumen in frames 90-100. The algorithm was unable to
correctly track the bottom vessel wall due to the hazy appearance of the lumen in these frames.
Although the measurements were off for these frames, it recovered once the lumen intensity
recovered to the original appearance at frame 100.

For two types of intravital image sequences, diameter tracking with different parameter sets
gave the optimal results (Figure 10). For transmission microscopy, using SSD matching metric
resulted in the lowest error, while correlation matching metric gave the lowest error for
fluorescence microscopy.

It was shown that using SSD metric (parameter sets 0-4) for tracking on fluorescence images
yield poor performance when compared to the tracking with correlation metric (parameter sets
5-9). The reason why the correlation metric works better than SSD metric in fluorescence
microscopy seems to be in the nature of fluorescence images. In fluorescence images, the vessel
walls appear as bright region on dark background, and the majority of the background pixels
have intensities close to zero. The correlation metric indicates the similarity in the image
pattern, rather than the similarity of individual pixel intensities. However, in transmission
images, wider range of intensity values are present, and counting the differences in individual
pixel intensities seem to result in better matches.

Tracking using α values greater than 0.0 did not lower the mean error for either image type.
For both image types, setting α to 0.0 gave the best results. This indicates that using the previous
frame's patch as a reference yields the best performance. The reason why any degree of frame
averaging for the reference patch does not help seems to be the high on-site magnification of
the microscopic image data. Even tiny movement of the subject can affect how a image frame
appears and result in some distortion of particular frame.

The patch size was also varied, but on average no significant advantage was observed when
using smaller or larger patches. However, it was observed that the mean error increases when
the patch size becomes too small. The suspected reason for this is that small patches may not
capture enough features of the vessel wall. Also, maximum error increased when the patch size
was too large. The inclusion of the unnecessary background patterns with the large patch size
seems to be the cause of this increase in maximum error. Considering that the robustness of
the tracking algorithm was important, the optimal patch size was determined as 175×20.

5 Conclusion
An accurate and robust automated method to measure blood vessel diameter is crucial in
obtaining quality results in microcirculation studies. Very little previous work has been done
on this task, though there has been much work on measuring diameters in other imaging
modalities for applications such as measuring arteries in ultrasound images, retinal vessels,
and airways in CT. A feature-based algorithm was developed for an accurate measurement of
the vessel diameter in intravital video microscopy image sequences. The automated diameter
measurements were successful, and we believe that it will soon replace the current manual
method with electronic calipers.
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Figure 1.
Typical example of intravital image as seen through the microscope. The magnification on site
is 1420x.
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Figure 2.
An overview of the proposed automated method.
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Figure 3.
Image registration. White box is drawn around a fixed region for better illustration. Running
registration on an image sequence reduces the shift of the vessel, allowing for smaller search
space and faster tracking. Two columns are shown for the image sequence before registration
(a) and after registration (b).
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Figure 4.
User-specified parameters. The size of patches are determined by xs and ys, and the search area
is determined by h and v. The parameter in is used to offset the patches.
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Figure 5.
An overview of the tracking algorithm. Starting from the seed points on the first frame, the
diameter is tracked on every subsequent frame in the video.
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Figure 6.
Vessel diameter measurement by tracking two objects (patches). Image sequence of a vessel
with N frames is shown.
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Figure 7.
Effect of linked tracking. For each tracking method, frames 1 and 16 of the image sequence
are shown. Tracking two patches separately can result in drifting of the individual patches (a).
Linking the patches prevent the drifting (b).
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Figure 8.
First frames from 3 cases are shown. The images have been pre-processed so that the vessel
runs horizontally. (a) Transmission microscopy image, (b) fluorescence microscopy image,
and (c) synthetic image. Total of 10 cases for each category were considered for the evaluation
of our method. For the fluorescence image, brightness has been adjusted for better visibility.
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Figure 9.
Mean error for the cases with manual measurements: (a) 3 transmission cases and (b) 3
fluorescence cases. 10 parameter sets were created by varying the matching metric and α value.
Refer to 1 for details of the parameter sets. The parameter sets that gave error greater than 10
μm were considered invalid tracking and were clipped in the plot.
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Figure 10.
Overall error for (a) all 6 cases, (b) transmission cases, (c) and fluorescence cases. The errors
have been averaged for each parameter set. The parameter sets that gave error greater than 10
μm were considered invalid tracking and were clipped in the plot.
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Figure 11.
Mean measurement error vs. patch width.
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Figure 12.
Maximum measurement error vs. patch width.

Lee et al. Page 23

Ann Biomed Eng. Author manuscript; available in PMC 2010 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 13.
Tracking result for a synthetic image sequence, showing (a) diameter measurement plot
through the entire sequence along with the screenshots at different frames: (b) Frame 1, (c)
Frame 10, (d) Frame 25, and (e) Frame 30. Note that the automated measurements lie exactly
on top of the ground truth.
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Figure 14.
Tracking result for a transmission microscopy image sequence, showing (a) diameter
measurement plot through the entire sequence along with the screenshots at different frames:
(b) Frame 1, (c) Frame 150, (d) Frame 250, and (e) Frame 350.
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Figure 15.
Tracking result for a fluorescence microscopy image sequence, showing (a) diameter
measurement plot through the entire sequence along with the screenshots at different frames:
(b) Frame 1, (c) Frame 150, (d) Frame 230, and (e) Frame 350. The image brightness and
contrast have been adjusted to improve visibility of the vessel.
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Figure 16.
Tracking result for the case that received the qualitative evaluation score of 3, showing (a)
diameter measurement plot through the entire sequence along with the screenshots at different
frames: (b) Frame 1, (c) Frame 95, (d) Frame 200, and (e) Frame 300. The correct tracking
interfered as the lumen intensity brightens around frame 95. The erroneous measurement is
marked with a circle in (a).
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Table 1
Parameter sets

Parameter set Matching metric α

0 0

1 0.25

2 0.5

3 0.75

4 SSE 1

5

Correlation

0

6 0.25

7 0.5

8 0.75

9 1

Ann Biomed Eng. Author manuscript; available in PMC 2010 May 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lee et al. Page 29

Table 2
Comparison of trackings using different matching metrics

Image type Mean error with SSD metric (μm) Mean error with correlation metric (μm)

All 3.44 1.70

Transmission 0.67 1.31

Fluorescence 3.27 0.86
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Table 3
Criteria for qualitative evaluation

Score Description

5 Tracking is good for the entire sequence

4 There are frames where the measurement is off by 3 or less pixels

3 There are frames where the measurement is off by more than 3 pixels

2 There are several frames where the measurement is completely off

1 Loses track completely and shows random behavior
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