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Onset of proteotoxicity is linked to change in the subcellular location of proteins that cause misfolding diseases. Yet,
factors that drive changes in disease protein localization and the impact of residence in new surroundings on proteotox-
icity are not entirely clear. To address these issues, we examined aspects of proteotoxicity caused by Rnql-green
fluorescent protein (GFP) and a huntingtin’s protein exon-1 fragment with an expanded polyglutamine tract (Htt-103Q),
which is dependent upon the intracellular presence of [RNQ*] prions. Increasing heat-shock protein 40 chaperone activity
before Rnq1-GFP expression, shifted Rnql-GFP aggregation from the cytosol to the nucleus. Assembly of Rnq1-GFP into
benign amyloid-like aggregates was more efficient in the nucleus than cytosol and nuclear accumulation of Rnq1-GFP
correlated with reduced toxicity. [RNQ™] prions were found to form stable complexes with Htt-103Q, and nuclear
Rnq1-GFP aggregates were capable of sequestering Htt-103Q in the nucleus. On accumulation in the nucleus, conversion
of Htt-103Q into SDS-resistant aggregates was dramatically reduced and Htt-103Q toxicity was exacerbated. Alterations in
activity of molecular chaperones, the localization of intracellular interaction partners, or both can impact the cellular
location of disease proteins. This, in turn, impacts proteotoxicity because the assembly of proteins to a benign state occurs

with different efficiencies in the cytosol and nucleus.

INTRODUCTION

Protein misfolding and accumulation of amyloid-like aggre-
gates are the hallmarks of a broad class of protein confor-
mational diseases, which include Alzheimer’s disease, fron-
totemporal dementia, spongiform encephalopathies, and
polyglutamine expansion diseases (Carrell and Lomas,
1997). Factors that initiate protein aggregation and disease
onset include inheritance of mutant proteins, aberrant pro-
tein processing, expansion of glutamine- or alanine-rich
tracts of amino acids, and environmental stress (Chiti and
Dobson, 2006). The amino acid sequence of individual, dis-
ease-causing proteins defines the neurodegenerative disor-
der as well as the affected brain regions. Although it is
unclear why some neuronal populations are more vulnera-
ble to toxicity and others are more apt to efficiently manage
protein misfolding events (Taylor et al., 2002). The differen-
tial susceptibility of various neuronal subtypes to proteotox-
icity indicates that the cellular environment plays a major
role in dictating whether a misfolded disease protein is toxic
(Balch et al., 2008; Morimoto, 2008).
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The exact nature of the neurotoxic conformer formed by
individual, disease proteins is not clear (Caughey and
Lansbury, 2003). Aggregates formed by disease proteins
can sequester essential cellular proteins (Burke ef al., 1996;
Steffan et al., 2000), inhibit the activity of the proteasome
(Bence et al., 2001), or both and thereby cause cell death.
Yet, the extent of disease protein aggregation does not
always correlate with the observed pathology (Caughey
and Lansbury, 2003; Haass and Selkoe, 2007) and small
oligomers formed by disease proteins have been implicated
as the toxic species (Kayed et al., 2003; Haass and Selkoe,
2007; Treusch et al., 2009).

A primary mechanism to prevent the accumulation of
toxic protein species is chaperone-dependent suppression of
disease protein aggregation and subsequent degradation
(Muchowski and Wacker, 2005; Cohen et al., 2006). Emerging
evidence demonstrates that the conversion of disease pro-
teins into ordered, benign aggregates also serves to prevent
the accumulation of toxic protein oligomers (Behrends ef al.,
2006; Cheng et al., 2007). Paradoxically, the ability of dis-
ease proteins to assemble into ordered benign aggregates
is critically dependent upon molecular chaperone action
(Behrends et al., 2006; Douglas et al., 2008). Thus, molec-
ular chaperones can protect against proteotoxicity by ei-
ther suppressing or promoting protein aggregation
(Douglas et al., 2009).

Cell stress or subtle age-dependent changes in the activity
of chaperone networks seem to enable pools of disease pro-
teins to escape surveillance and accumulate as toxic con-
formers (Morimoto, 2008). Epigenetic factors control molec-
ular chaperone expression, and the capacity of chaperone
networks in different cell types and subcellular compart-
ments is variable (Morimoto, 2008). Therefore, selective
vulnerability to conformational disease could result from
differences in the neuron’s ability to promote efficient flux
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of disease proteins through degradation and aggregation
pathways.

Components in the cytosol and nucleus have different ca-
pacities to buffer the presence of mutant disease proteins, but
the mechanism behind this occurrence is unknown (Ross,
1997). For example, normal Huntingtin protein (Htt) contains a
25-residue polyglutamine (polyQ) sequence within exon I
and predominately resides within the cytosol (De Roojj et al.,
1996). Huntington’s disease is caused by the expansion of
the polyQ region in Htt beyond 39 residues and is associated
with the nuclear accumulation of mutant Htt in striatal
neurons (DiFiglia ef al., 1997; Saudou et al., 1998). Conver-
sion of mutant Htt to a toxic species in the nucleus may
occur through its interactions with new nuclear neighbors
(Duennwald et al., 2006). In addition, the cytoplasmic chap-
eronin TriC, which functions to assemble mutant Htt into
benign aggregates (Behrends et al., 2006), is not present in
the nucleus (Kim ef al., 1994). Therefore, when mutant Htt
enters the nucleus, it seems to face a combination of negative
environmental influences that enable it to assume a toxic
conformation. However, whether interactions with environ-
mental factors drive a change in the cellular location of
mutant Htt is not clear.

To define how the cellular environment modulates the
accumulation of proteotoxic species, we study features of
Rnql and Htt toxicity in yeast. The yeast protein Rngl
belongs to a class of glutamine/asparagine-rich (Q/N) pro-
teins that exist in native and alternate, self-propagating amy-
loid-like forms (Sondheimer and Lindquist, 2000). Although
benign at low levels, elevated expression of exogenous Rnq1
or Rnql-green fluorescent protein (GFP) induces cell death
(Douglas et al., 2008). Formation of toxic Rnql species re-
quires the presence of pre-existing [RNQ"]/[PIN*] prions
(Derkatch et al., 1997; Douglas et al., 2008). Rnql toxicity is
suppressed by increasing the levels of the type II heat-shock
protein (Hsp)40 chaperone, Sisl, which enhances Rnql as-
sembly into SDS-resistant aggregates and reduces the accu-
mulation of a detergent-soluble Rnq1 species (Douglas et al.,
2008). These data demonstrate that chaperone-dependent
conversion of a toxic protein into amyloid-like aggregates
can serve as a protective mechanism. Thus, efficient flux
through amyloid assembly pathways seems to strongly in-
fluence whether cells tolerate disease protein expression.

Yeast prions act as environmental factors that promote the
conversion of proteins into alternate conformational states
(Meriin et al., 2002; Gokhale et al., 2005). In particular,
[RNQ™] prions expose surfaces that template the conversion
of endogenous yeast prions (Derkatch et al., 1997) and for-
eign prions (Taneja et al., 2007) into amyloid-like states.
Furthermore, [RNQ™] prions act via an ill-defined mecha-
nism to facilitate the conformational switching of the polyQ
expanded exon-1 fragment from huntingtin’s protein (Hitt-
103Q) from a benign to toxic state (Meriin et al., 2002). Thus,
the study of interactions between Rnql and Htt-103Q pro-
vides an excellent model to understand how members of a
disease protein’s neighborhood influence whether it be-
comes benign or toxic.

To investigate how a disease protein’s neighborhood in-
fluences its toxicity, we examined the impact of relocating
Rnq1-GFP aggregates from the cytosol to the nucleus on cell
death caused by Rnql and Htt-103Q. Shifting localization of
Rnq1-GFP from the cytosol to the nucleus dramatically en-
hanced the accumulation of SDS-resistant Rnql aggregates
and suppressed Rnql toxicity. Surprisingly, nuclear Rnql
aggregates sequestered Htt-103Q and interfered with the
formation of SDS-resistant Htt-103Q aggregates. The result-
ant accumulation of detergent-soluble forms of Htt-103Q
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correlated with a dramatic increase in Htt toxicity. Changes
in Rnq1-GFP and Htt-103Q localization reciprocally corre-
late with the ability of the cytosol and nucleus to package
Rnql and Htt into benign SDS-resistant aggregates.

MATERIALS AND METHODS

Strains, Plasmids, and Antibodies

Yeast strains W303, YEF473A, YEF473B, BY4741, and 10B-H49 were used to take
advantage of different genetic markers, gene integrations, gene deletions, and
karyogamy defects. W303, MAT a and «, can1-100 ade2-1, his3-11,15 leu2-3112
ura3-1 trpl-1; YEF473A, MAT a, trpl1A63, leu2A, ura3-52, his3A200, lys2-8A1,
SSF1-GFP:KANR; YEF473B, Mat a, trp1A63, leu2A, ura3-52, his3A200, lys2-8A1,
NUP49-GFP::HygB; 10B-H49 MATa, p° ade2-1, lys1-1, his3-11,15, leu2-3112, kar1-1,
ura3:KANR; BY4741 MAT a, his3A, leu2A, met15A, ura3A, SIS1-GFP:HIS3;
BYA4741 MAT a, his3A, leu2A, met15A, ura3A, NUP188-GFP::HIS3 (Huh et al., 2003).
All strains harbored Rnql in its [RNQ™] prion form and the generation of
isogenic [rng-] strains was accomplished via sequential passage of cells on plates
containing 3 mM guanidinium-HCI (Douglas et al., 2008). Strains were trans-
formed with plasmids and cultured in synthetic media as described previously
(Douglas et al., 2008). CuSO, was present in all media at a final concentration of
0.25 uM, which drove constitutive low level expression of all proteins under
control of the copper-inducible promoter element (CUP1). Commercial antibod-
ies including a-Hsp104, a-Nopl, a-GFP, a-FLAG, and «-PGK1 were obtained
from Assay Designs (Ann Arbor, MI), EnCor Biotechnology (Gainesville, FL),
Roche Diagnostics (Indianapolis, IN), Sigma-Aldrich (St. Louis, MO), and Invitro-
gen (Carlsbad, CA), respectively. Polyclonal antibodies including «-Sisl and
a-Ssal were generated by our laboratory. The polyclonal Rnql antibody was a
kind gift from the Lindquist laboratory. Supplemental Table 1 contains a detailed
list of yeast plasmids and their construction.

Sytox Dye Exclusion

W303a [RNQ™*] cells were sequentially transformed with pRS414-SIS1 or
PpRS414 and then pRS416-RNQ1 or pRS416. Transformants were grown over-
night to an ODyg, of 0.2-0.4 in synthetic media containing raffinose as the
carbon source. Galactose (2%) was added to the media to induce Rnql
expression from the galactose-inducible promoter element (GALI) in pRS416-
RNQI1. After 5 h of induced Rnql overexpression, 1 ODgq unit of cells was
collected, and Sytox permeability was measured with a FLUOstar fluorometer
(BMG Labtech, Offenburg, Germany) as described previously (Zakrzewska et
al., 2007).

Fluorescence Microscopy

Rnql-GFP or Rnql-monomeric red fluorescent protein (mRFP) as well as
Htt-25Q-GFP and Htt-103Q-GFP were expressed under control of the indi-
cated inducible promoters. Images were captured from live or fixed cells in
synthetic liquid media with an E600 fluorescence microscope (Nikon, Tokyo,
Japan), and images were processed with MetaMorph (Molecular Devices,
Sunnyvale, CA) and Photoshop (Adobe Systems, Mountain View, CA). The
nuclear envelope was delineated in YEF473B or BY4741 [RNQ™] cells via
visualization of the nuclear pore proteins Nup49-GFP or Nup188-GFP, re-
spectively. The localization of the nucleolus was monitored in YEF473A
[RNQ™*] cells by visualization of Ssf1-GFP.

Sisl-mediated localization of Rnq1-GFP to the nucleus was observed when
W303a [RNQ™] cells were sequentially transformed with pRS414-GPD-SIS1
and then pRS316-CUP1-RNQ1-GFP. Cells harboring both plasmids were cul-
tured in synthetic media overnight at 30°C to an ODgq of 0.5-2. Additional
CuSO, was added to overnight cultures at final concentration of 1 uM, which
allowed for Rnql-GFP expression and visualization. In the order of expres-
sion experiments, W303a [RNQ™] cells harbored two distinct plasmids that
expressed two proteins from either the GALT or CUP1 promoters. Cells were
grown overnight at 30°C in synthetic media containing raffinose (2%) to
ODygqp of 0.5-1.5. CuSO, was added to overnight cultures at final concentra-
tion of 1 and 10 uM to visualize the respective Rnql-GFP and Rnql-mRFP
proteins under control of the CUP1 promoter. Media were then supplemented
with galactose (2%) to induce expression of the indicated proteins under
control of the GALI promoter. After 1-h incubations, cells were collected and
photographed live or fixed.

Cells were stained with 4,6-diamidino-2-phenylindole (DAPI) to visualize
nuclear DNA. Cells were first fixed with 4% formaldehyde for 30 min in
culture, washed twice with phosphate-buffered saline (PBS), and permeabil-
ized by incubation in 0.1% PBS Triton X-100 for 10 min. Cells were then
washed twice with PBS, incubated for 10 min with DAPI (1 ug/ml), and again
washed twice with PBS before visualization.

Cytoduction

W303a [RNQ™*] cells that harbored pRS416-GAL1-Rnq1-GFP-NLS were grown
overnight in synthetic media containing raffinose (2%). Once cells reached an
ODy of 0.5-1.5, media was supplemented with galactose (2%) and incubated

4163



P. M. Douglas et al.

for 2 h. Cells were then mated with the 10B-H49« [rng-] strain that is defective
in karyogamy (Sondheimer and Lindquist, 2000). Before mating, 10B-H49
cells harboring pRS315-CUP-RNQ1-mRFP, were cultured overnight at 30°C in
synthetic media. 10B-H49 cells at an ODg, of 0.5-1.5 were supplemented with
50 uM CuSO, and cultured for an additional 2 h before they were mated.
Mating was conducted with 2 ODgq, units of cells from either mating type
that were washed with sterile double distilled H,O, mixed and incubated on
YPD plates. Incubations were performed at 30°C for either 30 min or 2 h, after
which cells were scraped and washed with sterile PBS. Mated cells were fixed
in formaldehyde and stained with DAPI before visualization.

Analysis of Rnql and Htt-103Q Toxicity

Cell growth on agarose plates was monitored in [RNQ*] and [rng-] W303«
strains that harbored pRS416-RNQ1-GFP, pRS416-RNQ1-GFP-NLS, pYES2-
Flag-Htt-103Q-GFP or pYES2-Flag-Htt-103Q-GFP-NLS under control of the
GAL1 promoter. In the order of expression experiments, W303«a [RNQ*] cells
were transformed with two plasmids that expressed the indicated proteins
under control of the GALI or CUP1 promoter. Cells were grown overnight in
synthetic media containing 2% raffinose and 1 uM CuSO, to an ODy, of 1-2
before fivefold dilutions were spotted onto plates containing 2% galactose.
Cu** was present at a final concentration of 0.25 uM in agarose plates to
allow for modest, nontoxic expression of the indicated Rnql proteins off the
CUP1 promoter. Plates were incubated for 3-5 d at 30°C before being photo-
graphed.

Analysis of SDS-resistant Htt-103Q and Rnql Aggregates

Monitoring the assembly of Rnql and Htt-103Q into SDS-resistant aggregates
was performed as described previously by semidenaturing detergent agarose
gel electrophoresis (SDD-AGE) (Kryndushkin et al., 2003; Douglas et al., 2008)
and filter trap analysis (Scherzinger et al., 1997). Total protein levels from cell
extracts were standardized by a protein determination assay (DC protein
assay kit; Bio-Rad Laboratories, Hercules, CA). Polyvinylidene difluoride or
cellulose acetate membranes were probed with a-GFP or a-FLAG to visualize
Rnq1-GFP or FLAG-Htt-103Q-GFP. Monitoring protein levels by Western blot
was performed as described previously (Douglas et al., 2008). Quantitation of
band intensity was determined using QuantityOne 4.6.1 software (Bio-Rad
Laboratories).

Rnql Coimmunoprecipitation with Htt

Expression of Htt-103Q-GFP in W303«a [RNQ™] cells harboring pYES3-Htt-
103Q-GFP was induced by supplementation with 2% galactose. Nondenatur-
ing cell extracts were generated 2 h later in buffer containing 50 mM HEPES,
pH 7.4, 150 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, 1 mM phenylmethy-
sulfonyl fluoride (PMSF), and a protease inhibitor cocktail (Roche Diagnos-
tics). Coimmunoprecipitations were performed as described previously (Fan
et al., 2004). In brief, a-Rnql was added to lysates for 1 h before supplemen-
tation with preblocked protein G-beads. Htt-103Q-GFP was immunoprecipi-
tated with endogenous Rnql and detected with «-GFP by Western blot.
Strains that were used in coimmunoprecipitation experiments with exoge-
nous GFP-tagged Rnql and Htt-103Q-GFP, were constructed as follows.
W303a [RNQ™] cells were transformed with pYES3-Htt-103Q-GFP and
PRS316-RNQ1-GFP or pRS316-RNQ1-GFP-NLS. The expression of Rnql-GFP
and Rnq1-GFP-NLS was control of the CUP1 promoter. Three hours after the
addition of 50 uM CuSO, and 2 h after addition of galactose (2%) to cultures,
cell extracts were prepared under the nondenaturing conditions described
above. Rnq1-GFP and Rnq1-GFP-NLS were immunoprecipitated with a-Rnq1
and probed by Western blot for the presence of Htt-25Q-GFP or Htt-103Q-
GFP. All coimmunoprecipitation experiments were preformed in the presence
of Triton X-100, which prevents nonspecific Rnql aggregation. Under these
conditions, neither Rnql nor Htt-103Q was pelletable at low speed. Rnql
precipitation was only observed in presence of the indicated antibodies.

Size Exclusion Chromatography

Nondenaturing extracts from W303a [RNQ™"] cells were prepared for analysis
by size-exclusion chromatography as described previously (Behrends et al.,
2006). In brief, 250 ODs of mid-log phase cells were lysed by glass bead
disruption in 1.2 ml of buffer containing 25 mM Tris-HCI, pH 7.5, 50 mM KCl,
10 mM Mg,Cl, 1 mM EDTA, 5% glycerol, 1% Triton X-100, 1 mM PMSF, and
a protease inhibitor cocktail (Roche Diagnostics). Proteins in 500 ml of extract
were resolved on a Sephacryl S-200 Hi-Prep column (GE Healthcare, Pitts-
burgh, PA). The ability of Triton detergent in nondenaturing lysis buffers to
lyse the nucleus was assayed by monitoring the liberation of the resident
nucleolar protein Nop1 from pellet to supernatant fractions after a 13,000 X g
spin (data not shown).

Sisl-dependent suppression of Rnql-GFP toxicity is associated with en-
hanced formation of a high-molecular-weight SDS-resistant species and de-
pletion of low-molecular-weight pools (Douglas ef al., 2008). Small oligomeric
intermediates of amyloid assembly pathways have been implicated as a toxic
protein species (Kayed et al., 2003; Haass and Selkoe, 2007). However, Rnq1-
GFP migrates at the same low-molecular-weight peak in extracts from [rng-]
cells (Douglas et al., 2008) which do not assemble Rnql into amyloid-like
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aggregates. In addition, Rnql seems to be a natively unfolded (data not
shown). So the low-molecular pools of Rnq1-GFP detected by gel filtration are
most likely unassembled monomers but could also represent small oligomers
such as a dimer or trimer.

Isolation of Nuclei by Differential Centrifugation

[RNQ*] W303«a strains that harbored either pRS414-GPD or pRS414-GPD-
SIS1 were grown overnight in synthetic media at 30°C. Cultures (25 ml) were
diluted to an ODgqy, of 0.4 in 300 ml of synthetic media. After a 4- to 6-h
incubation period, 250 OD units of cells were collected and frozen in liquid
nitrogen. Frozen samples were thawed on ice and spheroplasts were created
via 45-min incubations at 30°C in the presence of 2 mg/ml Zymolyase-100T
(MP Biomedicals, Solon, OH). Cell extracts were generated by homogeniza-
tion of spheroplasts in buffer containing 18% Ficoll-400, 20 mM Tris-HCI, pH
7.5,20 mM KCl, 5 mM MgCl,, 3 mM dithiothreitol, 1 mM EDTA, 1 mM PMSF,
and protease inhibitor cocktail (Roche Diagnostics). Cell extracts were spun at
3000 X g for 5 min to clear unbroken cells, and the resulting supernatant was
spun at 13,000 X g for 20 min to pellet the nuclei. The supernatant and pellet
fractions from the 13,000 X g spin were boiled in sample buffer. Proteins were
resolved by SDS-polyacrylamide gel electrophoresis (PAGE) and detected by
Western blot analysis.

RESULTS

Sis1-mediated Suppression of Rnql Toxicity Is
Accompanied by Movement of Rnql-GFP Aggregates
to the Nucleus

To explore how changes in chaperone activity within the
cellular environment impact toxicity of disease proteins, we
examined the ability of the Hsp40 Sis1 to subdue the rapid
onset of Rnql toxicity in relation to the subcellular distribu-
tion of the Rnql-GFP aggregates. The yeast plasma mem-
brane becomes permeable to Sytox dye (Zakrzewska et al.,
2007) within 5 h of inducing Rnql overexpression (Figure
1A). Elevating Sisl expression within the physiological lev-
els observed during heat stress prevents Rnql from perme-
ablizing the yeast plasma membrane to Sytox, which corre-
lates with suppression of Rnql-induced cell death (Douglas
et al., 2008). It is interesting that, in ~50% of cells, Sisl-
dependent suppression of Rnq1 toxicity was associated with
a dramatic change in the localization of fluorescent foci
containing Rnq1-mRFP from the cytosol to the nucleus (Fig-
ure 1B). Rnq1-mRFP that accumulated within the nucleus
does not seem to be nucleolar because nuclear Rnql-mRFP
foci do not colocalize with the nucleolar marker Ssf1-GFP
(Supplemental Figure 1).

The link between suppression of Rnql-GFP toxicity by
Sis1 and the relocation of exogenous Rnql aggregates to the
nucleus is intriguing because, until now, changes in the
nucleocytoplasmic distribution of disease-causing proteins
has been associated with the onset of cell death (DiFiglia et
al., 1997; Saudou et al., 1998; Neumann et al., 2006). Type II
Hsp40s such as Sisl have been implicated in mediating the
accumulation of a range of proteins in the nucleus (Cheng et
al., 2008; Zhang et al., 2008). Thus, we sought to establish the
concept that molecular chaperones can impact proteotoxic-
ity by influencing the cellular location of the model disease
protein Rnql-GFP.

In control studies we demonstrated that the effect of Sis1
on Rnql aggregate localization was a specific result of Sisl
action on Rnq1-GFP. The Hsp70 Ssal as well as Hsp104 play
important roles in [RNQ™] prion propagation (Sondheimer
and Lindquist, 2000; Schwimmer and Masison, 2002) but do
not suppress Rnql toxicity (Douglas et al., 2008). Accord-
ingly, overexpression of either of these chaperones did not
detectably alter the subcellular distribution or expression
level of Rnq1-GFP (Figure 1, C and D). In addition, elevating
Sis1 levels did not have a pleiotropic effect on nucleocyto-
plasmic traffic. Sis1 overexpression did not alter the cellular
location of GFP (Figure 1C, right column), Sup35-GFP (Sup-
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Figure 1. Suppression of Rnql toxicity by Sisl correlates with the
nuclear accumulation of Rnq1 aggregates. (A) Sytox dye uptake into
W303 [RNQ™] cells expressing Rnql with and without excess Sisl.
Rnql overexpression was induced for 5 h before the addition of
Sytox dye, at which point fluorescent readings were taken every
min for 30 min. (B) Rnql-mRFP localization in the nucleus of
YEF473B [RNQ™] cells resultant from Sis1 overexpression. Fluores-
cent images show the cellular distribution of Rnql-mRFP, which
was overexpressed for 15 h from the CUPI promoter due to the
presence of 10 uM CuSO, in media. Nup49-GFP is a marker of the
nuclear envelope boundary. DAPI denotes the localization of nu-
clear DNA. (C) Effect of chaperone overexpression on the cellular
distribution of Rnq1-GFP in W303 [RNQ™] cells. Fluorescent images
show the cellular distribution of Rnql-GFP, which was overex-
pressed for 15 h from the CUPI promoter due to 1 uM CuSO,
present in media. The GFP panel on the right shows the localization
of GFP under conditions describes on the left. (D) Western blot
analysis of the indicated proteins from cell extracts in C.

plemental Figure 2, A-C) (Summers et al., 2008), or a GFP
reporter of nucleocytoplasmic transport that contains both
nuclear localization signal (NLS) and nuclear export signal
(NES) moieties (Supplemental Figure 2D) (Stade et al., 1997).
Furthermore, elevating Sis1 levels did not alter the architec-
ture of the nuclear envelope (Figure 1B and Supplemental
Figure 3).
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Figure 2. The impact of the order of Sisl and Rnql-GFP overex-
pression on Rnq1-GFP localization (A) The localization of Sis1-GFP
in BY4741 [RNQ™] cells was monitored by fluorescence microscopy.
Fixed cells were permeabilized and stained with DAPI in the merge.
(B) Cofractionation of Sis1 with nuclei in cell extracts. Differential
centrifugation was performed on native cell extracts from W303
[RNQ™] cells to determine the amount of Sis1 that could pellet with
the nuclear marker Nopl1 after centrifugation at 13,000 X g. Western
blot analysis shows the levels of the indicated protein in the total
(T), supernatant (S), or pellet (P) fractions. Sis1 was overexpressed
from the constitutively active GPD promoter. Untagged Rnql was
overexpressed from the GALI promoter via addition of 2% galactose
to cell cultures. (C) Fluorescent images show the cellular distribu-
tion of Rnq1-GFP that was expressed from the CUP1 promoter at
low, nontoxic levels due to the presence of 1 uM CuSO, in media.
Sisl was overexpressed from the constitutively active GPD pro-
moter. Rnql-GFP and Sis1 overexpression constructs were individ-
ually introduced into W303 [RNQ™] cells via sequential transforma-
tions, and the order of transformation of each protein was
designated as 1st or 2nd. Rnq1-GFP fluorescence was overlaid onto
phase images. (D) Quantitation of Rnq1-GFP nuclear compartmen-
talized populations of 200 cells from three separate transformations.
Values are expressed in percentage of total cells counted and the
error bars reflect the SD. The p value was <0.0001. (E) Expression
levels of the indicated proteins by Western blot analysis.

To understand how elevation of Sis1 impacts the localiza-
tion of Rnq1-GFP, the cellular compartmentalization of Sis1
was examined. Consistent with previous reports (Luke et al.,
1991), Sis1-GFP can support cell viability (data not shown)
and almost all of it localized to the nucleus (Figure 2A).
Endogenous Sisl cofractionated with the nuclear marker
Nop1l and not the cytosolic marker PGK1 or Hsp70 Ssal
(Figure 2B). On overexpression, large pools of Sis1 were now
detected in both the cytosol and nucleus (Figure 2B). Fur-
thermore, Sis1-GFP and Rnql-mRFP colocalized with each
other in the nucleus when coexpressed together (Supple-
mental Figure 4).

At this point, we also attempted to analyze the effect of
modulating Sis1 levels on the subcellular localization of
endogenous Rnql. However, this was technically difficult
because endogenous Rnql is expressed at low levels, and the
antibodies that were generated against Rnq1 are insufficient
for use in localization studies carried out by indirect immu-
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nofluorescence. Endogenous Rnql present in [RNQ™*] and
[rng-] cells formed large aggregates when cell extracts were
prepared in the absence of detergent for fractionation by
differential centrifugation (data not shown). Thus, we were
unable to determine the localization of endogenous Rnql or
the effect of Sis1 expression on the localization of endoge-
nous Rnql. Nevertheless, Rnq1-GFP can propagate as a
prion similar to endogenous Rnql (Derkatch et al., 2001).
Thus, experiments conducted with Rnql-GFP provide use-
ful information on basic aspects of molecular chaperone
action in cellular pathways for assembly of amyloid-like
aggregates.

Data obtained thus far suggest that Sisl overexpression
can suppress Rnql toxicity via mechanisms that involve its
action in both the cytosol and nucleus. Cytosolic Sis1 levels
are low and seem insufficient to support efficient assembly of
Rnq1-GFP into benign amyloid-like aggregates. Sis1 overex-
pression dramatically increases its cytosolic pool, which, in
turn, may account for its ability to increase the efficient
conversion of soluble Rnq1 into benign SDS-resistant aggre-
gates and suppress Rnq1 toxicity (Douglas et al., 2008). Yet,
the majority of Sisl is localized to the nucleus. Therefore,
increasing the ratio of Sis1 to Rnq1-GFP also may be protec-
tive because it depletes the cytosol of toxic Rnq1-GFP species
by enhancing Rnq1-GFP aggregation in the nucleus.

The localization data shown in Figure 1, B and C, was
obtained in a yeast strain that was sequentially transformed
with a plasmid that expressed Sisl from a glyceraldehyde-
3-phosphate dehydrogenase promoter element (GPD) and
then either Rnql-mRFP or Rnql-GFP expression plasmid.
Because cytosolic levels of Sis1 were normally very low, we
wondered whether the timing of Sisl overexpression rela-
tive to elevation of Rnq1 levels would have an impact on the
site of Rnq1-GFP aggregation. To address this question, the
order of Sis1 and Rnql-GFP expression was varied by se-
quentially introducing expression plasmids for these pro-
teins in yeast in different orders (Figure 2, C and D). When
Rnq1-GFP was expressed first, large Rnql-GFP aggregates
accumulated in the cytosol and subsequent Sis1 overexpres-
sion did not redistribute aggregates to the nucleus. In con-
trast, when Sis1 levels were elevated before Rnql-GFP ex-
pression, the nuclear accumulation of Rnq1-GFP aggregates
was clearly evident (Figure 2, C and D).

These data support the notion that Sis1 acts on both cy-
tosolic and nuclear Rnql-GFP aggregates. Yet, the level of
Sisl at the time when Rnql-GFP is induced has a profound
impact on the cellular location of Rnql-GFP aggregation.
When pools of Rnql-GFP are present in the cytosol before
elevation of Sis1, Sis1 enhances the assembly of native Rnql
into pre-existing aggregates that seem too large to enter the
nucleus. Yet, when Sisl levels are elevated at the time of
induced Rnql-GFP expression, formation of nuclear Rnql-
GFP aggregates predominates in ~50% of cells examined.
Thus, changes in the ratio of Sisl to Rnql-GFP can have
dramatic effects on whether amyloid-like aggregate assem-
bly occurs within the cytosol or the nucleus. Regarding
Rnq1-GFP, such chaperone-dependent changes in localiza-
tion seem to be part of the cellular mechanism for suppres-
sion of its proteotoxicity.

The Nuclear Environment Favors [RNQ*]-dependent
Rnq1-GFP Aggregation

We suggest that Sisl-dependent relocalization of Rnql-
GFP aggregates to the nucleus is protective against Rnq1-
GFP toxicity. However, Sisl overexpression dramatically
increases cytosolic pools of Sisl and Sis1 can suppress Rnql-
GEFP toxicity under conditions where Rnq1-GFP aggregation
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predominates in the cytosol. Thus, we sought to directly test
whether localization of Rnql-GFP to the nucleus protects
against Rnql-toxicity in absence of Sis1 overexpression. We
examined the toxicity of Rnq1-GFP and Rnq1-GFP L94A that
were tagged with an NLS from simian virus-40 (Kalderon et
al., 1984). The Rnql L94A allele contains a point mutation in
the Sis1-binding site in the nonprion domain of Rnql and is
highly toxic because its conversion into amyloid-like Rnq1
aggregates is inefficient (Douglas et al., 2008). Rnql-GFP-
NLS and Rnq1-GFP-NLS L94A were dramatically less toxic
than forms without the NLS tag (Figure 3A). Decreased
toxicity of NLS-tagged Rnql-GFP and Rnql-GFP L94A cor-
related with their accumulation in the nucleus (Figure 3B). It
is interesting that filter trap and SDD-AGE analysis dem-
onstrated that SDS-resistant pools of NLS-tagged forms of
Rnql-GFP and Rnql-GFP L94A accumulated to 1.5-fold
higher levels than the non-NLS-tagged forms, but their
expression levels were similar at all time points tested
(Figure 3, C-E).

Toxicity caused by Rnql-GFP overexpression correlates
with the accumulation of a low-molecular-weight pool of
Rnq1-GFP that migrates on gel filtration columns with an
apparent mobility of approximately of 175-200 kDa (Doug-
las et al., 2008). The exact nature of this unassembled pool of
Rnql1 is not clear; yet, its accumulation is a marker for Rnqgl
toxicity. We took advantage of this occurrence as a tool to
monitor the impact of the nuclear environment on Rnql-
GFP assembly and toxicity. Under toxic conditions, ~55% of
total Rnq1-GFP migrated as a high-molecular-weight species
and the other 45% behaved as a lower molecular weight
species. In contrast, almost all Rnq1-GFP-NLS behaved as a
high-molecular-weight species and unassembled pools of
Rnq1-GFP-NLS were difficult to detect (Figure 3F).

The dramatic decrease in unassembled Rnql pools corre-
lates well with the reduced toxicity of Rnq1-GFP-NLS. This
effect does not seem related to degradation of Rnql because
levels of total Rnql-GFP and Rnql-GFP-NLS are similar
(Figure 3E). When Rnq1-GFP accumulates in the nucleus the
decrease in unassembled pools of Rnql seems to occur in
response to the observed 1.5-fold increase in the accumula-
tion of SDS-resistant Rnq1-GFP aggregates (Figure 3, C-E).
Rnql-GFP aggregates were shown in previous studies to
bind thioflavin-T and thus seem amyloid like (Douglas et al.,
2008). These data suggest that conversion of Rnq1-GFP into
SDS-resistant amyloid-like aggregates is more efficient in the
nucleus than cytosol. Thus, accumulation of Rnq1-GFP in
the nuclear environment, via a mechanism that is indepen-
dent of Sisl overexpression, enables yeast to tolerate Rnql-
GFP expression.

Rnq1-GFP-NLS Is Toxic in the [rnq-] Cells

We interpret our data to suggest that the nuclear localized
Rnq1 is less toxic to cells because the nuclear environment is
more efficient than the cytosol at assembling Rnq1-GFP into
benign aggregates. Yet, the depletion of soluble cytosolic
Rnq1-GFP via its nuclear accumulation could be protective
in the absence of Rnql-GFP aggregation. Hence, we exam-
ined the effect of Rnq1-GFP-NLS overexpression on growth
of [rng-] cells where its aggregation does not occur. Rnql-
GFP-NLS, but not Rnq1-GFP, was toxic to [rng-] cells (Figure
4A). Rnql-GFP overexpression is not toxic in [rng-] cells
because [RNQ™] prions are required to template the forma-
tion of toxic Rnql species (Douglas et al., 2008). Thus, we
were surprised to observe Rnql-GFP-NLS exhibit a toxic
gain of function in [rng-] cells. Rnql-GFP-NLS toxicity in
[rng-] cells could not be rescued by Sis1 overexpression (data
not shown), and Rnql-GFP-NLS was not observed to form
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Figure 3. Rnql-GFP-NLS is less toxic than Rnql-
GFP in W303 [RNQ™] cells. (A) Analysis of toxicity
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SDS-resistant aggregates (Figure 4B). Identical results were
obtained with Rnq1-GFP-NLS L94A (data not shown). Rnq1-
GFP-NLS was found in both the nucleus and cytosol of [rng-]
cells (Figure 4C), so its sequestration to the nucleus seems to
be coupled to its [RNQ*] prion-dependent aggregation. At
present, it is not clear why Rnql-GFP-NLS, but not Rnql-
GEFP, is toxic to [rng-] cells. The observed toxicity may result
from an increase in the pool size of unassembled Rnql-GFP
in the nucleus. Nevertheless, efficient [RNQ*] prion-depen-
dent assembly of Rnql-GFP into an aggregated species
seems coupled to depletion of Rnq1-GFP from the cytosol.
We suggest that these coupled events represent a pathway
for Rnq1-GFP detoxification.

Nuclear Rnq1-GFP Aggregates Act In Trans to Detoxify
Rnq1 L94A

Rnql aggregation seems to prevent the accumulation of
toxic Rnql conformers in the cytosol by trapping soluble
Rnq1-GFP in the nucleus. If this is true, then the location of
pre-existing Rnql aggregate pools should dictate the site
where soluble Rnql is converted into [RNQ™] prion-depen-
dent aggregates. To test this prediction, we asked whether
an NLS-tagged pool of Rnql-GFP aggregates could act in
trans to concentrate nascent Rnq1 in the nucleus and thereby
suppress Rnql toxicity (Figure 5). Rnq1-GFP-NLS or Rnql-
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GFP under control of the CUP1 promoter was first expressed
at low nontoxic levels, which allowed for the assembly of
GFP-tagged Rnq1 into either nuclear or cytosolic aggregates,
respectively (Figure 5A). Different forms of Rnq-GFP were
expressed for 15 h to allow for distinct compartmentaliza-
tion within the cytosol or nucleus, then expression of Rnql-
mRFP under control of the GAL1 promoter was induced for
1 h and fluorescence of the different tagged proteins was
visualized. The subcellular location of Rnql-mRFP was de-
pendent upon the localization of preformed GFP-tagged
Rnql aggregates (Figure 5A). Nearly the entire pool of
newly synthesized Rnql-mRFP became colocalized with
pools of nuclear Rnql aggregates that accumulated dur-
ing the prior expression of Rnql-GFP-NLS (Figure 5A). It
is important that the severe growth defects caused by
GALI-dependent Rnql-GFP L94A overexpression were
suppressed through prior low-level expression of Rnql-
GFP-NLS (Figure 5B). Therefore, [RNQ*] prion-depen-
dent Rnq1-GFP aggregates can act in trans to trap Rnql-
mRFP in the nucleus, and this event is coupled to
suppression of Rnql toxicity.

To further demonstrate the concept that pre-existing pools
of amyloid-like assemblies can trap native amyloidogenic
proteins in a specific location, we conducted cytoduction
experiments (Figure 5C). Cytoduction refers to an experi-
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Figure 4. Targeting Rnql-GFP to the nucleus is toxic in W303
[rng-] cells. (A) Fivefold serial dilutions of W303 [rng-] cells harbor-
ing the indicated Rnql-GFP proteins were grown on agarose plates
containing galactose. (B) The ability of different Rnq1-GFP proteins
to assemble into SDS-resistant aggregates was monitored in [rng-]
cells by SDD-AGE analysis. The left lane shows Rnql-GFP from
W303 [RNQ™] cell extracts. (C) Fluorescent distribution of different
Rnq1-GFP proteins whose expression was driven by 2% galactose
for 4 h in [rng-] cells. Fixed cells were permeabilized and stained
with DAPI in the merge image.

mental situation where haploid yeast initiate the mating
process, fuse their plasma membranes, and mix cytosolic
contents, but fail to undergo karyogamy because one of the
tester stains is defective in nuclear fusion (Conde and Fink,
1976). This scenario allowed us to monitor the fate of soluble
Rnq1-mRFP in the cytosol of [rng-] cells that was introduced
into [RNQ*] cells, which harbored pre-existing nuclear Rnq1
aggregates formed by Rnql-GFP-NLS (Figure 5C). GFP-
tagged Rnql aggregates present in the nucleus of [RNQ™]
cells depleted the cytosol of [rng-] cells of soluble Rnql-
mRFP and drove the assembly of a hybrid aggregate that
contained both GFP and mRFP. Thus, nuclear Rnql aggre-
gates do indeed trap soluble Rnql in the nucleus by driving
its fusion into large assemblies whose size constraints pre-
vent export back to the cytosol. In this situation, the nuclear
envelope acts as a sieve that helps suppress Rnql toxicity by
sequestering nascent Rnql in the nucleus.

Nuclear Rnql Aggregates Concentrate Htt-103Q in the
Nucleus and Exacerbate Htt Toxicity

[RNQ™] prions promote Htt-103Q toxicity in yeast (Meriin et
al., 2002) and movement of polyQ-expanded Hitt protein
from the cytosol to the nucleus of neurons and yeast corre-
lates with exacerbated toxicity (DiFiglia et al., 1997; Schaffar
et al., 2004). There is also evidence to suggest that intermo-
lecular interaction between Htt-103Q and environmental
factors can impact its subcellular localization (Wang ef al.,
2009). Thus, we examined whether interactions with nuclear
Rnql aggregates could impact Htt-103Q localization and
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W303 [RNQ™] cells. (A) Prior expression of Rnq1-GFP-NLS leads to
the accumulation of Rnql-mRFP in the nucleus. Rnql-GFP and
Rnq1-GFP-NLS were expressed for 15 h at low, nontoxic levels from
the CUP1 promoter due to the presence of 1 uM CuSO, in media.
Subsequent expression of Rnq1-mRFP from the GAL1 promoter was
induced by the addition of 2% galactose. After 1 h, the location of
the GFP and mRFP signals was determined in fixed, DAPI-stained
cells by fluorescence microscopy. (B) Analysis of cell growth in
fivefold serial dilutions of W303 [RNQ™] cells that harbored the
indicated constructs. Cells were grown overnight in synthetic media
containing 1 uM CuSO, to allow for Rnql-GFP or Rnql-GFP-NLS
expression from the CUPI promoter. Cells were then plated on agar
that contained glucose (the control) or galactose to induce Rnql-
GFP L94A expression to toxic levels. (C) Rnql-GFP-NLS in the
nucleus of cytoduced W303a [RNQ*] cells sequestered Rnq1-mRFP
from the cytosol of 10B-H49« [rng-] cells. Rnql-GFP-NLS was ex-
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different mating types, W303 and 10B-H49 cell cultures harboring
the indicated Rnql constructs, were supplemented with 2% galac-
tose and 50 uM CuSO,, respectively. Cell fusion was analyzed 30
min (top row, control) and 2 h (bottom row) after cell mixture.
Merge images represent the combination of all fluorescent channels.
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toxicity (Figure 6). To accomplish this, the effect that expres-
sion of low, nontoxic levels of Rnq1-GFP or Rnq1-GFP-NLS
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Figure 6. The presence of Rnql-GFP aggregates in the nucleus of W303 [RNQ™] cells exacerbates Htt-103Q toxicity. (A) Analysis of cell
growth in fivefold serial dilutions of [RNQ™] cells, which harbored the indicated constructs. Rnql-GFP and Rnql-GFP-NLS were first
expressed for 15 h at nontoxic levels from a CUPI promoter due to the presence of 1 uM CuSQO, in the culture. Then, Htt-25Q-GFP and
Htt-103Q-GFP were expressed at toxic levels from the GALI promoter on agarose plates containing 2% galactose. (B) The impact of
Rnq1-mRFP-NLS expression on the cellular localization of Htt-25Q-GFP and Htt-103Q-GFP. Rnq1l-mRFP or Rnql-mRFP-NLS was expressed
for 15 h at low nontoxic levels from the CUP1 promoter due to the presence of 10 uM CuSO, in media. Subsequent expression of Htt-25Q-GFP
and Htt-103Q-GFP from the GALI promoter was induced by the addition of 2% galactose. After 1 h, the location of the GFP and mRFP signals
was determined in fixed, DAPI-stained cells by fluorescence microscopy. (C) Coprecipitation of endogenous Rnql and Htt-103Q-GFP in
complex with each other. Extracts were generated from W303 [RNQ*] cells expressing Htt-103Q-GFP and endogenous Rnql was precipitated
under native conditions with a-Rnql. Precipitates were resolved by SDS-PAGE and Western blots were probed with «-GFP or a-Rnq1 to
detect Htt-103Q-GFP or endogenous Rnql, respectively. (D) Coprecipitation of Htt-103Q-GFP in complex with Rnq1-GFP and Rnql-GFP-
NLS. Nondenaturing cell extracts were generated from W303 [RNQ™] cells. Rnq1-GFP and Rnq1-GFP-NLS were precipitated by the addition
a-Rnql and Western blots were probed with a-GFP (bottom) or a-FLAG (top) to detect the different forms of Rnql and Htt. (E) Filter trap
analysis of SDS-resistant Htt-103Q aggregates. Htt-103Q retained on the cellulose acetate filter was detected with a-FLAG. Bottom panels are
western blots of cell extracts used in the filter trap assay. In quantitations, Htt-103Q band intensity from cells expressing Rnq1-GFP and
Rnq1-GFP-NLS was compared with the Htt-103Q signal in the absence of exogenous Rnql. (F) Analysis of Htt-103Q assembly status in W303
[RNQ™] cells. Rnq1-GFP or Rnq1-GFP-NLS under control of the CUP1 promoter was expressed for 15 h at low nontoxic levels by the presence
of 1 uM CuSOy in cell cultures. Then Htt-103Q was expressed for 2 h by the addition of 2% galactose. Proteins in cell extracts were resolved
by size exclusion chromatography. Top gels in each set of panels show the quantity of SDS-resistant Htt-103Q that was incapable of gel entry.
The second set of panels from the top shows Htt-103Q-GFP which was able to migrate into gels. The third set of panels from the top shows
the mobility of either Rnq1-GFP or Rnq1-GFP-NLS. The bottom set of panels shows the mobility of endogenous Rnql. Input represents 10%
of the total amount of protein detected in extracts. Quantitation of Htt-103Q signal intensity in each peak was compared with the total signal
from the sum of all fractions.
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had on Hitt-103Q toxicity was determined. These different
forms of Rnql were expressed first for 15 h from the CUP1
promoter at low nontoxic levels. Then expression of Htt-25Q
and Htt-103Q was induced from the GALT promoter and the
influence of Rnql aggregate location on Htt toxicity was
evaluated (Figure 6A). Growth of yeast was not impacted by
expression of Htt-25Q regardless of whether Rnql1-GFP ag-
gregates were predominantly localized in the cytosol or
nucleus. Yet, in dramatic contrast to what was observed
with Rnql toxicity, the presence of Rnq1-GFP aggregates in
the nucleus exacerbated Htt-103Q toxicity. The effect of Rnq1
localization on Htt toxicity was dependent upon the pres-
ence of the [RNQ™] prion conformer because Htt-103Q ex-
pression was not toxic in [rng-] cells regardless of whether
low nontoxic levels of Rnql-GFP or Rnql-GFP-NLS was
present (Supplemental Figure 5).

To explain the increase in Htt toxicity observed in the
presence of nuclear Rnql aggregates, we asked whether the
cellular location of the Rnql aggregates controlled the loca-
tion of Htt-103Q (Figure 6B). Rnql-mRFP or Rnql-mRFP-
NLS were expressed for 15 h at low nontoxic levels from the
CUP1 promoter to permit the formation of respective cyto-
solic and nuclear pools of Rnql-mRFP aggregates. Then,
expression of Htt-25Q-GFP or Htt-103Q-GFP from the GAL1
promoter was induced for 1 h and cells were visualized. The
site of Rnq1-mRFP localization had no effect on the solubility
or distribution of Htt-25Q-GFP (Figure 6B, left columns).
Conversely, nuclear Rnql aggregates colocalized with Hitt-
103Q-GFP and seemed to sequester Htt-103Q-GFP in the
nucleus (Figure 6B, right columns). Thus, [RNQ™"] prion
dependent Rnq1-GFP aggregates seem to control the cellular
localization Htt-103Q.

To evaluate the specificity of Rnql’s ability to relocate
Htt-103Q to the nucleus, we examined the ability of Rnql-
mRFP aggregates to alter the localization of a different in-
teraction partner Het-s. Het-s is a Podospora anserina prion
that lacks a polyQ stretch and forms amyloid-like aggregates
in a [RNQ™] prion-dependent manner when expressed in
yeast. (Taneja et al., 2007). Het-s-GFP was localized through-
out the cell in the presence or absence of Rnql-GFP-NLS,
and we did not observe colocalization between Rnql-mRFP-
NLS and Het-s-GFP (Supplemental Figure 6).

To determine whether a physical interaction between
Rnq1 and Htt-103Q occurs, we analyzed whether they could
form an immunoprecipitable complex. First, endogenous
Rnql and Htt-103Q-GFP present in [RNQ™] cell extracts was
demonstrated to coprecipitate (Figure 6C). SDS-soluble
forms of Htt-103Q-GFP protein that are capable of migrating
into the SDS-PAGE gels were not coprecipitated with Rnql.
Yet, the SDS-insoluble Htt-103Q aggregates, which were
incapable of entry into the SDS-PAGE gel, precipitated with
Rnq1 and could be observed as immunoreactive bands at the
top of Western blots. Thus, endogenous Rnql and Htt103Q
are present in a complex with each other.

We were also able to detect exogenous Rnql-GFP and
Rnq1-GFP-NLS in coimmunoprecipitates with Htt-103Q ag-
gregates (Figure 6D). The form of Htt-103Q present in com-
plex with Rnq1-GFP and Rnq1-GFP-NLS was an aggregated
SDS-resistant forms that could not enter SDS-PAGE gels.
Thus, it seems the Rnq1-GFP and Htt-103Q form a hetero-
oligomeric complex, and the subcellular location of Rnql
helps control where such a complex accumulates.

To explore the mechanism for exacerbation of Htt-103Q
toxicity, we investigated how nuclear Rnql aggregates af-
fected the assembly status of Htt-103Q (Figure 6E). Accu-
mulation of exogenous Rnql-GFP aggregates in the cytosol
had no significant effect on the assembly of Htt-103Q into an
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SDS-resistant species. Yet, when nuclear Rnql-GFP aggre-
gates were present, the conversion of Htt-103Q into tight
SDS-resistant aggregates was reduced by 80% (Figure 6E). It
should be noted that under these same conditions, Htt-103Q
expression had no effect on the assembly of endogenous
Rngl into high-molecular-weight aggregates (Figure 6F,
bottom).

The accumulation of a small oligomeric form of polyQ-
expanded Htt in the size range of a dimer or trimer is linked
to Htt toxicity in yeast (Behrends et al., 2006). Thus, we asked
whether decreased formation of SDS-resistant Htt-103Q as-
semblies observed in the presence of nuclear Rnql aggre-
gates was associated with the accumulation of similar deter-
gent-soluble Htt-103Q oligomers (Figure 6F). Under control
conditions, 70% of Htt-103Q in cell extracts migrated on a
size exclusion column as a high-molecular-weight species
that was SDS-resistant and could not enter into SDS-PAGE
gels. The other 30% of Htt-103Q detected behaved as an
SDS-sensitive form that could enter into SDS-PAGE gels and
showed up as a small oligomer. Yet, the presence of nuclear
Rnql aggregates dramatically reduced the formation of high
molecular weight Htt-103Q assemblies. This was accompa-
nied by a corresponding increase in the accumulation of
SDS-sensitive oligomeric Htt-103Q. Therefore, increased po-
tency of Htt toxicity observed in the presence of exogenous
nuclear Rnql aggregates is associated with a dramatic de-
crease in the conversion of Htt-103Q into an SDS-resistant
species and the accumulation of small Htt-103Q oligomers.

At this point, we sought to evaluate whether interaction
with [RNQ™*] prion-dependent Rnql aggregates or the relo-
cation of Htt-103Q to the nucleus was the major factor that
decreased the cells capacity to detoxify Htt-103Q. To ap-
proach this question, an NLS was fused to the C terminus of
the GFP moiety on Htt-103Q-GFP and the ability of Hitt-
103Q-GFP-NLS to kill yeast and form SDS-resistant aggre-
gates was determined (Figure 7, A and B). Similar to Hitt-
103Q, Htt-103Q-GFP-NLS was not toxic to [rng-] cells but
was dramatically more toxic to [RNQ™*] cells than Htt-103Q-
GFP. Increased toxicity of Htt-103Q-GFP-NLS correlated
with a 60% decrease in the formation of SDS-resistant ag-
gregates. This is interesting because Htt-103Q-GFP does not
form SDS-resistant aggregates in [rng-] cells and it is not
toxic (Figure 7B).

Altering the extent to which Htt-103Q-GFP-NLS forms
SDS-resistant aggregates correlated well with its accumula-
tion in the nucleus (Figure 7C). Yet, the aggregation pattern
of Htt-103Q-GFP and Htt-103Q-GFP-NLS was different. Htt-
103Q-GFP formed large foci that were localized throughout
[RNQ™] cells. In contrast, Htt-103Q-GFP-NLS was predom-
inantly nuclear and its cytosolic forms did not form distinct
foci.

The accumulation of Htt-103Q-GFP-NLS in the nucleus
and its inefficient conversion to an SDS-resistant aggregate
was accompanied by a significant increase in the amount of
detergent-soluble low-molecular-weight Htt-103Q that was
detected by size-exclusion chromatography (Figure 7D).
These results are very similar to those observed when Hitt-
103Q-GFP is attracted the nucleus via interaction with Rnq1-
GFP-NLS. Thus, conversion of Htt-103Q-GFP into an SDS-
resistant species is less efficient in the nuclear environment,
and this effect correlates with enhanced toxicity. Further-
more, nuclear Rnq1-GFP can act to exacerbate Htt-103Q-GFP
toxicity by attracting it to an environment that has reduced
capacity for it detoxification.
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Figure 7. Hitt-103Q-GFP-NLS forms SDS-resistant aggregates with
reduced efficiency and is dramatically more toxic than Hitt-103Q-
GFP in W303 [RNQ™] cells. (A) Analysis of cell growth in fivefold
serial dilutions of W303 [RNQ™] and [rng-] cells harboring the
indicated forms of Htt-103Q that were expressed from the GALI
promoter. (B) Filter trap analysis of SDS-resistant Htt-103Q and
Htt-103Q-GFP-NLS aggregates. Htt-103Q chimeras were overex-
pressed for 4 h in W303 [RNQ™] and [rng-] cells. Bottom panels are
Western blots of cell extracts used in the filter trap assay. In quan-
titations, Htt-103Q-NLS band intensity was compared with the Hitt-
103Q signal from [RNQ™"] cell extracts. (C) Cellular localization of
Hitt-103Q-GFP and Htt-103Q-GFP-NLS in W303 [RNQ™'] cells as
determined by fluorescence microscopy. The expression of Htt fu-
sion proteins was driven by the addition of 2% galactose for 4 h
before fluorescent images were obtained. (D) Comparison of Hitt-
103Q-GFP and Htt-103Q-GFP-NLS assembly status in W303
[RNQ™] cells by size exclusion chromatography. Htt-103Q chimeras
were expressed for 2 h in cells harboring only endogenous Rnq1.

DISCUSSION

Alteration in the cellular localization of disease proteins is
associated with the onset of cell death in protein aggregation
diseases (Davies et al., 1997; Ross, 1997; Neumann ef al.,
2006). Yet, mechanisms that mediate such changes in cellular
localization and the reasons for the compartment specific
proteotoxicity are not clear. A large pool of the yeast Hsp40
Sisl is localized to the nucleus, and we found that subtle
increases in Sisl activity shifted the localization of the ag-
gregation pathway for the model disease protein Rnql-GFP
from the cytosol to the nucleus. This relocation correlated
with reduced toxicity and occurred when elevation of chap-
erone expression preceded elevation of disease protein lev-
els. Increased Sis1 expression did not cause a general per-
turbation of nucleocytoplasmic transport. Instead, increased
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Hsp40 activity seemed to promote assembly of nascent
Rnq1-GFP into nuclear Rnql aggregates, which depleted the
cytosol of soluble species. Thus, it is possible that well
documented age-dependent changes in the activity of chap-
erone networks (Morimoto, 2008) influence proteotoxicty by
altering the cellular location where disease protein aggrega-
tion occurs.

Mutant disease proteins that contain expanded polyQ
tracts are the cause of at least nine protein-misfolding dis-
eases (Zoghbi and Orr, 2000; Ross, 2002). Yet, numerous
functional proteins also contain short polyQ tracts. PolyQ-
expanded Hitt is proposed to cause cell death via sequestra-
tion of essential proteins that contain short polyQ tracts into
aggregates and inactivation of such proteins through alter-
ing their conformation (Burke et al., 1996; Steffan et al., 2000;
Dunah et al., 2002). Yet, polyQ aggregation is also proposed
to be a protective mechanism. Aggregation, toxicity, or both
of polyQ-expanded Hitt is often triggered through interac-
tion with neighboring proteins (Perez et al., 1998; Duen-
nwald et al., 2006). The presence of amyloid-like [RNQ™]
prions is required for Htt toxicity in yeast (Meriin et al.,
2002), and we found that the cellular location of Rnql-GFP
aggregates strongly influenced Htt-103Q-GFP localization
and toxicity. Rnql-GFP-NLS aggregates concentrated Hitt-
103Q-GFP to the nucleus, hindered conversion of Htt-103Q-
GFP into SDS-resistant aggregates, and increased Hitt toxic-
ity. Thus, changes in the localization of an intracellular
interaction partner can influence the cellular compartment
where Htt-103Q accumulates. When Htt-103Q accumulates
in the nucleus, it seems more toxic because its conversion
into a tightly aggregated SDS-resistant species is less effi-
cient. One reason why changes in localization can impact
toxicity is that components in the cytosol and nucleus dif-
ferentially package distinct disease proteins into benign
states.

Several factors may explain the apparent changes in the
extent of Rnql and Htt-103Q aggregation when this process
occurs in the nucleus instead of the cytosol. Sis1 is required
for efficient assembly of [RNQ™] prions (Douglas et al., 2008).
It also acts in conjunction with Hsp104 to fragment [RNQ™]
prions into smaller seeds required for propagation (Aron et
al., 2007; Tipton et al., 2008). The presence of [RNQ™] prion
seeds is required for Rnql toxicity (Douglas et al., 2008). We
found that the majority of endogenous Sis1 is localized to the
nucleus, whereas Hsp104 is present in both the nucleus and
cytosol (Tkach and Glover, 2008). Thus, movement of Rnq1-
GFP to the nucleus may favor the accumulation of benign
Rnq1-GFP aggregates because the level of Sisl and Hsp104
are optimal for Rnql-GFP aggregate formation in this
location.

Compartmental-specific differences in chaperone levels
also may provide an explanation for why formation of SDS-
resistant Htt aggregates is disfavored in the nucleus. TriC is
a ringed chaperonin required for polyQ detoxification (Be-
hrends et al., 2006; Kitamura ef al., 2006; Tam et al., 2006) that
is localized primarily in the cytosol (Kim et al., 1994). Accu-
mulation of Htt-103Q in the nucleus may therefore partition
it away from TriC and limit its conversion into a benign
aggregate. It is also possible that encounters between Hitt-
103Q and new nuclear neighbors interferes with their func-
tion or hinders Htt-103Q detoxification (Duennwald et al.,
2006).

Sisl can suppress Rnql toxicity when its levels are ele-
vated before Rnql-GFP expression or when Rnql-GFP and
Sisl are coexpressed simultaneously. In all cases, suppres-
sion of Rnq1 toxicity is associated with reductions in soluble
pools of Rnq1-GFP and accumulation of SDS-resistant Rnq1-
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GFP aggregates. Yet, change in the localization of Rnq1-GFP
aggregates is observed when Sisl levels were elevated be-
fore expression of Rnq1-GFP. Rnql-GFP-NLS was dramati-
cally less toxic and nuclear Rnql-GFP-NLS aggregates
formed in [RNQ*] cells could act in trans to sequester Rnq1-
GEFP in the nucleus. Thus, elevation of Sisl is likely to shift
the site of Rnq1-GFP aggregation to the nucleus because it
promotes fusion of nascent Rnql to nuclear Rnql aggre-
gates. This event seems to occur in ~50% of cells examined.
However, for technical reasons, we were unable to monitor
the effect of Sisl overexpression on the cellular location of
endogenous Rnql. Nevertheless, it is clear that changes in
Sisl levels alter Rnql-GFP localization and studies with
Rnql-GFP-NLS demonstrate that accumulation of Rnql-
GEFP in the nucleus is protective.

Rnq1-GFP is detected in both the cytosol and nucleus of
[rng-] and [RNQ™] cells. In addition, Rnq1-GFP-NLS is not
exclusively localized to the nucleus of [rng-] cells. Thus, we
surmise that Rnql-GFP normally traffics in and out of the
nucleus. Increasing nuclear Sisl may therefore trap Rnql-
GEFP in the nucleus by facilitating fusion of Rnq1-GFP mono-
mers into nuclear Rnql aggregates. Yet, type II Hsp40s are
known to help retain proteins in the nucleus (Cheng et al.,
2008; Zhang et al., 2008), so it also possible that Sisl has a
direct impact on the nucleocytoplasmic trafficking of Rnql.
Indeed, the nonprion domain of Rnql contains a hydropho-
bic Sis1 binding site (Douglas ef al., 2008) that closely resem-
bles a canonical nuclear export signal. Sis1 binding to Rnql
may therefore negatively regulate Rnql nuclear export and
thereby increase nuclear Rnql levels. However, in [rng-]
cells, where Rnql-GFP aggregation is not observed, Sisl
overexpression does not enhance Rnq1-GFP accumulation in
the nucleus. We attempted to test the hypothesis that Sis1
may regulate nuclear export of Rnql but had difficulty be-
cause mutation of the putative NES within Rnql hindered
Sis1 binding and drove Rnq1-GFP to aggregate in the cytosol
(data not shown). Regardless of the mechanism, it is clear
that Hsp40s modulate the cellular location of where disease
proteins are assembled into aggregates and this can impact
their toxicity.

Native Rnql is normally benign in the cytosol of [rng-]
cells and interactions with [RNQ™] prions are required to
promote toxicity (Douglas et al., 2008). Yet, Rnq1-GFP-NLS
is toxic to [rng-] cells. In [rng-] cells, Rnql-GFP-NLS is not
observed to self-associate when in the cytosol or the nucleus.
Therefore, an increased propensity to aggregate does not
seem related to the observed toxicity. The mechanism for
Rnq1-GFP-NLS toxicity in [rng-] cell is not clear. Yet, it is
possible that the nuclear environment contains interaction
partners that are either inactivated by Rnq1-GFP-NLS or are
capable of templating Rnq1-GFP-NLS into an alternate toxic
conformation (Duennwald et al., 2006). An important aspect
of these data are that they further demonstrate that [RNQ™*]-
dependent conversion of Rnql-GFP-NLS into an amyloid-
like aggregate is essential for detoxification. However, it
remains obscure as to why Rnq1-GFP is benign when in the
cytosol but toxic when accumulation in the nucleus of [rng-]
cells is favored. Future studies will focus on identification of
differences in the networks of chaperones and interacting
factors that reciprocally buffer Rnql and Htt toxicity in the
cytosol and nucleus.
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