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Abstract
Mutations in connexins (Cxs), the constitutive protein subunits of gap junction (GJ) intercellular
channels, are one of the most common human genetic defects that cause severe prelingual non-
syndromic hearing impairments. Many subtypes of Cxs (e.g., Cxs 26, 29, 30, 31, 43) and pannexins
(Panxs) are expressed in the cochlea where they contribute to the formation of a GJ-based intercellular
communication network. Cx26 and Cx30 are the predominant cochlear Cxs and they co-assemble in
most GJ plaques to form hybrid GJs. The cellular localization of specific Cx subtypes provides a
basis for understanding the molecular structure of GJs and hemichannels in the cochlea. Information
about the interactions among the various co-assembled Cx partners is critical to appreciate the
functional consequences of various types of genetic mutations. In vitro studies of reconstituted GJs
in cell lines have yielded surprisingly heterogeneous mechanisms of dysfunction caused by various
Cx mutations. Availability of multiple lines of Cx-mutant mouse models has provided some insight
into the pathogenesis processes in the cochlea of deaf mice. Here we summarize recent advances in
understanding the structure and function of cochlear GJs and give a critical review of current findings
obtained from both in vitro studies and mouse models on the mechanisms of Cx mutations that lead
to cell death in the cochlea and hearing loss.
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1. Introduction
Gap junctions (GJs) are intercellular membrane channels that possess the unique feature of
directly connecting the cytoplasm of neighboring cells. GJs connect cells electrically when
they are open, acting like opened ion channels to generate high conductance pathways, a
phenomenon at the basis of electrical synapses (Bennett and Zukin, 2004). Unique to GJs is
their ability to allow small molecules (cut-off molecular weight at ~1,000 Daltons), such as
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second messengers (e.g., cAMP, IP3) and intracellular metabolites (e.g., glucose, ATP), to
diffuse down their concentration gradients (Evans and Martin, 2002). GJs are formed by the
juxtaposition of two hexameric structures called hemichannels (or connexons) at the GJ
plaques, where a large number of GJs cluster at the cell-cell contact points. Before two
hemichannels are aligned to form a whole GJ, they may perform functions independent of those
carried out by GJs (Goodenough and Paul, 2003).

GJs are found in both invertebrates (Cruciani and Mikalsen, 2007) and vertebrates (Cruciani
and Mikalsen, 2006; Evans and Martin, 2002). Invertebrate GJs are assembled from innexins
(Phelan et al., 1998). Vertebrate GJs are formed by the assembly of six compatible connexin
(Cx) subunits (Willecke et al., 2002). All Cx subtypes share a common topology that includes
four transmembrane domains, two extracellular and one intracellular loop. Both amino and
carboxyl termini of all Cxs are located on the cytoplasmic side of the membrane. Innexins and
Cxs generally share little sequence similarity. However, another group of GJ subunits with
homologies to the innexin family, called pannexins, are also found in the vertebrates (Baranova
et al., 2004; Panchin et al., 2000). By allowing electrochemical as well as biochemical coupling
between cells, GJs generally function to maintain tissue homeostasis and to allow fast
intercellular electrical communication. Many fundamental biological processes require GJs
(Lo, 1996) and the importance of these unique intercellular channels are demonstrated by the
linkage of their mutations to a wide spectrum of human diseases, such as peripheral
neuropathies (e.g. the X–linked Charcot-Marie-Tooth disease) (Bergoffen et al., 1993), various
skin disorders (Richard, 2000), cataracts (White, 2002), oculodental dysplasia (Paznekas et al.,
2003) and deafness (Chang et al., 2003; Rabionet et al., 2002).

In the cochlea, GJs were first revealed in the 1970s by ultrastructural observations (Forge,
1984; Iurato et al., 1977; Jahnke, 1975; Laciano et al., 1977) that suggested the existence of a
“functional syncytium” among cochlear supporting cells. Intercellular electrical
communication consistent with the existence of GJs was later demonstrated by patch-clamp
recordings (Santos-Sacchi and Dallos, 1983; Zhao and Santos-Sacchi, 2000). Immunolabeling
studies identified various types of Cxs in the cochlea as the molecular building blocks of GJs
(Kikuchi et al., 1995; Lautermann et al., 1998; Tang et al., 2006; Xia et al., 2000). The essential
role of GJs in the hearing process has been highlighted by a large number of genetic studies
linking mutations (supplemental Table 1) in Cx genes to inherited deafness (Ballana et al.,
http://davinci.crg.es/deafness/). More than half of congenital deafness cases are caused by
genetic mutations (Petit, 2006; Smith et al., 2005). Currently, at least 46 genes are known to
cause hearing impairments in humans (Hilgert et al., 2008) and many more are suggested by
animal studies. Strikingly, mutations in a single gene (GJB2, which codes for Cx26) account
for a large proportion (up to 50%) of inherited prelingual non-syndromic deafness cases in
almost all ethnic populations studied (supplemental Table 1). It is established that mutations
in Cx genes are one of the most common forms of human genetic defects resulting in hearing
losses in millions of patients with either autosomal dominant or recessive deafness (Chang et
al., 2003; Denoyelle et al., 1997; Estivill et al., 1998; Kelsell et al., 1997). Carrier rate of various
disease-causing Cx26 mutations is estimated to be 1–4% in many populations, which makes
the GJB2 one of the most common disease-linked genes in humans (supplemental Table 1). In
addition to GJB2, mutations in GJB6 (coding for Cx30) (Grifa et al., 1999) and GJB3 (coding
for Cx31) (Liu et al., 2000; Xia et al., 1998) are known to cause hereditary deafness in humans.
Other deafness-linked Cx candidates include GJB1 (coding for Cx32) (Bergoffen et al.,
1993), GJE1 (Cx29) (Yang et al., 2007) and GJA1 (Cx43) (Liu et al., 2001).

Many of the Cx subtypes in the ~20 mammalian Cx genes (Sohl and Willecke, 2004) are
expressed in the cochlea. Cx26 and Cx30 are the two predominant cochlear Cx subtypes in
terms of their cellular distributions and reported mutational effects for human hearing. General
reviews on GJ nomenclature (Sohl and Willecke, 2003), structure (Sosinsky and Nicholson,
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2005; Yeager and Harris, 2007) and function (Evans and Martin, 2002; Laird, 2006; Nicholson,
2003)}, regulations of expressions (Laird, 2006; Oyamada et al., 2005; Saez et al., 2003)},
biophysical properties (Alexander and Goldberg, 2003; Goldberg et al., 2004) have been
previously published. A few recent reviews on GJs in the cochlea are available (Martinez et
al., 2009; Nickel and Forge, 2008; Zhao et al., 2006). This review focuses on the molecular
structural basis of hemichannels and GJ-mediated intercellular communication network in the
cochlea, as well as on the diverse mechanisms for deafness caused by various human Cx
mutations (Table 1 and Fig. 2). A classification of Cx26 mutations based on in vitro functional
studies of reconstituted GJs is presented (Table 1). Advances in understanding deafness
mechanisms by studying multiple Cx-mutant mouse models (Table 2) and current theories
about the mechanisms of deafness caused by Cx mutations are also critically reviewed.

2. Molecular structural basis of GJ networks in the cochlea
Cx26 and Cx30 are the two major Cx subtypes in the cochlea that co-assemble to form GJs

The molecular composition of GJs determines their unitary conductance, gating and
rectification properties, and influence permeability and intracellular trafficking of
hemichannels (Elfgang et al., 1995; Niessen et al., 2000; Rackauskas et al., 2007a; Rackauskas
et al., 2007b; White and Bruzzone, 1996). Furthermore, defining the molecular assembly of
cochlear GJs is essential for understanding functional consequences of Cx mutations. For
example, Cx26 and Cx30 are colocalized in most cochlear GJ plaques and
coimmunoprecipitation of the two Cxs suggest they coassemble in cochlear GJs (Ahmad et al.,
2003; Forge et al., 2003a). Fig. 1 illustrates some of the possible molecular configurations of
GJs when two Cxs are coassembled. If most GJs are heteromeric in the cochlea, a direct
functional implication is that cochlear GJs are not necessarily eliminated by null expression of
either Cx26 or Cx30 individually (Fig. 1). The functional properties and the number of
remaining homomeric GJs, however, may differ significantly from that of the native Cx26/
Cx30 hybrid GJ channels (Sun et. al., 2005; Jagger and Forge, 2006; Yum et. al., 2007).

At the mRNA level, gene transcription profiles of Cxs in the cochlea have been investigated
by low-density gene array (Ahmad et al., 2003) and in situ hybridization (Buniello et al.,
2004) approaches. Dot-blot analyses (Ahmad et al., 2003) revealed the presence of Cxs 26, 29,
30, 31 and 43. In addition, mRNA of Cx30.2, Cx37 and Cx46 was detected in the cochlea by
in situ hybridization (Buniello et al., 2004). However, mRNA transcript levels do not
necessarily faithfully reflect protein expressions (Nelson and Keller, 2007). Therefore, we will
mainly examine expressions of Cxs in the cochlea based on immunolabeling and western blot
results in the following sections.

Cx26 and Cx30
Immunolabeling of Cx26 (Kikuchi et al., 1995) and Cx30 (Lautermann et al., 1998) in the
cochlea of adult rats localized the Cxs in the spiral limbus, the spiral ligaments, the supporting
cells of the organ of Corti and the stria vascularis. Although the low-resolution images of co-
immunolabeling did not show colocalization at the level of single GJ plaque (Lautermann et
al., 1998), the results suggested a similar cellular expression pattern for Cx26 and Cx30 in the
cochlea. Higher resolution images, at the level of a single GJ plaque observed either at optical
(Ahmad et al., 2003; Forge et al., 2003a; Sun et al., 2005) or electron (Forge et al., 2003a)
microscope levels, were later obtained. Results demonstrate extensive co-localization of Cx26
and Cx30 immunoreactivities in most (>85%) cochlear GJ plaques (Sun et al., 2005). In the
adult mouse cochlea, the only region that showed minimal Cx26 and Cx30 colocalization (5%)
was in the Deiters’ cells, where expression of Cx30 dominated. Direct interactions of the two
Cxs have been demonstrated by co-immunoprecipitation (Ahmad et al., 2003; Forge et al.,
2003a), further supporting that Cx26 and Cx30 are co-assembled in the same GJs. General co-
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localization of Cx26 and Cx30 in cochlear GJs seems to be a universal phenomenon found in
many animal species, including rats (Lautermann et al., 1999), mice (Sun et al., 2005), guinea
pigs (Zhao and Yu, 2006), as well as in humans (Liu et al., 2009). These two predominant
cochlear Cxs also co-localize in the saccule, utricle, and cristae of the vestibular organs, where
Cx26 and Cx30 are found in most GJ plaques in supporting cells and connective tissue cells
(Qu et al., 2007).

During the development, embryologic expressions of Cx26 and Cx30 in the human cochlea
were detected as early as 11 weeks of gestation (Kammen-Jolly et al., 2001) and adult level
was reached at week 20 (Kammen-Jolly et al., 2001; Lautermann et al., 1999). In the prenatal
mouse cochlea, these Cxs are sparsely expressed and the early pattern differed significantly
from that of the adult (Lautermann et al., 1999; Sun et al., 2005). Both Cxs are detected as
early as E14.5 (14.5 days of gestation) (Sun et al., 2005) and the immunoreactivities of the two
Cxs are generally found in the same cochlear regions at all developmental stages. From E14.5
until early postnatal days, both Cx26 and Cx30 expressions are absent from the sensory
epithelia of the developing organ of Corti. They are found in cells of the nascent spiral limbus
and in part of the lateral wall. Before the onset of hearing, strong expressions of the two Cxs
are found in the spiral limbus and in a band of fibrocytes adjacent to the basal cells of the stria
vascularis (Sun et al., 2005). Expression in supporting cells gradually intensifies, giving a
dynamic pattern during postnatal development of the organ of Corti. At the onset of hearing,
Cx26 and Cx30 expressions in the lateral wall quickly changes from primarily a band of cells
bordering the stria vascularis to almost all the cells above the spiral ligament. Studies agree
that Cx26 and Cx30 are not expressed in both inner and outer hair cells, nor in marginal cells
of the stria vascularis (Ahmad et al., 2003; Forge et al., 2003a; Frenz and Van De Water,
2000; Kikuchi et al., 1995; Lautermann et al., 1998; Liu and Zhao, 2008; Zhao and Yu,
2006). Whether intermediate cells of the stria vascularis express functional level of Cx26 and
Cx30 is still controversial. Compared to their expression levels in basal cells of the stria
vascularis, a majority of studies (Ahmad et al., 2003; Forge et al., 2003a; Wangemann et al.,
2004; Xia et al., 1999) found a significantly lower, if any, expression of Cx26 and Cx30 in the
intermediate cells, although a positive labeling result was also reported (Liu and Zhao, 2008).

Cx29
Cx29 is mostly expressed by myelinated glial cells (e.g., oligodendrocytes, Bergmann astroglia
cells and Schwann cells), but not by astrocytes (Altevogt et al., 2002; Eiberger et al., 2006;
Kleopa et al., 2004; Nagy et al., 2003). In the cochlea, Cx29 mRNA expression was first
detected by cDNA dot-blot hybridization (Ahmad et al., 2003). Immunolabeling of Cx29 in
wild-type (WT) mice and localization of the LacZ reporter gene in Cx29 null mice indicate
that Cx29 is highly expressed in the cochlear Schwann cells ensheathing the afferent fibers of
the eighth nerve up to the glial junction (Eiberger et al., 2006; Tang et al., 2006). After the
afferent auditory fibers enter the brainstem, they are surrounded by astrocytes which are not
labelled by Cx29 antibody. Low levels of Cx29 in the stria vascularis were also detected by
immunolabeling (Eiberger et al., 2006; Tang et al., 2006).

Functional examinations of the Cx29 null mice (Tang et al., 2006) indicate that the absence of
the Cx29 gene, with a penetrance of about 50%, causes a delay in the maturation of hearing.
Auditory thresholds of about half of the Cx29 null mice tested at 3 weeks postnatally were at
least two standard deviations above the averaged results of Cx29 WT littermate controls. By
6 weeks of age, however, most of the Cx29 null mice tested (13 out of 16) showed hearing
thresholds not statistically different from WT controls. Hearing thresholds measured by another
group from Cx29 null mice at 4–10 weeks postnatally also show no difference comparing to
WT animals (Eiberger et al., 2006). However, as the Cx29 null mice mature to 6 months, they
display early loss of high-frequency sensitivities. An elevated susceptibility to noise at high
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frequencies (12, 18 & 24 kHz) is also observed. Cochlear morphology examined at the electron
microscopic level show specific demyelination of the soma, but not the fibers, of the spiral
ganglion neurons. Tang et al. (Tang et al., 2006) suggests that Cx29 is a candidate gene to
study auditory neuropathies. Currently, few studies have screened human mutations in the
Cx29 gene. Interestingly, one study in Taiwan reported Cx29 mutations in some non-syndromic
deaf patients (Yang et al., 2007).

Cx31
Cx31 is one of the earliest Cx genes expressed in the embryo (Dahl et al., 1996). At adult stages,
its expressions are found in the skin (Hoh et al., 1991), cochlea (Xia et al., 2000), peripheral
auditory nerve (Lopez-Bigas et al., 2001), seminiferous epithelium of rat testes (Mok et al.,
1999) and placenta (Plum et al., 2001).

Although genetic data linking mutations in Cx31 to deafness are strong, its cellular expression
in the rodent cochlea is still controversial. Two studies, one observing the expression of the
LacZ reporter gene that replaces Cx31 gene in Cx31 null mice (Plum et al., 2001) and the other
using immunolabeling (Lautermann et al., 1998), failed to detect Cx31 expression in the
cochlea. On the other hand, Cx31 mRNA transcripts have been detected in the cochlea by
cDNA macroarray hybridization (Ahmad et al., 2003), in situ hybridization (Lopez-Bigas et
al., 2002) and RT-PCR amplifications (Forge et al., 2003a; Xia et al., 2000). However, cellular
patterns of Cx31 in the cochlea, as detected by immunolabeling, show poor consensus among
published results. Cx31 was localized among type II fibrocytes below the spiral prominence
where both Cx26 and Cx30 appear to be weakly expressed (Forge et al., 2003a). Other studies
also found Cx31 in fibrocytes of the spiral ligament and spiral limbus (Xia et al., 2000), and
in supporting cells of the organ of Corti (Liu et al., 2008).

Human mutations in Cx31 have been linked to the skin disorder erythrokeratodermia variabilis
(Richard et al., 1998a) as well as to autosomal dominant (Xia et al., 1998) and recessive (Liu
et al., 2000; Uyguner et al., 2003) non-syndromic deafness. However, these phenotypes did
not correlate well with the corresponding mouse model. Cx31 null mice displayed a transiently
abnormal placental development and a reduced viability (60%) of homozygote embryos, but
neither epidermis nor auditory malfunctions were observed in the surviving mice (Plum et al.,
2001). Human genetic studies also revealed an interaction between Cx26 and Cx31. GJB3
mutations occurring in compound heterozygosity with the GJB2 mutations have been identified
in three unrelated Chinese families. Direct interaction of Cx26 with Cx31 has been shown by
coimmunoprecipitation, supporting the idea of an interaction between these two Cxs that results
in hearing loss in human digenic heterozygotes (Liu et al., 2008).

Cx32
Cx32 is generally expressed in oligodendrocytes and Schwann cells. It is believed to contribute
to the myelination process and to participate in the K+ buffering during neuronal activities.
Genetic mutations in GJB1 were the first to be associated with a human disease, the X-linked
Charcot-Marie-Tooth disease, which is a demyelinating neuropathy (Bergoffen et al., 1993).

Cx32 expression has been studied during cochlear development by in situ hybridization
(Lopez-Bigas et al., 2002) and by immunocytochemistry from the adult cochlea (Tang et al.,
2006). Cx32 mRNA transcripts have been detected as early as E12 in the otocyst. At neonatal
stages until P7 (one week after birth), expression was widespread in the cochlea. Labeling
obtained from cochleae older than P13 restricted Cx32 to type II and IV fibrocytes of the spiral
ligament. In the adult cochlea, however, no Cx32 transcripts were detected (Lopez-Bigas et
al., 2002). These findings were corroborated by another study (Forge et al., 2003a) in which
RT-PCR amplifications from mouse mature cochleae (6–8 week-old) and immunoblots failed

Dinh et al. Page 5

Brain Res. Author manuscript; available in PMC 2010 June 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



to detect Cx32 expression. In the adult cochlea Tang et al. (Tang et al., 2006) reported Cx32
expression in astrocytes located outside the glial juncture, which are the cells surrounding the
central portion of the auditory nerve fibers in the brainstem. In support of a minor role played
by Cx32 in auditory functions, no severe hearing loss in Gjb1−/− mice was reported (Scherer
et al., 1998).

Cx43
Cx43 is widely expressed in the human body (Laird, 2006). In the mouse cochlea, its expression
has been investigated by cDNA dot-blot hybridization (Ahmad et al., 2003), RT-PCR
amplification and western blotting (Forge et al., 2003a). Its cellular localization has been
studied by immunolabeling (Lautermann et al., 1998) and by the LacZ reporter gene expression
in Cx43 null mice (Cohen-Salmon et al., 2004b). By localizing the LacZ reporter expression
pattern, Cohen-Salmon et al. showed that Cx43 is expressed in the cochlea as early as E15.5.
During early development, Cx43 expression is more widespread than in mature stage, with
staining observed in fibrocytes in the later wall, mesenchymal cells below the basilar
membrane, and capillaries in the stria vascularis. In the adult cochlea, Cx43 is localized to the
cochlear bony shell only (Cohen-Salmon et al., 2004b). Inconsistent results are reported by
other groups about the Cx43 expression in the cochlea (Lautermann et al., 1998; Liu et al.,
2001; Suzuki et al., 2003). Liu et al. (Liu et al., 2001) reported that mutations in GJA1 are
linked to deafness in the African American population. However, later studies showed that the
reported mutations (L11F, V24A) may be located in GJA1 pseudogene on chromosome 5
(Paznekas et al., 2003).

Cx45
Cx45 expression has not been detected by RT-PCR amplifications in mature mouse cochleae
or by western blotting (Forge et al., 2003a). However, Cx45 expression has been reported by
studying the expression of the LacZ reporter gene in Cx45 null mice (Cohen-Salmon et al.,
2004a). During the development, expression of LacZ reporter was detected as early as E17.5.
One day later, all cochlear cells, apart from the hair cells, were labelled (Cohen-Salmon et al.,
2004a). Starting at P4, LacZ reporter expression increased in capillaries. By P8, expression
remained only in capillaries and mesenchymal cells lining the basilar membrane.

Pannexins—Three subtypes of Panxs (Panx1, Panx2 and Panx3) have been reported
(Panchin et al., 2000). Functional expression of Panxs in Xenopus oocytes indicated that at
least some Panxs can form functional intercellular GJ channels and hemichannels (e.g.,
homotypic Panx1 and heterotypic Panx1/Panx2) (Bruzzone et al., 2003a; Bruzzone et al.,
2005). In the cochlea, Panxs 1 and 2 have been detected by immunoblots and RT-PCR
amplifications. Immunolabeling localized Panx1 to the inner and outer sulcus cells, as well as
to the Claudius cells. Additionally, both Panxs are expressed in the spiral ganglion and Scarpa’s
ganglion neurons (Tang et al., 2008). A more widespread cochlear expression of Panx1 and
Panx2 has been reported and the expression of Panx3 has also been detected in the cochlear
bone by a recent study (Wang et al., 2009).

3. Functional classifications of various types of deafness-linked Cx
mutations

So far, more than 100 mutations associated with human deafness have been identified in the
coding region of the Cx26 gene (Ballana et al., 2005; Chang et al., 2003; White et al., 1998).
Deafness linked mutations in the regulatory region of Cx26 have also been reported (Wilch et
al., 2006). The locations of some of the reported human Cx26 mutations are summarized in
Fig. 2. Classifications of Cx mutations may be based on structural alterations (e.g., truncation
and frame shift vs. single amino acid substitution). Truncation and frame-shift mutations (e.g.,
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35delG, E147X) which only produce partial Cx26 protein, represents about 28% of Cx26
mutants illustrated in Fig. 2. Most of the Cx26 mutations (~79% shown in Fig. 2) belong to
the category of point mutations (e.g., R75Q, L214P, delE42) that are produced by a single base
substitution or in-frame deletion in the Cx26 coding sequence. It is interesting to note that all
autosomal dominantly inherited Cx26 mutations found so far are linked to Cx26 point
mutations. Many of them also cause skin disorders (Lee et al., 2008). In addition, at least four
human Cx30 point mutations, including T5M (Grifa et al., 1999), 63delG, G11R, A88V
(Common et al., 2002; Lamartine et al., 2000; Xia et al., 1998) and two large deletion mutations
in Gjb6 (del Castillo et al., 2002; Lerer et al., 2001; Pallares-Ruiz et al., 2002) have been linked
to deafness. Since most functional studies focused on Cx26 and Cx30 mutations, this section
will present a summary of their functional effects based mainly on results obtained from in
vitro approaches.

The first step of in vitro functional studies is to reconstitute WT or mutant GJs in a heterologous
system by either injecting mRNA into oocytes, or by transfecting cell lines lacking endogenous
GJs (e.g., HEK293 or Hela cells). By transfecting cells with plasmid constructs containing the
Cx coding sequence fused in frame to that of the enhanced green fluorescent protein (eGFP)
or any other fluorescent proteins, homomeric and hybrid GJ plaques can be directly identified
in vitro (Sun et al., 2005). GJ functions can then be assessed by hemichannel dye loading and
single cell dye injection assays, and by double-electrode patch-clamp recording and optical
recording methods (Guo et al., 2008; Hernandez et al., 2007; Sun et al., 2005; Yum et al.,
2007; Zhang et al., 2005; Zhao et al., 2005). Large numbers of in vitro studies (Table 1) suggest
that the effects of various Cx26 mutations can be classified into at least four distinct
mechanisms according to their effects on GJ functions.

I. Mutations preventing the formation of GJs in the cell membrane
The life cycle of Cxs includes protein synthesis, trafficking/targeting to plasma membrane,
membrane insertion and assembly into connexins, and degradation (Laird, 2006). Cx mutations
belonging to this category may cause dysfunction in any of the steps, or premature degradation
of Cxs before they reach the cell membrane. Potentially, this type of Cx26 mutations could
also affect binding of Cx26 with other intracellular partners that normally interact with the Cx
protein subunit.

II. Mutations resulting in GJ formation with null functions
Both intercellular ionic and biochemical coupling are lost for Cx26 mutants belonging to this
category, although they still form GJs in the cell membrane. Most mutants in this group also
lose hemichannel activities. However, mutations at the two extracellular loops of Cxs may
specifically affect the docking/alignment of two connexons. Thus, hemichannel permeability
may be intact.

III. Mutations resulting in a specific loss of intercellular biochemical coupling
A subgroup of structurally-mild Cx26 mutations, most of them located in the second
transmembrane domain, selectively affect the permeation of molecules larger than simple ions.
Although in vitro studies identified a specific loss of GJ-mediated permeability to inositol
1,4,5-trisphosphate (IP3) (Beltramello et al., 2005; Zhang et al., 2005), whether it is a major
molecule required for the in vivo function of cochlear GJs is unclear. Using Cx30 null mice,
Chang et al. showed a dramatic reduction of GJ-mediated glucose transportation and elevated
free radical concentrations in cochlear supporting cells (Chang et al., 2008). Similar deficiency
in GJ-mediated biochemical coupling could happen in the cochlea of Cx26 mutant mice,
although this hypothesis has not been directly tested yet. Since glucose is the major energy
source for cellular metabolic activities, a chronic shortage of glucose in the organ of Corti
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where microcirculation is generally poor may have extensive damaging effects on cell survival
and functions.

IV. Mutations causing a gain-of-function effect: abnormal hemichannel opening at resting
state

One deafness-linked Cx26 mutation, G45E, has been linked to a fatal form of keratitis–
ichthyosis–deafness syndrome (Griffith et al., 2006; Janecke et al., 2005). Morphological
examinations revealed that this mutation disrupts cochlear differentiation and causes dysplasia
of the cochlear and saccular neuroepithelium (Griffith et al., 2006). G45 (Fig. 2) is located in
the first extracellular loop, next to an aspartic acid, a previously reported Ca++ binding site for
the hemichannels (Gomez-Hernandez et al., 2003). The G45E mutation changes the charge of
the amino acid side chain from neutral to negative, therefore it is likely to affect Ca++ binding
to the hemichannels. Stong et al. (Stong et al., 2006) reported that G45E mutation resulted in
apoptosis and cell death within 24 hours of transfection. Increasing the extracellular Ca++

concentration ([Ca++]o) rescued the transfected cells in a dose-dependent manner. Dye loading
assay suggest that the Cx26 G45E mutation causes leaky GJ hemichannels when cells are
bathed in normal [Ca++]o, which overloads the cellular homeostatic mechanisms and ultimately
leads to cell death. Other Cx26 mutations in this category are also reported by other groups
(Gerido et al., 2007; Lee et al., 2008; Matos et al., 2008). The Cx26 mutants belonging to this
category usually show dramatic phenotypes including death (Griffith et al., 2006; Janecke et
al., 2005). Interestingly, a mutation in Cx32 that results in the formation of leaky hemichannels
has been found to be responsible for a severe type of neuropathy due to imbalanced ions and
metabolites (Liang et al., 2005). Evidence of the presence of functional hemichannels within
the cochlea is suggested by membrane-impermeable fluorescent dye uptake assays carried on
dissociated cochlear cells and in acute or cultured preparation of the cochlear epithelium (Zhao
et al., 2005; Anselmi et al., 2008). These studies suggest that one of the functions of cochlear
hemichannels is to release ATP into the extracellular space, which could modulate the
electromotility of outer hair cells and therefore exert a control on hearing sensitivity.

The fifth category of Cx26 mutants (Table 1) can form functional GJs, but no apparent
impairment in intercellular coupling is detected by in vitro assays. They are likely to represent
polymorphism in the Cx26 coding region. The Cx26 mutations in the sixth category are
reported human mutations apparently linked to deafness, but they are not tested by thorough
in vitro studies yet. Finally, mutations in the non-coding region of Cx26 are also linked to
deafness in patients (Wilch et al., 2006).

4. Mouse models of Cx mutations display diverse pathogenesis processes in
the cochlea

In vitro studies suggest that deafness-linked Cx mutations can be classified into two general
categories, loss-of-function (categories I, II &III in Table 1) and gain-of-function (category IV
in Table 1) mutations. Four Cx mutant mouse models are generated either by targeted deletion
of Cx genes that results in null expression (Cohen-Salmon et al., 2002;Teubner et al., 2003)
or by expression of a dominant-negative Cx26 mutant protein (R75W) (Kudo et al.,
2003;Maeda et al., 2007). These animal models are appropriate for studying in vivo effects of
Cx mutations belonging to categories I & II (Table 1). Currently, mouse models for
investigating Cx26 mutants belonging to categories III & IV are not yet available. Genetic
deletion of Gjb6 is achieved by replacing the Cx30 gene with a reporter gene LacZ and a neo
resistance cassette (Teubner et al., 2003). Germline deletion of Gjb2 is embryonically lethal
due to ~60% reduction in GJ-mediated glucose transfer across the placenta (Gabriel et al.,
1998), The problem is circumvented by utilizing a Cre-loxP system (Cohen-Salmon et al.,
2002;Kudo et al., 2003). In another study, transient expression of the dominant-negative Cx26
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R75W mutant protein in the cochlea of adult mice was achieved by lipofection through the
round window route (Maeda et al., 2007). Table 2 summarizes major findings obtained from
these animal models. All mouse models show significant hearing loss. The most severe
threshold elevations are displayed by Cx30 null and Cx26 R75W mice, with hearing thresholds
measured at over 100 dB SPL in adult mice (Kudo et al., 2003;Teubner et al., 2003). Only a
15–20 dB threshold increase is detected transiently by click ABR in the model reported by
Maeda et al. (Maeda et al., 2007). In general, none of the mouse models display obvious
endolymphatic hydrops and degeneration of stria vascularis when observed at the level of light
microscope. Hair cell and supporting cell loss after the time of hearing onset are observed in
all mouse models (Cohen-Salmon et al., 2002;Kudo et al., 2003;Teubner et al., 2003).

No gross developmental defects in cochlear morphology are detected in both Cx26 and Cx30
mutant mice, suggesting that the two cochlear GJs do not play essential roles in cochlear
development. One interesting exception is that the opening of the tunnel of Corti and the Nuel’s
space, which normally happens around P9 just before the onset of hearing, is absent in the
Cx26R75W mutant mice (Inoshita et al., 2008; Kudo et al., 2003). Another surprising
difference is the effect on the EP generation between the Cx26 and Cx30 mutant mice.
Normally, the EP starts to develop around P5 in mice and reaches adult-like value at P11 to
P20 depending on the location in the cochlea (Sadanaga and Morimitsu, 1995). The EP
develops normally either initially in one model (Cohen-Salmon et al., 2002) or even reaches
normal level in the adult stage in the Cx26 R75W mice (Kudo et al., 2003). In contrast, EP is
never developed in the Cx30 null mice (Teubner et al., 2003). Normal EP suggests that GJ-
mediated ionic coupling is not affected by the Cx26 mutations, which is not consistent with
the K+ recycling hypothesis for the Cx26 mutations (Kikuchi et al., 1995).

In the study by Cohen-Salmon et al. (Cohen-Salmon et al., 2002), null expression of Cx26 in
the cochlea is targeted specifically to the epithelial GJ system. In contrast, the expression of
R75W dominant-negative Cx26 mutant is driven by a ubiquitous CAG promoter (Kudo et al.,
2003), which theoretically results in the mutant expression in the whole cochlea including cells
that normally do not express Cxs. The precise cellular pattern of the mutant expression,
however, is unknown. In general, the phenotypes (in terms of both hearing loss and
morphological deteriorations) displayed by Cx26 R75W mice are more severe than those
shown by the conditional Cx26 null mice, in which a floxed Gjb2 is specifically deleted by
Otog-driven Cre. The deafness phenotypes displayed in human patients are extremely
heterogeneous. Although in most cases deafness caused by Cx26 mutations is congenital, some
patients may not show hearing impairments until a few months after birth (Orzan and Murgia,
2007; Pagarkar et al., 2006). Some of the phenotypic differences in various mouse models may
be due to technical approaches used in different studies to generate mutant mice, or caused by
heterogeneous deafness mechanisms. The surprisingly different effects on the EP generation
observed between the Cx26 and Cx30 null mice also hint that the underlying deafness
mechanisms may not necessarily be the same, despite the observations that Cx26 and Cx30
are coassembled in most cochlear GJs (Sun et al., 2005). Until more Cx mutant mouse models
are generated and validated by independent methods, clear answers to these questions will not
be possible. In addition, mouse models for Cx mutants in categories III and IV are not currently
available. More Cx26 mutant mouse models are certainly needed for further understanding
molecular mechanisms of the most common form of inherited deafness in humans.

5. Current theories on mechanisms of deafness caused by Cx26 and Cx30
mutations

The extracellular fluid in the endolymphatic space of the cochlea has a high K+ concentration
([K+]o) that is similar to normal intracellular [K+]o found in most cells. The ~160 mM of
extracellular [K+]o and ~+80 mV positive potential in the endolymph (endolymphatic potential,
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or EP) give an unusual electrochemical environment on the apical side of hair cells that is
essential for the sensitive mechanical transduction of hair cells (Wangemann, 2002). Clinical
phenotypes of deafness caused by most Cx mutations are non-syndromic (Chang et al.,
2003). Expressions of both Cx26 and Cx30, however, are widespread in the body (Sohl and
Willecke, 2004). In order to explain the distinctive phenotype of deafness, investigators
generally link GJ dysfunctions to disturbance of the unique endocochlear environment. Many
theories focus on possible scenarios about how the maintenance of high concentration of K+

in the scala media and/or endolymphatic potential (EP) could be disrupted. A more recent
hypothesis (Chang et al., 2008) considers the contribution of cochlear GJ network to
homeostasis of the avascular sensory epithelium of the organ of Corti. Chang et al. found that
GJs in the cochlear supporting cells play a vital role in maintaining biochemical coupling and
delivering glucose to these cells.

a) Disruption of cochlear K+ recycling theory
During the auditory transduction, endolymphatic K+ enters hair cells through
mechanotransducton channels. The intracellular K+ concentration is balanced by the exit
through hair cells’ basolateral K+ channels (e.g. Kcnq4) (Wangemann, 2002). Since high
extracellular K+ is generally considered toxic and data support that K+ is recycled back to the
endolymph (Konishi et al., 1978; Sterkers et al., 1982), the K+ ions around the base of hair
cells are believed to be quickly absorbed by cochlear supporting cells and recycled back to the
endolymph (Kikuchi et al., 1995; Spicer and Schulte, 1996). Because no local mechanisms of
returning K+ ions back to the endolymph seem to exist in the cochlear supporting cells and the
apparent source of generating high [K+]o of the endolymph is in the stria vascularis, K+ ions
are thought to be transported through a relatively long route, first along the epithelial cell GJ
network to the spiral ligament, then through the connective tissue GJ system in the lateral wall
and finally are moved by the stria vascularis back to the endolymphatic space (Kikuchi et al.,
1995; Zhao et al., 2006). However, direct measurements of current flux show an alternative
route for K+ recycling. A standing current in the perilymph of the scala tympani can be
measured exiting the basilar membrane and flowing towards the spiral ligament in the scala
tympani (Zidanic and Brownell, 1990). The current suggest that K+ ions in the scala tympani
are absorbed back to the connective tissue GJ system in the lateral wall, which bypasses the
epithelial GJ system located in the sensory epithelium. In support of the K+ route through the
epithelial GJ network, however, targeted deletion of Cx26 specifically in the sensory epithelia
of the cochlea clearly shows that GJ coupling in the cochlear supporting cells is required for
normal hearing (Cohen-Salmon et al., 2002). In addition, the driving force and the active
membrane mechanisms that move K+ laterally through the GJs of the sensory epithelium and
then upward through the lateral wall towards the stria vascularis are unclear. Immunolabeling
studies provide indirect support that some necessary active mechanisms (e.g., ion pumps and
transporters) exist along the proposed recycling route (Crouch et al., 1997; Schulte and Adams,
1989; Spicer and Schulte, 1996).

Contrary to the notion that mutation of cochlear GJs disrupts K+ recycling, recent data indicate
that the intercellular conduit provided by GJs is not significantly disrupted by the absence of
either Cx26 or Cx30 individually. Immunolabeling data obtained from the cochlea of
conditional Cx26 (Cohen-Salmon et al., 2002) and Cx30 (Chang et al., 2008; Teubner et al.,
2003) null mice support the existence of homomeric GJs in the cochlea of mutant mice. Double-
electrode patch clamp recordings made from Cx30 null mice demonstrated that the ionic
coupling among the cochlear supporting cells is indistinguishable from that of WT animals
(Chang et al., 2008), suggesting that the GJ-mediated intercellular K+ movement is not
significantly affected in the epithelial GJ system of the Cx30 null mice. Additionally, Cx26
mutations specifically affecting biochemical coupling (e.g., V84L, V95M, and A88S) are
sufficient to cause deafness in humans (Beltramello et al., 2005; Zhang et al., 2005), indicating
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that loss of GJ-mediated transfer of molecules larger than K+ ions may underlie the deafness
mechanism. The most direct evidence against a disruption of K+ recycling as the basis for Cx-
mutation-linked deafness is the finding that the EP is normal in the deaf Cx26R75W mutant
mice (Kudo et al., 2003).

b) Endothelial barrier breakage theory
In Cx30 null mice, the time course of cell death in the organ of Corti substantially lags that of
hearing loss, indicating that hair cell loss is not directly responsible for deafness. One major
finding is that the EP is never formed in these mutant mice (Teubner et al., 2003). It is well
known that loss of EP directly results in deafness (Flagella et al., 1999; Gow et al., 2004;
Kitajiri et al., 2004; Marcus et al., 2002). To investigate mechanism for the failure in EP
generation, Cohen-Salmon et al. (Cohen-Salmon et al., 2007) reported that ion channels and
transporters required for EP generation (e.g., KCNQ1, KCNE1, KCNJ10, and H+/K+-ATPase)
and tight junctions that enclose the intrastrial fluid space appeared to be normal in the Cx30
null mice. Further examination at the electron microscope level showed that the endothelial
barrier of the capillaries in the stria vascularis was disrupted before the EP is developed.
Conceptually, damaged endothelial cells lining the microvessels in the stria vascularis could
provide a short-circuit leak conductance to overload the EP generation machinery in the stria
vascularis. The electric shunt is believed to be sufficient to account for the total loss of EP in
Cx30 null mice. However, neither Cx26 nor Cx30 are expressed in the endothelial cells in the
stria vascularis (Cohen-Salmon et al., 2007). It is therefore unclear how GJs dysfunctions can
result in damages to the endothelial barrier, although a marker for endothelial dysfunction (an
increase in homocysteine) has been found. Moreover, the report of a normal EP in deaf
Cx26R75W mutant mice (Kudo et al., 2003) indicates that this electric shunt theory may not
be generalized to explain deafness caused by all Cx mutations. Apparently, more experiments
are needed to test the relatively new theory of deafness caused by a breakdown of endothelial
barrier in the stria vascularis.

c) Deficiency in GJ-facilitated metabolite transportation theory
The sensory epithelium of the organ of Corti is an avascular organ where direct microcirculation
to hair cells and supporting cells is lacking. In contrast, GJs co-assembled from Cx26 and Cx30
are highly expressed in the non-sensory cells of this region (Ahmad et al., 2003; Forge et al.,
2003a; Kikuchi et al., 1995; Sun et al., 2005). Recent studies directly demonstrated that glucose
from the cardiovascular circulation could reach the cochlear supporting cells (Chang et al.,
2008), fibrocytes in the lateral wall (Suzuki et al., 2008) and spiral limbus (Matsunami et al.,
2006) in a GJ-dependent manner. Chang et al. reported (Chang et al., 2008) that GJ-mediated
intercellular diffusion of many fluorescent tracers among cochlear supporting cells of Cx30
null mice, including a fluorescent analogue of glucose (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-
yl)amino]-2-deoxy-D-glucose, or 2-NBDG), is dramatically reduced. In contrast, ionic
coupling among the same group of cells measured directly by two-electrode patch-clamp
recordings show no change of the intercellular conductance by the deletion of the Gjb6 gene.
These results suggest that a chronic shortage of glucose, but not an eradication of the pathway
for K+ recycling, exists in the cochlea of Cx30 null mice.

In general, O2 consumed by mitochondria is reduced fully to water and only about 2% of
electrons leak out of the oxidative chain to generate superoxide anions (O2

−) and H2O2.
Deficiency in glucose supply exacerbates ATP exhaustion and increases the generation of
reactive oxygen species (ROS) (Moley and Mueckler, 2000). Co-assembly of Cxs in cochlear
GJs indicates that a total elimination of GJ-mediated intercellular biochemical and ionic
coupling is an unlikely consequence (Fig. 1). Decreased glucose transportation through GJs
and increased ROS production are directly detected in cochlear supporting cells of Cx30 null
mice. Based on these results, Chang et al. (Chang et al., 2008) proposed that deafness linked
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to loss-of-function Cx mutations is caused by a reduction in the efficiency in delivering
energetic metabolites (e.g., glucose) through the GJ intercellular network, especially in
cochlear regions where microcirculation is poor (e.g., the organ of Corti). The further speculate
that the accumulated damaging effects to the cellular homeostasis become destructive when
large amount of ROS is generated that ultimately lead to cell death and cochlear dysfunction.

6. Conclusions and perspectives
It is clear that we are only at the beginning stage of revealing the molecular mechanisms of
deafness caused by Cx mutations. Evidences support that Cx26, Cx30 and perhaps Cx31 are
the major Cx subtypes present in both epithelial and connective tissue GJ networks in the
cochlea. Other Cxs and Panxs (Cx29, Cx43, Panx1 and Panx2) are either expressed in cochlear
Schwann cells, neuronal cells, or capillary cells that do not play a direct role in the auditory
transduction or EP generation. Co-immunolabeling and co-immunoprecipitation data support
that the combinations of Cx26 and Cx30 (Ahmad et al., 2003; Forge et al., 2003b; Yum et al.,
2007), Cx26 and Cx31 (Liu et al., 2008) are co-assembled in cochlear GJs. As pointed out
earlier, a direct functional implication draw from these structural studies is that targeted
deletion of one Cx gene is unlikely to totally eliminate GJ-mediated ionic coupling in the
cochlea. In addition, co-assembly of cochlear GJs complicates interpretations of the inheritance
patterns of Cx mutational effects. Studies have reported that at least some Cx26 recessive
mutations have transdominant effects on Cx30 (Marziano et al., 2003). This transdominant
effect on Cx30 is, however, unlikely to be universally true for all Cx26 mutations. More
investigations are certainly needed to understand the meanings of genetic dominant and
recessive inheritance patterns under the context of heteromeric GJs. Although most studies
show that Cx26 and Cx30 generally co-localize in the cochlea, the relative proportion of GJs
that exist in each molecular configurations (Fig. 1), their precise locations in the cochlea and
whether the proportion is dynamically regulated during development or after injury are unclear.
If Cx26 and Cx30 are not expressed in a synchronized manner during certain development
stages or after stress/injuries, it is possible that a local elimination of GJ-mediated intercellular
communication may occur temporally or spatially. Thus, further investigations into the
temporal and spatial expression patterns of various subtypes of Cxs and their protein
interactions are indispensible information for advancing the studies on the function of cochlear
GJs. Other urgently-needed investigations concern the regulatory mechanisms of Gjb2 and
Gjb6 gene expression and their interactions. Some recent in vitro studies have begun to address
these issues (Ortolano et al., 2008). Cx26 over-expression in Cx30 null mice completely rescues
hearing in these deaf mice (Ahmad et al., 2007), suggesting a novel therapeutic strategy for
Cx30 null expression patients. However, the translation of the finding into clinical applications
is not possible until the genetic regulatory mechanisms of Cx26 and Cx30 are fully understood
and a safe and effective pharmacological intervention method is found.

Development of better mouse models will greatly help further testing the new theories about
deafness mechanisms caused by Cx mutations (Cohen-Salmon et al., 2007; Martinez et al.,
2009) and various aspects of the glucose deficiency hypothesis (Chang et al., 2008). The efforts
should help to answer whether Cx26 play any significant roles in cochlear development, which
is uniquely demonstrated by Cx26 R75W mutant mice (Inoshita et al., 2008). According to the
hypothesis proposed by Chang et al. (Chang et al., 2008), reduction in glycolysis due to glucose
shortage should decrease concentration of ATP and mitochondrial ROS production should
increase in the cochlea of Cx mutant mice. Cell death should first occur in the most vulnerable
regions of the sensory epithelium, particularly at the onset of hearing when cellular energy
demand rapidly increases. All these aspects need to be tested experimentally. It is interesting
to note that a recent paper proposed a similar general scheme in GJ-connected astroglia
metabolic network in the brain to efficiently delivers energetic metabolites from blood vessels
to distal neurons in an activity-dependent manner (Rouach et al., 2008). The observations that
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Cx-mutation-linked defects tend to happen in areas where either microcirculation is poor (e.g.,
lens in the eyes (White and Paul, 1999)) or transportation of metabolites via GJ intercellular
coupling is demanding (e.g., placenta (Gabriel et al., 1998)) suggest a unified theory that
dysfunctions of GJ-mediated metabolite transfer underlie many pathogenesis processes.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A diagram showing molecular configurations of co-assembled cochlear GJs from Cx26 and
Cx30 in the cell membrane and the predicted effect of genetic knockout of GJB6. Cxs26 and
30 normally co-assemble into GJs in the cochlea. Connexons are called homomeric or
heteromeric, respectively, depending on whether a single or more than one Cx subtype are used
as building blocks. A heterotypic GJ channel is formed by the docking of two different
connexons whereas a homotypic channel is constituted from the same connexons. The ablation
of a single Cx subtype may eliminate GJs in regions where it is the only Cx expressed. However,
significantly amounts of GJs may remain in areas where co-asssembly of Cxs dominates,
although disruption of the expression of one Cx subtype is likely to affect biophysical properties
of GJs that are highly dependant on the composition Cxs. The number of GJs may also be
reduced as a gene dosage effect.
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Figure 2.
A diagram showing the location of reported human Cx26 mutations in the Cx26 protein that
are linked to hearing loss. Four types of mutations (frame shift, truncation, single amino acid
substitution or in-frame deletion) are color coded. Stars denote the location where more than
one types of mutations are reported. References for these deafness-linked Cx26 mutations are
given in the Table 1 and supplemental Table 1.
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Table 1
Classifications of Cx26 mutations linked to deafness in human patients according to data obtained from in vitro studies.

Classification Cx 26 mutations References

I M1V, N14D,
30delG, 35delG,
I20T, I35S,
DeltaE42,, D50Y,
D50N, T55N,
G59A, G59V,
C64S, D66H,
H73R, I82M,
L90P, Y136X,
V153I, M163V,
167delT, P173R,
D179N, R184P,
L214P, 235delC,
E147K, F142L

(Brown et al., 2003; Bruzzone et al., 2003; Choung et al., 2002; de Zwart-Storm et al., 2008a; de Zwart-Storm et al.,
2008b; Di et al., 2005; Frei et al., 2004; Haack et al., 2006; Kudo et al., 2000; Kupka et al., 2000; Mani et al., 2008;
Marziano et al., 2003; Melchionda et al., 2005; Mese et al., 2004; Oshima et al., 2003; Palmada et al., 2006; Primignani
et al., 2003; Rouan et al., 2001; Thomas et al., 2004; Thonnissen et al., 2002; Yotsumoto et al., 2003; Zelante et al.,
1997; Zhang et al., 2005)

II G12R, N14K,
W24X, I33T, M34
T, del 42, V37I,
A40V, W44C,
W44S, E47 K,
R75W, R75D,
R75Q, W77R,
C119T, E120del,
T135A, F161S,
W172R, R184P

(Beahm et al., 2006; Bicego et al., 2006; Bruzzone et al., 2001; Bruzzone et al., 2003; Chen et al., 2005; D’Andrea et al.,
2002; Evans et al., 1999; Gerido et al., 2007; Griffith et al., 2000; Lee et al., 2008; Mani et al., 2008; Martin et al.,
1999; Marziano et al., 2003; Montgomery et al., 2004; Oshima et al., 2003; Piazza et al., 2005; Purnick et al., 2000;
Richard et al., 1998; Richard et al., 2002; Rouan et al., 2001; Skerrett et al., 2004; Stong et al., 2006; Thonnissen et al.,
2002; White et al., 1998)

III T8M, G12V,
N14Y, S19T,
M34A, F83L,
V84L, A88S,
V95M, R127H,
N206S,

(Arita et al., 2006; Beltramello et al., 2005; Bruzzone et al., 2003; D’Andrea et al., 2002; Lee et al., 2008; Mese et al.,
2004; Mese et al., 2008; Oshima et al., 2003; Thonnissen et al., 2002; Wang et al., 2003; Zhang et al., 2005)

IV G45E, M163L,
G12R, D50N, S17F

(Gerido et al., 2007; Lee et al., 2008; Matos et al., 2008; Stong et al., 2006)

V E114G, R143W,
I128I, S183F,
Q80R, V27I, V37I,
I203T, c.- 15C>T,
p.Met34Thr,
p.Ala40Ala,
p.Gly160Ser

(Batissoco et al., 2009; Choung et al., 2002; de Zwart-Storm et al., 2008a; de Zwart-Storm et al., 2008b; Kudo et al.,
2000; Mese et al., 2004; Prasad et al., 2000; Wang et al., 2003)

VI R32C, P58A,
K168R, N54K, L20
5P, 465T-->A,
31del14, S113P,
S199F, C202F,
K224Q, F142L,
313del14, 176–191
del (16),
p.Lys168Arg, c.
684C>A,
p.Leu81Val
(c.G241C),
p.Met195Val
(c.A583G), Q80K
and P173S, S199F,
T55G, D159V,
605ins46,
313del14, 355del9,
573delCA

(Antoniadi et al., 2000; Batissoco et al., 2009; Brown et al., 2003; Christiani et al., 2007; Gualandi et al., 2004; Gualandi
et al., 2002; Kalay et al., 2005; Kelley et al., 1998; Kudo et al., 2000; Kupka et al., 2002; Leshinsky-Silver et al., 2005;
Marlin et al., 2005; Murgia et al., 1999; Prasad et al., 2000; Primignani et al., 2007; Tamayo et al., 2009; Tekin et al.,
2003; Uyguner et al., 2003; Xiao and Xie, 2004; Yuge et al., 2002)

Class I mutations are mutations preventing the formation of GJs. Class II comprises mutations that do not affect formation of GJs, but the mutated GJs
display null functions. Class III refers to mutations specifically impaire the GJ-mediated biochemical coupling. Class IV consists of mutations causing a
gain-of-function due to abnormal hemichannel openings. Mutations without reported functional effects on GJ functions (likely to represent polymorphism)
are grouped in category V. Finally, class VI consists of mutations that have not been thoroughly studied in vitro. Detailed criteria for the classification
are given in the text.
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Table 2
Comparison of results obtained from various Cx26 and Cx30 mutant mouse models

Animal models Cx30 null cCx26 null Cx26R75W-Kudo Cx26R75W-Maeda

Reference of the first report (Teubner et al., 2003) (Cohen-Salmon
et al., 2002)

(Kudo et al., 2003) (Maeda et al., 2007)

Approach used Targeted replacement of
Gjb6 by LacZ/neo

Gjb2 is flanked
by loxP. Excision
of Gjb2 by
otogelin-driven
Cre expression
from a BAC

hCx26 R75W is
expressed under
universal CAG
promoter

pGJB2R75W-eGFP
plasmid (CMV
promoter) delivered
by lipofection
applied to the round
window membrane

Time and location of Cx deletion Germline deletion of
Gjb6

Gjb2 presumably
is deleted at E10
in sensory
epithelium of the
cochlea

The dominant-
negative Gjb2
mutant is
presumably
expressed before
the first meiotic
division. Detailed
cellular pattern of
expression is
unknown

The dominant-
negative Gjb2
mutant is expressed
in adult cochlea.
Many cochlear cells
expressed the
mutant Cx as
detected by the GFP
immunolabeling

Inner and outer hair cell loss Hair cell losses begin at
the third week
postnatally. and increase
gradually with age. Outer
hair cells are affected
first and more severely

Gross
morphology of
inner hair cells
appears to be
normal in most
animals. Outer
hair cell loss
starts at P15. The
two most internal
rows are affected
first

Inner hair cells are
present but show
changed shape.
Outer hair cells are
present at P14 but
show shape
changes and they
degenerated at the
seventh week

No hair cell loss and
hearing loss is
transient. Auditory
sensitivities recover
in 5 days after
introducing mutant

Vestibular morphology Vestibular hair cell loss
specifically in the
saccule is observed (Qu
et al., 2007)

Normal up at
least to P60

Normal by
functional
assessment

No data reported

Supporting cell loss Not degenerated Initial damage
observed at P15

Initial damage
observed at P14

Not affected

Is there SG neuron loss? No description provided. No SG neuron
degeneration
observed

Degeneration of
SG neurons in
basal turn noted at
seventh week
postnatally

Is the opening of the tunnel of
Corti affected?

No No Yes (Inoshita et al.,
2008)

Hearing threshold elevation At P17–18, click ABR
threshold elevation is
about is 50 dB. Adult
mice show no ABRs at
>100 dB

About 30 dB
elevation at the
most sensitive
frequencies on
average.

Greater than 100
dB threshold
elevation

About 15–20 dB
threshold elevation
as assessed by click
ABR

EP value At P13/P14: 0±4 vs. 74
±9mV in control mice. In
adults: 3±3 vs. 148±15
mV in controls

At P12–13: 56
±12 vs. 58
±12mV in
control mice. In
adults: 38±14 vs.
110±12mV in
controls

In adults: 87±2.5
vs. 97.4±7.1 mV in
control mice

Endolymphatic K+ concentration At P13/P14: 100±39 vs.
102±24 mM in control
mice. In adults: 44±19
vs. 148±15mM

In adult: 85±21
vs. 153±7mM in
the control mice

Morphology changes in the organ
of Corti, spiral limbus, stria
vascularis, firbrocytes in the
lateral wall

No gross morphological
changes in stria
vascularis, lateral wall is
observed. No
displacement of

Disruption of the
reticular lamina,
missing of some
interdental cells.
Gross cochlea

No gross changes
in gross cochlear
morphology
observed. No
opening of the
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Animal models Cx30 null cCx26 null Cx26R75W-Kudo Cx26R75W-Maeda

Reissner’s membrane
observed

structure appear
to be normal

tunnel of Corti. The
Nuel’s space is
absent.
Microtubule
abnormality in
Inner pillar cells.
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