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Abstract
Stress can affect the brain and lead to depression; however, the molecular pathogenesis is unclear.
An association between stress and stress-induced hypersecretion of glucocorticoids occurs during
stress. Dexamethasone (a synthetic glucocorticoid steroid) has been reported to induce apoptosis and
increase the activity of monoamine oxidase (MAO) (Youdim et al. 1989). MAO is an enzyme for
the degradation of aminergic neurotransmitters; dopamine, noradrenaline and serotonin and dietary
amines and MAO inhibitors are classical antidepressant drugs. In this study, we have compared the
ability of rasagiline (Azilect) and its main metabolite, R-aminoindan with selegiline (Deprenyl) in
prevention of dexamethasone-induced brain cell death employing human neuroblastoma SH-SY5Y
cells and glioblastoma 1242-MG cells. Dexamethasone reduced cell viability as measured by MTT
test, but rasagiline, selegiline, and 1-R-aminoindan could significantly prevent dexamethasone-
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induced brain cell death. Among three drugs, rasagiline had the highest neuroprotective effect.
Furthermore, the inhibitory effects of these drugs on MAOB catalytic activity and on apoptotic DNA
damage (TUNEL staining) were examined. Rasagiline exhibited highest inhibition on MAO B
enzymatic activity and prevention on DNA damage as compared to selegiline and 1-R-aminoindan.
In summary, the greater neuroprotective effect of rasagiline may be associated with the combination
of the parent drug and its metabolite 1-R-aminoindan.

Introduction
The brain is the key organ in the response to stress. Long-term stressful situations can affect
the brain and lead to depression. For example, environmental stressors related to job or family
situations are important triggers of depressive episodes. Major depression is one of the world’s
greatest public health burdens. However, the development of novel antidepressants is based
upon an improved neurobiological understanding on the cellular changes that take place in the
brain during the long-term stress. The major hormonal response to stress is in the form of
glucocorticoids. Glucocorticoids are the steroid hormones secreted from adrenal gland during
stress. Abnormal increased levels of glucocorticoids are associated with atrophy in the
hippocampus (Lee et al. 2002) and also associated with major depression (Duval et al. 2006).
Thus, glucocorticoids may play a contributing role toward neuronal death and depression. Anti-
glucocorticoid drugs appear to be an effective therapy for anti-depression (Murphy 1997).
Steroid hormones are involved in the regulation of many functions in which monoamine
oxidase (MAO) also plays important roles such as response to stress, behavioral adaptation,
and mood (de Kloet et al. 1990). MAO is an enzyme located on the outer membrane of the
mitochondria. The synthetic glucocorticoid, dexamethasone, increases MAO A activity in the
human neuroblastoma (Ou et al. 2006a), the human fibroblasts (Edelstein and Breakefield
1986), and rat brain frontal cortex (Slotkin et al. 1998). Both anti-glucocorticoid agents
(Wolkowitz and Reus 1999) and MAO A inhibitors (Kato et al. 1998; Volz and Gleiter
1998) have been used in the treatment of depression.

MAO exists in two isoforms, MAO A and MAO B (Shih et al. 1999). However, within the
human brain, MAO B is much more prevalent in the striatum. MAO B catalyzes biogenic and
dietary amines including neurotransmitters (such as phenylethylamine and dopamine), and
produces hydrogen peroxide (H2O2), a toxic product that induces cell apoptosis (Ou et al.
2006b; Johnson et al. 2007).

Apoptosis can be prevented with the use of propargylamine-derived MAO B inhibitors
(Malorni et al. 1998; Youdim et al. 2001b; Youdim et al. 2005b). Two such inhibitors,
rasagiline (Azilect) and selegiline (1-Deprenyl or Emsam), were developed in the treatment of
Parkinson’s disease. Both of these drugs are irreversible inhibitors of MAO B, where rasagiline
is a restricted analog of selegiline. Rasagiline is significantly more active in vivo than selegiline
(Youdim et al. 2001a). They differ, however, by their metabolic products. Whereas selegiline
(1-Deprenyl) is metabolized to amphetaminic metabolites, rasagiline is metabolized to
neuroprotective aminoindan. L-methampehtamine, the metabolite of selegiline, produces
neurotoxic effects that may counterbalance the neuroprotective effects of selegiline. On the
other hand, aminoindan has no neurotoxic effects and has also been shown to have its own
neuroprotective activity (Youdim et al. 2001a; Bar-Am et al. 2007). Dexamethasone also has
been shown to induce apoptosis at concentrations of 100 nM–100 µM (Glick et al. 2000;
Dolmatov et al. 2004; Jacobs et al. 2006). In this study, we have employed dexamethasone (10
µM) to induce apoptosis in order to evaluate the neuroprotective properties of rasagiline,
selegiline (deprenyl), and rasagiline’s major metabolite, 1-R-aminoindan, in protection against
cell death-induced by toxicity of dexamethasone.

Tazik et al. Page 2

Neurotox Res. Author manuscript; available in PMC 2009 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Materials and Methods
Cell Lines and Reagents

A human neuroblastoma SH-SY5Y cell line was used. This line was purchased from ATCC.
The cells were grown and cultured in RPMI 1640 media and supplemented with 10% fetal
bovine serum, and a human glioblastoma 1242-MG cell line was also used. It was obtained as
a gift from Dr. B. Westermark (Dept. of Pathology, University Hospital, Uppsala, Sweden).
They were grown and cultured in Dulbecco’s Modified Eagle Medium (DMEM) with 10%
fetal bovine serum. Rasagiline was synthesized by a Ph.D student, Hailin Zheng, in the
laboratory of Dr. Youdim’s (Haifa, Israel). 1-R-aminoindan and selegiline (deprenyl) were
purchased from Sigma-Aldrich USA. In Situ Cell Death Detection Kit (for TUNEL staining)
was purchased from Roche (Indianapolis, IN).

Cell Culture and Treatments
The SH-SY5Y and 1242-MG cells were seeded into 6-well plates and cultured overnight in
medium. Cells were supplemented with charcoal-stripped, steroid-free fetal calf serum for ~6
h. The medium was then replaced with medium treated with 10 µM of dexamethasone, 0.25
nM of rasagiline, 0.25 nM of selegiline, or 1 µM of 1-R-aminoindan in the presence of charcoal-
stripped fetal calf serum. The treatments were performed every other day for 4 days.

MAO B Catalytic Activity Assay
SH-SY5Y and 1242-MG cells were grown to confluence, harvested, and washed with
phosphate-buffered saline. One hundred micrograms of total proteins were incubated with 10
µM 14C-labeled phenylethylamine (Amersham Biosciences) in the assay buffer (50 mM
sodium phosphate buffer, pH 7.4) at 37°C for 20 min and terminated by the addition of 100 µl
of 6 N HCl. The reaction products were then extracted with ethyl acetate/toluene (1:1) and
centrifuged at 4°C for 10 min. The organic phase containing the reaction product was extracted,
and its radioactivity was obtained by liquid scintillation spectroscopy (Geha et al. 2001).

MTT Assay
The survival and proliferation of the cells were measured using MTT assays. MTT, (3-[4,5-
dimethyl-thiazol-2-yl]-2,5-diphenyl tetrazolium bromide), is a yellow tetrazolium salt that is
metabolized within the cell to form a purple formazan crystal, which can then be dissolved
using a detergent in order to measure the solution’s light absorbance. First, the MTT solution
(5 mg/ml) was diluted with PBS to form a 1× solution (0.5 mg/ml). For the 6-well plates, 400
µl of MTT dye was added to each well. Then, the cells were left to incubate for 4–5 h. During
this incubation period, the yellow dye was converted by the mitochondria of the viable cells
into a purple formazan crystal, which were then dissolved by 1.2 ml of DMSO. The NanoDrop
Spectrophotometer was used to determine the optical density at 572 nm of each well.

TUNEL Assay
The terminal deoxynucleotidyl transferase (TdT)-mediated dUTP Nick End Labeling
(TUNEL) assay was used to assess the extent of apoptosis in treated cells. Briefly, cells were
plated on a four-well chamber slide on the day preceding the experiment, and treated with or
without 10 µM dexamethasone, 0.25 nM of rasagiline, 0.25 nM of selegiline, or 1 µM of 1-R-
aminoindan for 2 days. Cells were then washed with PBS and fixed using 4% paraformaldehyde
in PBS. The slides were again washed with PBS, and fragmented DNA was detected in
apoptotic cells by adding fluorescein 12-dUTP to nicked ends of DNA (In Situ Cell Death
Detection Kit, Roche). Slides were incubated for 1 h at 37°C in the dark and washed in PBS
three times and then visualized with a fluorescent light microscope. Green fluorescence was
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correlated with DNA fragmentation. Experiments were done in duplicate for three times, and
the percentage of TUNEL-positive cells was determined.

Statistical Analysis
The statistical significance was evaluated using one-way ANOVA to test for differences
between groups and followed by post-hoc t-tests. A value of P<0.05 was considered to be
significant.

Results
The expression of MAO B was investigated in two human brain cell lines, neuroblastoma SH-
SY5Y, and glioblastoma 1242-MG. Cells were seeded in 10-cm dishes. After 24 h, cells were
treated with dexamethasone (0 or 10 µM) and/or 0.25 nM rasagiline or selegiline or 1 µM 1-
R-aminoindan for 96 h. The MAO B catalytic activities were determined (Fig. 1A, B). The
results indicated MAO B enzymatic activity was significantly increased with the
dexamethasone treatment in both cell lines, confirming previous studies in endothelial and
chromaffin cells (Youdim et al. 1989). In Fig. 1A (lanes 3 vs. 1 and 4 vs. 2), MAO B catalytic
activity significantly increases by twofold after treatment with dexmethasone in both SH-SY5Y
and 1242-MG (P<0.02). In Fig. 1B, rasagiline lowers MAO B catalytic activity by ~70% in
SH-SY5Y (Fig. 1B, lane 2 vs. 1) and~60% 1242-MG (Fig. 1B, lane 6 vs. 5)—more significantly
in SH-SY5Y (P<0.02). Selegiline and 1-R-aminoindan also significantly (P<0.05) lower the
catalytic activity of MAO B by about 50% in both SH-SY5Y and 1242-MG cells (Fig. 1B,
lanes 3 vs. 1, 4 vs. 1, 7 vs. 5, and 8 vs. 5, respectively).

Furthermore, the evaluation of cell viability was performed by determining cell proliferation
rates among the different treatment groups with MTT Assay (Fig. 2A, B). The results indicated
that the proliferation of SH-SY5Y and 1242-MG significantly (P<0.05) decreased with the
addition of 10 µM Dexamethasone (Fig. 2A, lanes 3 vs. 1 and 4 vs. 2, respectively). The survival
rate of SH-SH5Y is decreased by~35%; subsequently, the proliferation rate of 1242-MG is
decreased by ~32% after dexamethasone treatment. Whereas, the addition of rasagiline,
selegiline, and 1-R-aminoindan significantly increased the proliferation rates of SH-SY5Y and
1242-MG upon dexamethasone treatment. Rasagiline had the greatest effect on both SH-SY5Y
and 1242-MG (Fig. 2B, lanes 2 vs. 1 and 6 vs. 5, respectively). Rasagiline caused ~60% increase
in the cell proliferation rate for SH-SY5Y cells treated with dexamethasone. Selegiline and 1-
R-aminoidan cause ~25% increase in the proliferation of SH-SY5Y cells treated with
dexamethasone (Fig. 2B, lanes 3 vs. 1 and 4 vs. 1, respectively). In 1242-MG, rasagiline causes
~35% increase in cell proliferation rates (Fig. 2B, lanes 6 vs. 5) while both selegiline and 1-
R-aminoidan cause ~20% increase (Fig. 2B, lanes 7 vs. 5 and 8 vs. 5, respectively) in viability
of dexamethasone-treated cells.

Results from the MAO B activity assay (Fig. 1A and B) and MTT assay (Fig. 2A and B) were
further supported by the TUNEL assay (Fig. 3), since an increase in MAO B catalytic activity
may produce more H2O2. H2O2 can cause cell apoptosis which can be detected by measuring
fragmented DNA using TUNEL staining (Phillips et al. 2003). As shown in Fig. 3A, green
fluorescent-labeled DNA fragmentation in SH-SY5Y after treatment with dexamethasone
significantly increased compared to untreated cells (Fig. 3A, 2 vs. 1). Additionally, Fig. 3 also
indicates that treatment with rasagiline, selegiline, or 1-R-aminoidan significantly decreased
the percentage of TUNEL-positive cells present in the dexamethasone-treated group (Fig. 3A,
3 vs. 2). Rasagiline causes a 30% decrease in fragmented DNA of dexamethasone-treated SH-
SY5Y cells (P<0.02; Fig. 3B, lanes 6 vs. 5). Selegiline and 1-R-aminoidan cause a 20%
decrease in the amount of fragmented DNA present in SH-SY5Y cells treated with
dexamethasone (P<0.05; Fig. 3B, lanes 7 vs. 5 and 8 vs. 5, respectively). Similar results were
exhibited by 1242-MG cells (data not shown).
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Discussion
The results of this study indicated that dexamethasone reduces cell proliferation rates but
increases MAO B catalytic activity. The aberrant increase of MAO B activity has been
implicated in neurodegenerative diseases, such as Alzheimer’s disease (Saura et al. 1994),
Parkinson’s disease (Schneider et al. 1981), Huntington’s disease (Mann et al. 1986; Senatorov
et al. 2003), and alcoholism (Carlsson et al. 1980). Dexamethasone has been reported to induce
MAO B expression and activity in endothelial and astrocytes in a dose- and time-dependent
manner (Carlo et al. 1996). The abnormally increased MAO B catalytic activity may produce
toxic products, such as H2O2, therefore these data support an important role for glucocorticoids
in the increase in brain MAO B associated with neurodegenerative diseases and mental
disorders. In contrast, the MAO B inhibitors, deprenyl (selegiline) and Azilect® (rasagiline),
have been used in the therapy of neurodegenerative diseases such as Parkinson’s Disease
(Paterson et al. 1997; Tatton et al. 2000; Maruyama et al. 2001; Fernandez and Chen 2007),
depression (Goodnick 2007; Robinson and Amsterdam 2007), and senile dementia (Tariot et
al. 1987; Youdim et al. 2005a; Youdim 2006). However, whether these drugs can also protect
neurons from glucocorticoids-induced toxicity has never been studied.

We report here for the first time that rasagiline, selegiline, and 1-R-aminoindan significantly
prevent dexamethasone-induced brain cell death involving in both neuroblastoma and
glioblastoma cells. Among the three compounds, rasagiline has the highest neuroprotective
effect compared to either selegiline or 1-R-aminoindan. Rasagiline (Azilect) and selegiline (1-
deprenyl or Emsam) are irreversible inhibitors of MAO B. The greater neuroprotective quality
of rasagiline may in part be due to the effects of the parent compound and its major metabolite,
1-R-aminoindan. Furthermore, the inhibitory effects of these drugs on MAO B catalytic activity
and on apoptotic DNA fragment damage (observed by TUNEL staining) were examined.
Rasagiline has shown the highest inhibition on MAO B enzymatic activity (Youdim et al.
2001a) and also has shown the highest prevention on apoptosis compared to selegiline and 1-
R-aminoindan. The mechanism by which rasagiline and selegiline initiate their anti-apoptotic
effect can be summarized by their up regulation of anti-apoptotic Bcl-2 and Bcl-Xl and down
regulation of propaoptotic Bad, Bax, PARP, and caspase 3 (see Youdim et al. 2005a) and
Youdim et al. 2006) for reviews). Because Bcl-2 and caspase 3 are key factors for preventing
or mediating the mitochondrial-involved apoptosis (Lakhani et al. 2006), it suggests that the
MAO inhibitors may protect cells from apoptosis through a mechanism involving the
maintenance of mitochondrial homeostasis (Malorni et al. 1998). In addition, structure activity
studies with rasagiline have shown that it is propargylamine moiety that produces this effect,
since propargylamine which has little or no MAO inhibitory activity has a similar mechanism
of neuroprotective activity with similar potency (Bar-Am et al. 2005). Furthermore, both
rasagiline and proppargylamine activate neuroprotective protein kinase C (PKCα and PKCε),
while down-regulating propaoptotic PKCδ and γ. Inhibition of PKC by GF109203X prevents
their neuroprotective activity (Weinreb et al. 2005; Youdim et al. 2005a). The mechanism by
which aminoindan has been fully elucidated. The neuroprotective properties of 1-R-
aminoindan have been assessed employing a cytotoxic model of human neuroblastoma SKN-
SH cells in high-density culture-induced neuronal death and in response to 6-
hydroxydopamine. We show that 1-R-aminoindan (0.1–1 µM) significantly reduced the
apoptosis-associated phosphorylated protein, H2A.X (Ser139), decreased the cleavage of
caspase 9 and caspase 3, while increasing the anti-apoptotic proteins, Bcl-2 and Bcl-xl. Protein
kinase C (PKC) inhibitor, GF109203X, prevented the neuroprotection, indicating the
involvement of PKC in aminoindan-induced cell survival. Aminoindan markedly elevated
pPKC (pan) and specifically that of the pro-survival PKC isoform, PKC epsilon (Bar-Am et
al. 2007).
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In summary, the neurorptoective activity seen with rasagiline and its major metabolite, 1-R-
aminoindan in the present and previous studies, may have relevance to the recent prospective
clinical study in Parkinsonian subjects, ADAGIO, where rasagiline indicated that early
treatment with rasagiline provided benefits that were not obtained with later initiation of the
drug. This is the first time that a prospective large-scale, randomized, double-blind trial has
provided evidence that a drug might slow down PD progression via neuroprotection (Hughes
2008).
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Fig. 1.
Effects of dexamethasone and MAO B inhibitors on MAO B catalytic activity. A.
Dexamethasone increases the MAO B catalytic activity in both SH-SY5Y and 1242-MG. Cells
were treated with dexamethasone (0 or 10 µM) for 96 h, and the MAO B catalytic activities
were determined. *P<0.02 compared with control cells (without treatment). B. The MAO B
inhibitors, rasagiline, selegiline, and 1-R-aminoidan (rasagiline’s metabolite) decrease MAO
B catalytic activity induced by dexamethasone in both SH-SY5Y and 1242-MG. Cells were
treated with dexamethasone (0 or 10 µM) and/or 0.25 nM rasagiline or selegiline or 1 µM 1-
R-aminoindan for 96 h, and the MAO B catalytic activities were determined. *P<0.02 and
**P<0.01 compared to cells treated with dexamethasone alone
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Fig. 2.
Effects of dexamethasone and MAO B inhibitors on cell proliferation rates. A. Dexamethasone
lowers the proliferation rates of both SH-SY5Y and 1242-MG cells. Cells were treated with
dexamethasone (0 or 10 µM) for 96 h, and the proliferation rates were determined by MTT
assay. *P<0.05 compared with control cells (without treatment). B. The MAO B inhibitors,
rasagiline, selegiline, and 1-R-aminoidan (rasagiline’s metabolite) increase the proliferation
rates in both SH-SY5Y and 1242-MG. Cells were treated with dexamethasone (0 or 10 µM)
and/or 0.25 nM rasagiline or selegiline or 1 µM 1-R-aminoindan for 96 h, and the proliferation
rates were determined by MTT assay. *P<0.05 and **P<0.02 compared to cells treated with
dexamethasone alone
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Fig. 3.
Effects of dexamethasone and MAO B inhibitors on cell apoptosis in SH-SY5Y cells. A.
Fluorescence showing TUNEL(+) cells and TUNEL(−) cells in (a) control cells, (b) cells
treated with dexamethasone or (c) cells treated with 10 µM dexamethasone and 0.25 nM
rasagiline for 48 h. Scale bar is 10 µm. Photomicrographs show representative cells from each
treatment group, and the arrows indicate apoptotic cells. B. Percentage of cells that contain
damaged DNA as revealed by the TUNEL assay in each group. TUNEL-labeled DNA
fragmentation is correlated with green fluorescence. Experiments were done in duplicates for
three times. Bar graph indicating the average percentage of TUNEL-positive cells counted
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from each group. The counted cell numbers are shown at the top of each group. *P<0.05 and
**P<0.02 compared to cells treated with dexamethasone alone
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