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Varicella zoster virus (VZV) is an exclusively human neurotropic alpha-herpesvirus. Primary
infection causes varicella (chickenpox), after which virus becomes latent in cranial nerve
ganglia, dorsal root ganglia, and autonomic ganglia along the entire neuraxis. Years later, in
association with a decline in cell-mediated immunity in elderly and immunocompromised
individuals, VZV reactivates and causes a wide range of neurologic disease, including herpes
zoster, postherpetic neuralgia, vasculopathy, myelopathy, retinal necrosis, cerebellitis and
zoster sine herpete (Fig. 1). Importantly, many of these complications occur without rash. This
article discusses the clinical manifestations, treatment, and prevention of VZV infection and
reactivation; pathogenesis of VZV infection; and current research focusing on VZV latency,
reactivation, and animal models.

Clinical manifestations of primary varicella zoster virus infection
Varicella

Initial infection with VZV results in chickenpox (varicella), which is typically seen in children
1 to 9 years of age [1]. Primary infection in adults is usually more severe and may be
accompanied by interstitial pneumonia. Infection in immunocompromised individuals often
causes severe, disseminated disease. Climate seems to affect the epidemiology of varicella. In
most temperate climates, more than 90% of people are infected before adolescence [2-5] with
an incidence of 13 to 16 cases per 1000 people per year [6-8]. In tropical climates, VZV
infection occurs later in life and adults are more susceptible than children [9-11]. Varicella has
a peak incidence in the late winter and spring [10,12-14], and epidemics tend to occur every 2
to 5 years [12-14].

Varicella is characterized by fever concurrent with a self-limiting rash on the skin and
sometimes mucosa. Headache, malaise, and loss of appetite are also seen. The rash begins as
macules, rapidly progresses to papules, followed by a vesicular stage and crusting of lesions.
Crusts slough off after 1 to 2 weeks. VZV is highly infectious and transmission occurs by direct
contact with skin lesions or by respiratory aerosols from infected individuals. Central nervous
system complications include self-limiting cerebellar ataxia in 1 in 4000 cases [15], meningitis,
meningoencephalitis, and vasculopathy [16]. Strokes may occur months after varicella
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secondary to VZV vasculopathy and are not always easy to diagnose (see section on VZV
vasculopathy).

Diagnosis of varicella is based on the characteristic vesicular rash. Treatment is aimed at
symptomatic relief. Acetaminophen is used to control fever, fluids are given for hydration, and
topical medications are given for the pruritic rash. Treatment with intravenous acyclovir is
mandatory in patients at risk for or with clinical evidence of disseminated disease, or in
newborns who were exposed to VZV shortly after birth. In otherwise healthy children, antiviral
treatment is not mandatory, but Dunkle and colleagues [17] have shown that treatment with
oral acyclovir within 24 hours of illness results in a 1-day reduction in the duration of fever
and a reduced severity of cutaneous and systemic symptoms and signs.

Clinical manifestations of varicella zoster virus reactivation
Herpes zoster

Zoster affects approximately 1 million individuals in the United States per year. Most patients
are over age 60 [18] or immunocompromised [19]. The annual incidence of zoster is
approximately 5 to 6.5 per 1000 individuals at age 60, increasing to 8 to 11 per 1000 at age 70
[19]. Unlike varicella, which occurs primarily in the spring, there is no seasonal predilection
for zoster. The development of zoster may be viewed in the context of a continuum in
immunodeficient individuals, ranging from a natural decline in VZV-specific cell-mediated
immunity with age, to more serious immune deficits seen in cancer patients and transplant
recipients, and ultimately in patients with AIDS [20]. Not surprisingly, zoster in otherwise
young, healthy individuals may be the first manifestation of HIV infection [21]. Interestingly,
varicella in infancy predisposes to zoster earlier in life [22].

Herpes zoster usually begins with a prodromal phase characterized by pain, itching,
paresthesias (numbness or tingling), dysesthesias (unpleasant sensations), or sensitivity to
touch (allodynia) in one to three dermatomes. A few days later, a unilateral maculopapular rash
appears on the affected area, which then evolves into vesicles. These vesicles usually scab over
in 10 days, after which the lesions are not contagious. Dissemination may occur in
immunosuppressed patients, such as patients with a hematologic malignancy or iatrogenic
immunosuppression. In most patients, the disappearance of skin lesions is accompanied by
decreased pain and complete resolution of pain in 4 to 6 weeks. In zoster, MRI has shown
enhancement of dorsal root ganglia and affected nerve roots [23].

Zoster affects any level of the neuraxis. The most common site is the chest, followed by lesions
on the face, typically in the ophthalmic distribution of the trigeminal nerve. In
immunocompromised patients, multidermatomal involvement is common and may be the first
clue to the immunodeficient condition. Herpes zoster ophthalmicus is often accompanied by
zoster keratitis, which can lead to blindness if unrecognized and not treated. If visual symptoms
are present in these patients, an immediate slit-lamp examination by an ophthalmologist is
imperative, especially if skin lesions extend to the medial side of the nose (Hutchinson’s sign).
Involvement of the optic nerves with subsequent optic neuritis and neuropathy has occurred
rarely in association with herpes zoster ophthalmicus and other cutaneous zoster eruptions
[24,25]. Ophthalmoplegia after zoster most frequently involves cranial nerves III and VI, and
less frequently cranial nerve IV [24,26-28]; in addition, involvement of the maxillary and
mandibular distribution of the trigeminal nerve can produce osteonecrosis and spontaneous
tooth exfoliation [29-31].

Zoster affecting the seventh cranial nerve (geniculate) ganglion causes weakness or paralysis
of ipsilateral facial muscles, with rash in the external auditory canal (zoster oticus) or tympanic
membrane, or on the ipsilateral anterior two thirds of the tongue or hard palate. Lesions in these
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areas are often missed. The combination of peripheral facial weakness and zoster oticus
constitutes the Ramsay Hunt syndrome [32]. Although the Ramsay Hunt syndrome is
traditionally defined as lower motor neuron facial palsy with zoster oticus, many of these
patients also have tinnitus, hearing loss, nausea, vomiting, vertigo, and nystagmus, indicating
involvement not only of the geniculate ganglion, but also the eighth cranial nerve within the
bony facial canal. Rarely, cranial nerves V, VI, IX, and X may also be involved [33]. Compared
with Bell’s palsy (peripheral facial paralysis without rash), individuals with the Ramsay Hunt
syndrome often have more severe facial paralysis at onset and are less likely to recover
completely [34]. In addition, peripheral facial paralysis caused by VZV may develop in the
absence of rash as demonstrated by a four-fold rise in antibody to VZV or the presence of VZV
DNA in auricular skin, mononuclear cells (MNCs), middle ear fluid, or saliva [35]. Some
patients with idiopathic facial weakness actually represent another variant of zoster sine herpete
(pain without rash).

Cervical or lumbar distribution zoster may be followed by lower motor neuron type weakness
in the arm or leg, respectively [36,37]. Cervical zoster may rarely be followed by diaphragmatic
weakness [38]. Rare cases of thoracic zoster have been associated with abdominal muscle
weakness, which can result in abdominal herniation [39].

Zoster is presumed to develop by retrograde transport of virus from ganglia to skin in a host
partially immune to VZV. VZV has also been isolated from the blood of immunocompromised
patients with localized and disseminated zoster [40], suggesting a role for hematogenous
spread. Cardinal pathologic features of zoster are inflammation and hemorrhagic necrosis with
associated neuritis, localized leptomeningitis, unilateral segmental poliomyelitis, and
degeneration of related motor and sensory roots [41,42]. Demyelination has also been observed
in areas with MNC infiltration and microglial proliferation. Intranuclear inclusions, viral
antigen, and herpesvirus particles have been detected in acutely infected ganglia [43-46].

Treatment for zoster should consider the patient’s immune status and age. In immunocompetent
individuals under age 50, analgesics are used to relieve pain. Antivirals (famciclovir, 500 mg
orally three times daily, or valacyclovir, 1 g three times daily for 7–10 days) are not required,
but speed healing of rash. In immunocompetent individuals age 50 and older, treatment with
both analgesics and antivirals is recommended and is essential in patients with ophthalmic
distribution zoster. Similarly, treatment of patients with the Ramsay Hunt syndrome within 7
days of onset reportedly improves recovery [47,48], although prospective randomized
treatment trials remain to be conducted. The authors also use prednisone (1 mg/kg body weight
once a day for 5 days) to reduce the inflammatory response, although double-blind placebo-
controlled studies to prove additional efficacy are lacking. In immunocompromised patients,
intravenous acyclovir (10 mg/kg three times per day for no less than 7 days) is recommended.

Postherpetic neuralgia
About 40% of zoster patients over age 60 experience postherpetic neuralgia (PHN) [49,50].
PHN is characterized by constant, severe, stabbing or burning, dysesthetic pain that persists
for at least 3 months and sometimes years after resolution of rash. The cause and pathogenesis
of PHN are unknown. Two nonmutually exclusive theories are that excitability of ganglionic
or even spinal cord neurons is altered, and persistent or low-grade productive virus infection
exists in ganglia. The concept that PHN is produced by low-level ganglionitis is supported by
the detection of VZV DNA and proteins in blood MNCs of many patients with PHN [51-53],
and by a favorable response of some PHN patients to antiviral treatment [54-56].

Although not life-threatening, PHN is difficult to manage. Treatment is supportive with use of
neuroleptic drugs and various analgesics, including opiates to alleviate pain, but no universally
accepted treatment exists. Gabapentin (300 mg daily with gradually increasing doses, up to a
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maximum of 3600 mg/day in three doses) is one of the most widely accepted treatments [57,
58]. Lidocaine is administered as 5% patches with up to three patches applied topically at one
time for up to 12 hours within a 24-hour period. Pregabalin is given initially at a dose of 75
mg orally twice a day or 50 mg orally three times a day, then gradually increased to a maximum
dose of 300 mg per day based on efficacy and tolerability. If minimal relief is obtained at 300
mg per day for 2–4 weeks, the dose can be increased to 600 mg per day in two or three divided
doses, although dosing needs to be adjusted based on side effects of the drug as well as the
patient’s renal function.

In addition, oxycodone (controlled release, 10–40 mg orally every 12 hours) or controlled-
release morphine sulfate and tricyclic antidepressants are used [59]. Levorphanol produces
morphine-like analgesia, at a dose of 2 mg orally every 6 to 8 hours as needed with maximum
doses of 6 to 12 mg daily [60]. Combination treatment with morphine and gabapentin also
decreases pain more than either drug alone or placebo [61]. Tricyclic antidepressants, including
amitriptyline (10–25 mg orally at bedtime with a maximum dose of 150–200 mg/day),
nortriptyline, mapotriline, and despramine, lessen the pain of PHN.

Numerous studies indicate that antiviral therapy with oral acyclovir, famcyclovir, or
valacyclovir may reduce the duration and severity of pain after zoster [62-64]. A recent
prospective, open-label phase I/II clinical trial treated 15 patients with moderate to severe PHN
with intravenous acyclovir for 2 weeks, followed by oral valacyclovir for 1 month; 8 (53%) of
15 patients reported improvement of pain [56].

Varicella zoster virus vasculopathy
VZV vasculopathy results from productive virus infection in large or small cerebral arteries,
or both. Patients present with headache; fever; mental status changes; transient ischemic
attacks; and focal deficits (stroke). The clinical spectrum of VZV vasculopathy is protean. For
example, one case of VZV vasculopathy was characterized by posterior ischemic optic
neuropathy with a normal cerebral angiogram and MRI [65]. Cerebral aneurysms and
hemorrhage can also develop from viral invasion of vessels [66,67]. VZV vasculopathy often
occurs without rash [68,69].

The cerebrospinal fluid (CSF) usually, but not always, reveals a mononuclear pleocytosis and
oligoclonal bands. The oligoclonal IgG has been shown to be antibody directed against VZV
[70]. Brain imaging usually reveals ischemic or hemorrhagic infarcts, more deep-seated than
cortical lesions and at gray-white matter junctions. Cerebral angiography also reveals areas of
focal arterial stenosis or occlusion. Macroscopically, a predominance of gray-white matter
junction lesions is seen. Microscopically, virus is present in affected cerebral arteries [71] but
not in areas of infarction, although in chronic cases virus may be seen in brain parenchyma,
usually close to arteries and veins. The primary site of VZV is in cerebral arteries, which contain
multinucleated giant cells, Cowdry A inclusion bodies, and herpes virus particles. Postmortem
virologic analysis has revealed not only VZV DNA, but also VZV antigen in cerebral vessels
[71].

Confirmation of VZV vasculopathy requires virologic analysis to detect amplifiable VZV DNA
or anti-VZV IgG antibodies or both in the CSF. PCR is the diagnostic test of choice for herpes
simplex virus (HSV) encephalitis, with HSV DNA present early in the course of acute disease,
whereas antiviral antibody is detected only in the second week [72]. In cases of VZV
vasculopathy, the CSF does not always contain PCR-amplifiable VZV DNA, but does contain
anti-VZV IgG [73]. The detection of anti-VZV IgG, but not VZV DNA, likely reflects the
chronic, protracted course of disease. Testing for both VZV DNA and anti-VZV IgG must be
done, and only when both are negative can the diagnosis of VZV vasculopathy be excluded.
Also, because VZV vasculopathy can occur without rash, all vasculopathies of unknown
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etiology should be evaluated for VZV. Rapid diagnosis of VZV vasculopathy is important
because the mortality without treatment is 25% [74], whereas treatment with intravenous
acyclovir, even after neurologic disease has been present for months, can be curative [65].

Varicella zoster virus myelopathy
Two clinical presentations of VZV myelitis predominate. The first is a self-limiting,
monophasic spastic paraparesis, with or without sensory features and sphincter problems. This
so-called “postinfectious myelitis” usually occurs in immunocompetent patients, days to weeks
after acute varicella or zoster. Its pathogenesis is unknown. The CSF usually reveals a mild
mononuclear pleocytosis with a normal or slightly elevated protein. Steroids are used to treat
these patients [75], although some improve spontaneously [76].

The second presentation is an insidious, progressive, and sometimes fatal myelitis, seen mostly
in immunocompromised individuals. Because AIDS is so prevalent, this has become the most
common condition associated with VZV myelitis. CSF examination reveals a mild,
predominantly mononuclear pleocytosis with elevated protein. MRI reveals longitudinal
serpiginous enhancing lesions. Diagnosis is confirmed by the presence of VZV DNA or anti-
VZV IgG or both in CSF [77]. Pathologic and virologic analyses of the spinal cord from fatal
cases have shown frank invasion of VZV in the parenchyma [78] and, in some instances, spread
of virus to adjacent nerve roots [79]. Not surprisingly, several patients have responded
favorably to antiviral therapy [80-82]. Importantly, VZV myelitis may develop with rash. Early
diagnosis and aggressive treatment with intravenous acyclovir has been helpful, even in
immunocompromised patients [80]. The benefit of steroids in addition to antiviral agents is
unknown.

Most recently, a case of VZV spinal cord infarction was identified by diffusion-weighted MRI
and confirmed virologically [83]. This indicates that VZV vasculopathy can cause stroke in
the spinal cord and the brain, and that abnormalities on diffusion-weighted MRI is crucial for
diagnosis.

Varicella zoster virus retinal necrosis
VZV-induced necrotizing retinitis manifests as two clinical syndromes: acute retinal necrosis
(ARN) and progressive outer retinal necrosis (PORN).

Acute retinal necrosis
ARN is seen in both immunocompetent and immunocompromised hosts. Patients present with
periorbital pain and floaters with hazy vision and loss of peripheral vision. ARN is a full-
thickness retinal necrosis characterized by focal, well-demarcated areas of necrosis in the retina
located beyond the major temporal vascular arcades. Distinguishing features of this occlusive
vasculopathy are prominent intraocular inflammation in the anterior chamber and vitreous
[84]. In addition to VZV as the causal agent [85], both HSV-1 and -2 can induce ARN [86,
87]. Patients are typically treated with intravenous acyclovir, steroids, and aspirin followed by
oral acyclovir [88]. Intravitreal injections of foscarnet and oral acyclovir have been used in
early, milder cases. In ARN caused by VZV, brivudine (not available in the United States) and
valgancyclovir have demonstrated good results [89].

Progressive outer retinal necrosis
PORN is caused almost exclusively by VZV. After cytomegalovirus, VZV-associated PORN
is the second most common opportunistic retinal infection among AIDS patients in North
America [90]. PORN occurs primarily in AIDS patients with CD4 counts typically less than
10 cells/mm3 of blood [91], and in other immunosuppressed individuals [92]. PORN may be
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preceded by retrobulbar optic neuritis and aseptic meningitis [93], central retinal artery
occlusion, or ophthalmic distribution zoster [94], and may occur together with multifocal
vasculopathy or myelitis. Patients present with sudden painless loss of vision, floaters, and
constricted visual fields with resultant retinal detachment. Unlike ARN, there is little or no
inflammation in the anterior chamber or vitreous and no occlusive vasculitis. Multifocal,
discrete opacified lesions begin in the outer retinal layers peripherally or posterior pole; only
late in disease are inner retinal layers involved. Diffuse retinal hemorrhages and whitening
with macular involvement bilaterally are characteristic findings.

VZV was shown to be the causative agent of PORN based on the detection of VZV DNA, VZV
antigen, and virus particles in aqueous-vitreous biopsies [95], and in vitreous-retinal cultures
[96], and by histologic examination of necropsy specimens from eyes and brains combined
with in situ hybridization [97]. There have also been rare reports of cytomegalovirus and HSV-1
antigens detected in the retina of patients with PORN [98], and cytomegalovirus DNA has been
amplified in the vitreous of patients with PORN [99]. Nevertheless, multiple studies have
shown that VZV is the most common cause.

The immediate recognition and treatment of PORN is essential because of its destructive nature
and high likelihood of retinal detachment. Unfortunately, multiple combinations of antiviral
medications and other experimental treatments have not successfully treated all cases of PORN.
Treatment with intravenous acyclovir has given poor or inconsistent results [100], and even
when acyclovir helped, VZV retinopathy recurred when drug was tapered or stopped. PORN
patients treated with a combination of ganciclovir and foscarnet or with ganciclovir alone had
a better final visual acuity than those treated with acyclovir or foscarnet [101]. In one instance,
oral bromovinyldeoxyuridine treatment was successful when acyclovir failed [102].
Aggressive combined antiviral treatment over a prolonged period with repair of retinal
detachment may save the patient’s vision. The best treatment for PORN in AIDS patients may
be prevention with highly active antiretroviral therapy, which seems to have decreased the
incidence of this syndrome [103].

Zoster sine herpete
Zoster sine herpete (pain without rash) is caused by reactivation of VZV [104], a concept first
supported by the description of dermatomal distribution radicular pain in areas distinct from
pain with rash in zoster patients [105]. Currently, most clinicians regard zoster sine herpete
exclusively as the rare occurrence of chronic radicular pain without rash with virologic
confirmation of VZV reactivation. In recent years, the detection of VZV DNA and anti-VZV
antibody in patients with meningoencephalitis, vasculopathy, myelitis, cerebellar ataxia, and
polyneuritis cranialis, all without rash, has expanded the spectrum of VZV infection without
rash.

The first verification of zoster sine herpete was in a physician who developed acute trigeminal
distribution pain without rash, associated with a four-fold rise in serum antibody specific to
VZV [106]. Schott [107] reported four patients who developed trigeminal distribution zoster
followed years later by zoster sine herpete in the same distribution of the trigeminal nerve as
their previous zoster; unfortunately, none were studied virologically. Further virologic
verification of zoster sine herpete came from PCR analysis of CSF from two men with
prolonged thoracic distribution radicular pain without rash; amplifiable VZV DNA, but not
HSV DNA, was found in their CSF and blood MNCs, and pain resolved after treatment with
intravenous acyclovir [104]. An additional virologically confirmed case demonstrated
electromyographic fibrillation potentials restricted to chronically painful thoracic roots [108].
MRI of another patient with virologically verified active VZV infection revealed inflammation
in ganglia and nerve roots corresponding to persistent pain [23].
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Virologic analyses have demonstrated the association of VZV with meningoencephalitis,
vasculopathy, myelitis, cerebellar ataxia, and polyneuritis cranialis, all without rash. Powell
and coworkers [109] reported a patient with meningoencephalitis without rash in whom VZV
DNA was detected in the CSF, and Mancardi and coworkers [110] described a patient with
encephalomyelitis without rash in whom anti-VZV antibody was found in the CSF.
Kleinschmidt-DeMasters and coworkers [111] reported an HIV-positive patient with a fatal
encephalomyelitis and necrotizing vasculitis, pathologically verified to be caused by VZV
without rash. Cases of unifocal and multifocal VZV vasculopathy in the absence of zoster rash
resulting in stroke have been verified virologically [68,69]. Two patients with myelopathy in
the absence of rash have been described: one developed myelopathy 5 months after zoster rash,
at which time amplifiable VZV DNA was detected in the CSF; the second patient developed
myelopathy concurrent with zoster and the myelopathy recurred 6 months later in the absence
of rash, at which time both VZV DNA and VZV antibody were detected in the CSF [104].

Although it is well recognized that cerebellar ataxia may complicate childhood varicella
[112], there is one report of a child who became ataxic 5 days before chickenpox developed
[113]. Most recently, acute cerebellar ataxia without rash has been reported in adults whose
CSF revealed VZV DNA and VZV antibody [114,115]. Polyneuritis cranialis without rash
caused by VZV infection has also been described in a patient with involvement of cranial nerves
IX, X, and XI, and upper cervical nerve roots without rash, and with anti-VZV antibody in the
CSF [116]. There is also a growing body of literature on ocular abnormalities associated with
zoster sine herpete. Goon and coworkers [117] reported a case of severe, unremitting eye pain
without rash proved to be caused by VZV infection by the detection of VZV DNA in nasal and
conjunctival samples. In addition, cases of third cranial nerve palsies [118], retinal periphlebitis
[119], uveitis [118,120], iridocyclitis [121], and disciform keratitis [122], all without rash and
confirmed virologically to be caused by VZV, have been reported.

Two remarkable cases of VZV infection without rash deserve mention. The first was a 77-
year-old man with T-cell lymphoma and no history of zoster rash who developed an acute fatal
meningoradiculitis of cranial nerve roots and cauda equina, pathologically and virologically
confirmed to be caused by VZV [123]. The second case was an immunocompetent adult who
had experienced relentless trigeminal distribution pain for more than a year with no history of
zoster rash; pathologic and virologic analysis of a trigeminal ganglionic mass confirmed
chronic active VZV ganglionitis [124].

Prevalence estimates of VZV-induced pathology without rash await virologic analysis of
additional patients with prolonged radicular pain or other neurologic symptoms and signs.
Analysis should include both a test for anti-VZV IgG and PCR to amplify VZV DNA in CSF,
and examination of blood MNCs for VZV DNA. Finally, the nosologic entity of zoster sine
herpete has considerable implications for analysis and treatment of patients with PHN. Overall,
VZV reactivation from latency in ganglia produces a variety of neurologic disorders all caused
by the same pathogen and in the absence of zoster rash.

Vaccination
Widespread, aggressive VZV vaccination has reduced the total number of varicella cases by
approximately 85% and the number of moderate-to-severe cases by 95% to 100% [125]. Now,
like the live childhood varicella vaccine, there is a live zoster vaccine that seems to be safe and
effective clinically. The results of a prospective, double-blind, placebo-controlled trial of
attenuated VZV vaccine designed to prevent zoster and PHN in men and women over the age
of 60 were recently reported [126]. Otherwise healthy adults age 60 years or older (median 69
years) were vaccinated with placebo or an attenuated Oka/Merck-VZV vaccine containing
18,700 to 60,000 plaque-forming units of virus, considerably greater than the approximately
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1350 plaque-forming units in the Oka/Merck-VZV vaccine administered to American children
since 1995. More than 38,000 recipients of the “zoster vaccine” were followed closely for 3
years. The incidence of zoster in the placebo group was 11.1 per 1000-person years,
approximating the results of an epidemiologic survey performed a decade ago, which revealed
zoster exceeding 10 cases per 1000-person years in individuals older than 75 years [19]. The
effect of zoster vaccine was impressive; compared with placebo, vaccination reduced the
incidence of shingles by 51%, the incidence of PHN by 66%, and the burden of illness by 61%.

Overall, serious adverse effects and deaths occurred in 1.4% of both vaccine and placebo
recipients. In more than 6000 subjects who kept daily diaries of minor adverse effects for 42
days, 48% of vaccine recipients reported injection site erythema, pain or tenderness, swelling,
and pruritis, compared with 16% of placebo recipients. In the same 6000 subjects, serious
adverse effects were significantly more frequent (P = 0.03) in vaccine recipients (1.9%)
compared with placebo recipients (1.3%), although no specific serious effects emerged. The
relative impact of these side effects on the elderly (age ≥70) compared with younger patients
was not examined but might be important in future analyses, because the at-risk population
over age 70 years is projected to increase substantially in the coming decades. Although the
Oka/Merck VZV vaccine on rare occasions unmasks a childhood immunodeficiency disorder,
no cases of disseminated zoster that might have been attributed to zoster vaccine in a person
with undiagnosed lymphoma, leukemia, or the like were reported.

In 2006, zoster vaccine received FDA approval for healthy VZV-seropositive adults over age
60. Zoster vaccine increases cell-mediated immunity to VZV in such individuals, and the boost
is likely to last for decades. Because zoster and its attendant neurologic complication of PHN
are common and serious, it seems prudent to recommend zoster vaccine. The Census Bureau
projects that by the year 2050, there will be more than 21 million Americans 85 years of age
or older (http://www.census.gov/ipc/www/usinterimproj/natprojtab02a.pdf).

Despite the development of a vaccine to prevent zoster, even if every healthy adult in the United
States over age 60 years is vaccinated, there would still be approximately 500,000 zoster cases
annually, about 200,000 of whom will experience PHN, and stroke, blindness, and myelopathy
caused by VZV reactivation. Furthermore, because zoster vaccine is not approved for
immunocompromised individuals, neurologic disease produced by VZV reactivation in this
population is a continuing problem.

Physical and molecular properties of varicella zoster virus
VZV is one of the eight human herpesviruses and is morphologically indistinguishable from
HSV-1, the prototype alphaherpesvirus. The VZV genome is a linear, double-stranded DNA
molecule 124,884 nucleotides in length [127] with close homology to the HSV genome. The
lipid envelope encloses the icosahedral nucleocapsid, which consists of 162 capsomeres.
Virions are pleomorphic with a 150- to 200-nm diameter. In tissue culture, VZV produces a
cytopathic effect in approximately 3 days, characterized by the formation of large
multinucleated syncytia without the release of significant quantities of stable infectious virions.
VZV is highly cell-associated making it difficult to raise sufficient quantities of cell-free virus
for molecular analysis.

The entire virus genome from 13 independent isolates has been sequenced. The VZV prototype
consists of a long and short region, each bounded by inverted and terminal repeat sequences
[127]. The long segment contains 104,836 base pairs (bp) of unique DNA flanked by 88-bp
terminal repeat sequences. The short segment consists of 5232 bp of unique DNA flanked by
7320-bp repeat sequences. Analysis of the 124,884-bp VZV genome has identified 71 predicted
open reading frames (ORF) numbered consecutively from the leftward end of the virus genome.
ORFs 62, 63, and 64 map within the internal repeat region of the short segment of the VZV
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genome and are duplicated (although in opposite orientation) as ORFs 71, 70, and 69,
respectively, within the terminal repeat region. ORFs 42 and 45 may be exons from the same
approximately 5.7-kbp primary transcript. There are 68 predicted unique VZV genes.
Additionally, two novel VZV genes (ORFs 9A and 33.5) have been identified experimentally,
indicating a potential coding capacity of 70 unique genes.

Alphaherpesvirus gene transcription is classified into three distinct kinetic groups: (1)
immediate-early, (2) early, and (3) late [128-130]. Immediate-early genes are transcribed in
the absence of de novo protein synthesis and regulate transcription of early and late virus genes.
The onset of early gene transcription precedes virus DNA replication. Transcription of early
genes is induced by immediate-early proteins and early proteins, which are predominately
involved in virus DNA replication and accumulate in the presence of inhibitors of DNA
synthesis. Late proteins, which include the major virus structural proteins, are transcribed from
progeny viral DNA, and their transcription is blocked by inhibitors of virus DNA synthesis.

During productive infection of cells in culture, transcripts mapping to all predicted VZV genes
have been detected. PCR-based macroarrays developed to detect VZV transcription showed
that major regions of gene transcription are not clustered, and instead are located throughout
the virus genome [131]. These results were confirmed in a study using oligonucleotide-based
microarrays [132]. Slight differences that were noted between the two array analyses are most
likely caused by differences in virus strain and host cells.

Latency
The hallmark of herpesviruses is their ability to establish a life-long latent infection punctuated
by periods of virus recrudescence. Alphaherpesvirus latency is characterized by the ability to
reactivate infectious virus, the presence of virus DNA in ganglionic neurons, and limited virus
gene transcription.

Virologic features in latently infected human ganglia
The hypothesis that VZV can establish a latent infection in sensory ganglia was first proposed
by Head and Campbell [41], who noticed dermatomal distribution, varicella-like lesions in
zoster cases. Serologic data indicated that varicella and zoster were caused by the same virus
[133], but it was not until restriction endonuclease analysis of DNA from varicella and zoster
lesions in the same individual that VZV was confirmed to cause both diseases [134].

VZV becomes latent in neurons [135-138] in cranial nerve, dorsal root, and autonomic ganglia
along the entire human neuraxis. Latent VZV DNA assumes a circular or concatameric (end-
to-end) state [139] and is present at a frequency of two to nine copies in 1% to 7% of individual
neurons, which correlates to a virus burden of 30 to 3500 VZV DNA copies per 100 ng of total
ganglionic DNA [137,138,140-144]. The wide range of VZV copy number during latent
infection may reflect the degree of primary infection. For example, during varicella, the VZV
DNA burden in blood ranges from 200 to 500 copies per 15,000 peripheral blood MNCs, 100
to 1000 copies per milliliter of whole blood, and 100 to more than 10,000 copies per milliliter
of serum [145,146]. Furthermore, during the many decades from the time of infection until
death, the amount of virus in latently infected ganglia is likely to be affected by exposure of
adults to children with varicella or to other adults with zoster, or by spontaneous subclinical
reactivation of VZV [147-149].

Varicella zoster virus gene expression in latently infected human ganglia
Transcripts corresponding to VZV genes 21, 29, 62, 63, and 66 have been identified in latently
infected human ganglia [150-152]. The VZV gene 63 transcript is the most prevalent and
abundant detected [153]. IE63, the immediate-early protein encoded by ORF 63, was the first
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VZV protein to be detected in latently infected human ganglia [154]. Subsequently,
immunohistochemistry detected proteins encoded by VZV genes 62 and 66 [155] and by VZV
genes 4, 21, and 29 [156,157]. The detection of protein encoded by VZV gene 4 requires
confirmation because VZV gene 4 transcripts have not yet been found in latently infected
human ganglia.

Animal models of varicella zoster virus infection
Development of an experimental animal model that recapitulates the pathogenesis of VZV seen
in humans has been a goal ever since the realization that VZV infects only humans. Important
criteria for any animal model of VZV latency include: (1) ability to reactivate the virus; (2)
presence of virus nucleic acids in ganglia, but not in nonganglionic tissues; (3) presence of
virus exclusively in neurons; and (4) limited transcription of virus genes.

Experimental inoculation of VZV into small animals including rabbits, mice, and rats leads to
seroconversion in the absence of clinical signs [158-163]. After corneal inoculation of VZV
in mice, viral DNA is detected in ganglionic neurons and nonneuronal cells, and in
nonganglionic tissues 1 month after infection [164]. Intramuscular inoculation of guinea pigs
with VZV produces a papular exanthem without vesicles [165], and VZV DNA has been
detected by PCR in ganglia of guinea pigs 80 days after subcutaneous inoculation [166]. VZV
RNA has also been detected in ganglia of guinea pigs by in situ hybridization 5 weeks after
ocular inoculation [167]. It is difficult, however, to evaluate the usefulness of the guinea pig
model because the absence of virus nucleic acids in nonganglionic tissues has not been shown.
In addition, reactivation of latent VZV has not been demonstrated in guinea pigs.

Sadzot-Delvaux and coworkers [168] inoculated VZV subcutaneously into adult rats. Although
no clinical signs developed, virus nucleic acids and proteins were detected in dissociated
ganglionic neurons up to 9 months after experimental infection. Because the ganglia were
cultured for 3 to 12 days, in vitro reactivation could not be excluded. Latent VZV infection has
been reported in rats inoculated by footpad and sacrificed 1 month later [169,170]. The
detection of VZV DNA in both neurons and nonneuronal cells [171] of dorsal root ganglia
harvested 1 to 3 months after footpadinoculation, however, questions the validity of the rat
model. In addition, in vivo VZV reactivation in rats has not been reported.

Direct inoculation of VZV into human thymus and liver implants under the kidney capsule of
severe combined immunodeficient mice results in virus infection as evidenced by the detection
of virus proteins for 3 weeks after infection in CD4+ and CD8+ T cells [172]. Similar studies
using human ganglionic implants have been used to demonstrate virus infection [173]. The
absence of an intact immune system in these animals makes it difficult, however, to study
latency or reactivation. Overall, although VZV reaches ganglia after experimental infection of
small animals, nonganglionic tissues have not been studied and reactivation has not been
demonstrated.

Oral-nasal-conjunctival application of the attenuated vaccine strain of VZV in marmosets
results in mild pneumonia and an immune response without clinical disease [174].
Subcutaneous inoculation of the Oka VZV (vaccine strain) into the breast of chimpanzees
produces viremia and a mild rash restricted to the site of inoculation [175]. VZV latency or
reactivation has not been studied, however, in chimpanzees.

Simian varicella virus as a model for human varicella zoster virus disease
Immunologic, virologic, and pathologic features of simian varicella virus (SVV) infection of
nonhuman primates closely resemble those of human VZV infection. Like VZV in humans,
primary infection of primates with SVV leads to varicella followed by virus latency and
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spontaneous reactivation [176]. Intratracheal inoculation of SVV into nonhuman primates
results in persistence of virus DNA in multiple organs, including blood MNCs for 2 years
[177,178]. SVV DNA can be detected in ganglia 6 to 7 days after intratracheal or intravenous
inoculation before varicella rash, pointing to hematogenous spread of the virus [179]. In
monkeys intratracheally inoculated with SVV, virus DNA has been detected in both neurons
and nonneuronal cells 9 to 10 months after infection, and exclusively in neurons 2 years after
infection [180].

The authors developed a model of natural SVV infection in monkeys by exposing SVV-
seronegative monkeys to other monkeys that had been inoculated intratracheally with SVV
[181]. These naturally infected monkeys harbor latent SVV DNA in ganglionic neurons
[182] at multiple levels of the neuraxis [181], and both clinical and subclinical reactivation of
SVV were induced by immunosuppression and stress [183]. Subclinical reactivation of latent
SVV also occurs after irradiation in rhesus monkeys [184].

The model of SVV infection of nonhuman primates is well-suited for studies to dissect the
relative role of immunosuppression in varicella reactivation. Such studies assume importance
in light of the association between VZV reactivation frequency and extent of
immunosuppression, with a higher incidence in patients receiving chemotherapy and
radiotherapy than in those receiving either alone [185]. Moreover, varicella reactivation results
in serious neurologic complications in immunosuppressed individuals.

Summary
VZV is an exclusively human, highly neurotropic alphaherpesvirus. Primary infection causes
chickenpox (varicella), after which virus becomes latent in cranial nerve ganglia, dorsal root
ganglia, and autonomic ganglia along the entire neuraxis. Decades later, VZV may reactivate
to cause herpes zoster (shingles), pain, and rash in one to three dermatomes. Multiple
neurologic complications after VZV reactivation include PHN; vasculopathy; myelitis;
necrotizing retinitis; and zoster sine herpete (pain without rash). Many may occur without rash
and are difficult to recognize. Virologic confirmation requires testing the CSF for VZV DNA
and anti-VZV IgG. Immediate treatment with antiviral agents may be warranted. The relative
role of immunosuppression in the frequency and consequences of VZV reactivation awaits
elucidation in the animal model of infection of monkeys with SVV, the only system to date
that closely recapitulates the human disease. Successful mass vaccination against herpes zoster
will have a profound impact on the health and quality of life of a steadily growing elderly
population. Even if every healthy adult in the United States over age 60 years is vaccinated,
however, there would still be approximately 500,000 zoster cases annually, about 200,000 of
whom will experience PHN, and stroke, loss of vision, and myelopathy caused by VZV
reactivation.
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Fig. 1.
The neurologic complications of varicella zoster virus reactivation.
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