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Abstract
Introduction Dysregulation of neuronal networks has been
suggested to underlie the cognitive and perceptual abnor-
malities observed schizophrenia.
Discussions An in vitro model of psychosis is proposed based
on the two different approaches to cause aberrant network
activity in layer V pyramidal cells of prefrontal brain slices:
(1) psychedelic hallucinogens such as lysergic acid diethyla-
mide and (2) minimal GABAA receptor antagonism, model-
ing the GABA interneuron deficit in schizophrenia. A test of
this model would be to determine if drugs that normalize
aberrant networks in brain slices have efficacy in the
treatment of schizophrenia. Selective agonists of glutamate
mGlu2/3 metabotropic receptors, which are highly effective
in suppressing aberrant network activity in slices, are the
most advanced toward reaching that clinical endpoint. In
accord with the model, a recent phase II clinical trial shows
that an mGlu2/3 receptor agonist is equivalent in efficacy to
a standard antipsychotic drug for both negative and positive
symptoms in schizophrenic patients, but without the usual
side effects. D1/5 dopamine receptor agonists are also
effective in normalizing aberrant network activity induced
by both hallucinogens and minimal GABAA antagonism;
clinical efficacy remains to be determined. A general model
of network regulation is presented, involving astrocytes,
GABA interneurons, and glutamatergic pyramidal cells,
revealing a wide range of potential sites hitherto not
considered as therapeutic targets.
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Introduction

The hallmark of cortical circuits both in vivo and in vitro is
the prominence of periodic states of depolarization (UP
states) that interact with internal and external inputs
(McCormick et al. 2003; Petersen et al. 2003). Riding
upon these UP states is a nearly balanced mixture of
excitatory and inhibitory synaptic potentials both in vivo
(Haider et al. 2006) and in vitro (Shu et al. 2003), indicative
of recurrent network activation. The association with
recurrent network activation distinguishes this type of UP
state from non-network related UP states that are generated
intrinsically within a neuron. Network-generated UP states
have been suggested to provide a neuronal “context” within
which information is interpreted and decisions are made
(McCormick 2005). It has been hypothesized that aberra-
tions in the modulation of neuronal networks may account
for perceptual and cognitive abnormalities in schizophrenia
(Winterer and Weinberger 2004; Lewis et al. 2005). In
schizophrenic patients, and to a lesser degree their siblings,
there is an elevated level of background electrophysiolog-
ical noise, especially in prefrontal regions, leading to a
decrease in the signal to noise ratio (Winterer and
Weinberger 2004). Within this framework, schizophrenia
can be seen as a disease of disordered network regulation in
which high fluctuating background noise interferes with the
stability of cortical representations of external and internal
stimuli.
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Modeling “psychosis” in prefrontal cortical slices

The elements of recurrent network activity are preserved in
brain slices of prefrontal cortex. UP states and associated
network activity may occur spontaneously or be evoked with
an electrical stimulus applied to mid-layers of ferret cortical
slice (McCormick et al. 2003; Shu et al. 2003) or applied to
thalamus in mouse thalamocortical slice (Beierlein et al.
2002; Rigas and Castro-Alamancos 2007). Of particular
interest for this review is that stimulus-induced UP states can
be enhanced markedly in layer V pyramidal cells of
prefrontal cortex by psychedelic hallucinogens acting via
serotonin 5-HT2A receptors (Aghajanian and Marek 1999).
Originally, this type of UP state was termed “asynchronous”
late excitatory postsynaptic currents (EPSCs). However, as
the hallucinogen-enhanced “late EPSCs” in layer V pyrami-
dal cells in rat brain slice are comprised of mixed inhibitory
and excitatory components rather than simply being EPSCs
(Lambe and Aghajanian 2007), they clearly represent the
persistent activity of an activated network. On that basis, it is
preferable to use the term “recurrent network activity”
instead of “UP state”, as the latter term has also been used
to denote non-network generated plateau potentials. The
rapid alteration between EPSCs and IPSCs results in
recurrent network activity that is prominently in the gamma
frequency range both under basal conditions (McCormick et
al. 2003; Shu et al. 2003) and when enhanced by
hallucinogens (Lambe and Aghajanian 2007). Interestingly,
the elevated electrophysiological “noise” that occurs in
schizophrenic patients also has a prominent gamma frequen-
cy component (Winterer and Weinberger 2004), but it not
known directly if this is generated by intrinsic recurrent
network activity.

The intensity of stimuli evoking recurrent activity must be
kept within a narrow window: higher intensities recruit
negative feedback inhibition sufficient to suppress the
recurrent activity, indicative of the importance by inhibitory
circuits in its regulation (Lambe and Aghajanian 2006; Rigas
and Castro-Alamancos 2007). In this regard, it is interesting
that reducing tonic inhibition with a low concentration of
the GABAA antagonist bicuculline enhances stimulus-
induced network activity in a manner that resembles in
many respects the effect of hallucinogens (Aghajanian and
Marek 1999; Lambe and Aghajanian 2007).

The enhancement of network activity by hallucinogens
or minimal GABA antagonism is characterized by an
increase in duration and a decrease in refractory period,
which increases the probability a response will occur during
repeated low frequency stimulation (Aghajanian and Marek
1999). The effects of hallucinogens are prevented by
interfering with the diffusion of synaptic glutamate,
indicating a dependence upon spillover of synaptic gluta-
mate into the extrasynaptic space (Lambe and Aghajanian

2006). These electrophysiological indicators of glutamate
spillover are paralleled in vivo by microdialysis studies
showing that LSD (d-lysergic acid diethylamide) and
mescaline-like hallucinogens induce an increase in extra-
cellular glutamate levels in prefrontal cortex (Scruggs et al.
2003; Muschamp et al. 2004). Consistent with a glutamate
spillover mechanism, the hallucinogen-induced recurrent
activity is blocked by selective antagonists of the NR2B
subtype of NMDA receptor (Lambe and Aghajanian 2006),
which is mainly located extrasynaptically in mature brain
(Charton et al. 1999). Interestingly—perhaps because of a
primarily extrasynaptic location—selective NR2B antagonists
do not produce psychotomimetic effects in human subjects
(Merchant et al. 1999) and cognitive deficits in rodents
(Higgins et al. 2005) that are typically seen with non-selective
NMDA antagonists such as ketamine or phencylidine (Krystal
et al. 1994). As yet, no clinical trials with selective NR2B
antagonists in schizophrenic patients have been reported.

The ability of psychedelic hallucinogens to increase
glutamate spillover, taken together with its dependence on
extrasynaptic NR2B receptors, forms the basis for the
spillover model of recurrent network activity. As depicted
in Fig. 1, the poststimulus response consists of two
components: (1) recurrent network activity and (2) a slow
inward current (SIC). LSD as well as other psychedelic
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Fig. 1 LSD enhances spread of recurrent network activity in medial
prefrontal cortex (mPFC) induced by focal electrical stimulation (stim
electrode) (top diagram). Recurrent activity, recorded in mPFC slice
by whole cell patch pipette, is depicted as spreading from initial zone
(blue oval) to impinge upon a more distant layer V pyramidal cell.
Traces below show example of LSD-induced increase in recurrent
activity over basal condition; recurrent activity consists of a mix of
EPSCs and IPSCs. Downward deflection of baseline reveals a slow
inward current or SIC (shaded area) accompanying the recurrent
activity. Also note that the fast EPSC is not altered appreciably
(provided by G. Aghajanian)
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hallucinogens cause the wave of recurrent activity to spread
to cells that otherwise would not be activated by a given
external or internal stimulus (Lambe and Aghajanian 2006).
A spreading of network activity between different neuronal
ensembles would have the effect of breaking down the
barriers between set of neurons in otherwise distinct
neuronal ensembles. However, there is no experimental
evidence that such a mechanism is responsible for the
blurring of perceptual and cognitive boundaries reported by
people who have ingested psychedelic hallucinogens.
Furthermore, it is not known whether similar mechanisms
underlie the network abnormalities that have been proposed
to occur in psychoses such as schizophrenia (Winterer and
Weinberger 2004; Lewis et al. 2005). Nevertheless, the
induction of aberrant network activity in prefrontal brain
slice represents a potentially useful in vitro model for
discovery of novel sites involved in the regulation of
intrinsic cortical networks.

There has been considerable debate over whether the
psychedelic hallucinogens or non-competitive NMDA
antagonists or NMDA antagonists such as ketamine more
faithfully model naturally occurring psychoses such as
schizophrenia. A recent double-blind crossover study in
healthy volunteers has addressed this issue directly in by
comparing the psychological effects of the psychedelic
hallucinogen N,N-dimethyltrytamine (DMT) with sub-
anesthetic doses of the non-competitive NMDA receptor
antagonist (S)-ketamine (Gouzoulis-Mayfrank et al. 2005).
The authors conclude that the two classes of drugs model
different aspects of schizophrenia: positive symptoms being
more prominent with DMT while negative symptoms are
more pronounced with ketamine. Interestingly, on a mecha-
nistic level, both the psychedelic hallucinogens (Scruggs et al.
2003; Muschamp et al. 2004) and NMDA antagonists
(Moghaddam et al. 1997) produce an increase in extracellu-
lar glutamate levels in prefrontal cortex. Based on that shared
ability to increase glutamate release, it has been suggested
that hallucinogens and NMDA receptors antagonists share
certain components of a final glutamatergic pathway
(Aghajanian and Marek 2000). However, it is not surprising
that the clinical pattern of response to the two types of agents
differ since the initial receptor sites at which NMDA
antagonists and hallucinogens produce this effect is quite
different. In vivo studies indicate that sub-anesthetic doses of
NMDA agonists in prefrontal cortex acts predominantly to
decrease the firing of putative GABA interneurons, leading
to a disinhibition of glutamatergic pyramidal cells
(Homayoun and Moghaddam 2007). Such a disinhibitory
effect of NMDA antagonists is not seen in prefrontal slice,
presumably because interneurons have little spontaneous
activity in this preparation. Nevertheless, a disinhibitory
effect can be approximated in the slice by minimal GABAA

receptor antagonism, an effect resembling that of halluci-

nogens in promoting strong aberrant network activity
(Aghajanian and Marek 1999; Lambe and Aghajanian
2007). Each of these two approaches for inducing aberrant
network activity is of interest in its own way: (1) the effect of
hallucinogens is suggestive of possible mechanisms by
which disordered cortical networks may affect cognition
and perception and (2) the minimal GABAA antagonist
paradigm represents a way of modeling in vitro the GABA
deficit in schizophrenia (Ford et al. 2007).

The usefulness of the in vitro network model ultimately
will depend on whether novel treatments specifically
designed to normalize aberrant network activity in brain
slice predict efficacy in ameliorating psychosis in patients.
As recurrent network activity involves a complex interaction
between glutamatergic pyramidal cells, GABAergic inter-
neurons, and glial cells. This complexity offers the opportu-
nity for intervening at diverse sites within the network. A
few of these that are most advanced toward clinical testing
are discussed in the following sections.

Suppression of aberrant network activity by mGluR 2/3
agonists

One way to limit the effects of glutamate spillover upon
network activity would be to restrict glutamate release. The
mGluR2 and mGluR3 metabotropic glutamate autoreceptors
are known to serve as negative feedback regulators of glutamate
release (Conn and Pin 1997). On that basis, it was hypothe-
sized that mGluR2/3 agonist would reduce hallucinogen-
induced glutamate overflow and associated aberrant network
activity. Consistent with that idea, early studies in prefrontal
slices showed that fast synaptic EPSCs induced by serotonin
via 5-HT2A receptors were suppressed by treatment with a
preferential mGluR2/3 agonist (Aghajanian and Marek 1997).
Subsequently, it was found that a more selective mGluR2/3
agonist LY354740 was highly efficacious in suppressing the
enhancement recurrent network activity induced by the
mescaline-like hallucinogen DOI (Marek et al. 2000; Fig. 2,
lower panel).

In view of the striking laminar overlap between 5-HT2
receptors labeled by the hallucinogen DOI and mGluR2/3
receptors labeled by LY354740 in layer V of medial
prefrontal cortex (Fig. 2, upper panel), it was originally
assumed that the interaction between 5-HT2A and mGluR2/3
receptors simply represented a physiological antagonism at
separate molecular or cellular sites (Marek et al. 2000).
However, a recent study reported that 5-HT2A and mGluR2
receptors form a macromolecular complex, allowing allosteric
interactions to occur between the two receptors in the same
cells (Gonzalez-Maeso et al. 2008). Particularly intriguing is
the possibility that activation of 5-HT2A receptors by the
hallucinogen DOI may lower the affinity of mGlu2 receptors
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for mGlulR2/3 agonists. A reduced affinity of mGluR2
receptors for glutamate would impair their negative feedback
function in opposing an excessive increase in recurrent
network activity in response to elevated extracellular gluta-
mate. In contrast, when extracellular glutamate is raised
through inhibition of glutamate uptake, there is strong
activation of mGluR2/3 receptors and suppression of recur-
rent activity (Lambe and Aghajanian 2006).

Based on the above in vitro electrophysiological studies
as well as in vivo microdialysis studies using the
phencylidine/ketamine model (Moghaddam and Adams
1998), it has been suggested that mGlu2/3 agonists have
potential as therapeutic agents in schizophrenia or other
psychoses. However, early clinical trials employing
LY354740, a first generation drug, proved to be disappoint-
ing. Subsequently, LY2140023—a prodrug of the mGlu2/3
agonist LY404039 with improved bioavailability—was
tested in a randomized, double-blind phase 2 clinical trial
(Patil et al. 2007). Over a 4-week period, LY2140023 was
found to be equivalent in efficacy to the commonly used
“atypical” antipsychotic drug olanzapine in ameliorating

both negative and positive symptoms. However, in contrast
to traditional antipsychotic drugs, LY2140023 did not lead
to any increase in body weight, prolactin, or extrapramidal
symptoms. The absence of such side effects can be
explained by the fact that LY404039, the active metabolite
of LY2140023, is a glutamate analog that does not act upon
dopamine, norepinephrine, serotonin, and many other
common neurotransmitter receptors that have been impli-
cated in producing these effects (Rorick-Kehn et al. 2007).

The positive clinical results with LY2140023, if con-
firmed, lend credence to the idea that normalization of
aberrant network activity in the prefrontal slice may be a
useful model for discovering novel agents in the treatment
of schizophrenia. It should be noted, however, that the
beneficial effects of LY2140023 emerged no faster than
with a standard antipsychotic drug, developing slowly over
4 weeks (Patil et al. 2007). This contrasts with the rapid
suppression of recurrent network activity in vitro, which
occurs within minutes after application of mGluR2/3
agonists (Marek et al. 2000). The delayed clinical
response suggests that there may be molecular or struc-
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Fig. 2 Autoradiograpy showing
overlap between binding at
mGlu2/3 receptors (labeled by
3H-SCH354740) and 5-HT2A/C

receptors of the mescaline-like
hallucinogen 125DOI (top) in
mPFC. Traces (lower left) show
marked enhancement of basal
late evoked slow depolarization
by the mescaline-like hallucino-
gen DOI in a layer V mPFC cell
(B2); note synaptic potentials
riding upon the wave of
depolarization. Subsequent
traces show a dose-dependent
suppression of the DOI effect by
the mGlu2/3 agonist LY354740.
Plot (lower right) shows
summary dose–response data.
Note the late “EPSP” is more
sensitive to LY354740 than the
early EPSP. Also note that the
recordings were in current
clamp rather than voltage clamp
mode; thus, unlike Figs. 1, 3,
and 4, the responses are given
in terms of potential rather
current—its voltage clamp
counterpart. Montage adapted
from Marek et al. 2000
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tural deficits in schizophrenia that are slow to reverse
(see below).

D1/5 agonists and recurrent network activity

As hallucinogen-enhanced network activity depends on
glutamate spillover (Lambe and Aghajanian 2006) and
associated increase in extracellular glutamate (Scruggs et al.
2003; Muschamp et al. 2004), it was hypothesized treat-
ments that decrease extracellular glutamate in prefrontal
cortex would have the opposite effect. This property is
displayed by D1/5 dopamine receptor agonists, which have
been found to cause a decrease in extracellular glutamate in
vivo in prefrontal cortex (Abekawa et al. 2000; Harte and
O’Connor 2004). As illustrated in Fig. 3 (upper traces), D1/
5 receptor agonists such as SKF38393 are extremely potent
suppressants of both basal and hallucinogen-induced
network activity in prefrontal slices (Lambe and Aghajanian
2007). Unlike mGluR2/3 agonists, D1/5 agonists do not
cause any reduction of the fast EPSC. The suppression of
recurrent network activity by SKF 38393 is mimicked by
forskolin, a direct activator of adenylyl cyclase, and by 8-

Br-cAMP, a phosphodiesterase-resistant analog of cAMP,
consistent with the known coupling of D1/5 receptors
through the Gs/cAMP pathway. These results are paralleled
by recent optical imaging studies in prefrontal slices
showing that D1/D5 agonists decrease the amplitude,
duration, and lateral spread of activation in local cortical
networks (Bandyopadhyay and Hablitz 2007).

In behaving animals, D1 receptor activation dose-
dependently suppresses the sustained neuronal firing that
takes place during the “delay” period in prefrontal cortex
engaged in a working memory task (Vijayraghavan et al.
2007). This suppression has an inverted-U relation to
working memory: moderate levels of D1 receptor stimula-
tion partially reduces firing rate but leads to an enhance-
ment in spatial tuning, whereas at higher levels of D1
stimulation, the suppression of firing becomes more
pronounced, leading to losses in spatial information
capacity and detuning of spatial memory-related informa-
tion. As these in vivo studies did not examine the
relationship of delay firing to recurrent network activity, a
direct comparison cannot be made to the progressive
suppressant effect of D1 agonists on recurrent activity that
we find in vitro in the prefrontal slice (Lambe and Aghajanian
2007). Nevertheless, as delay firing is most likely sustained
by recurrent networks (McCormick et al. 2003), there may
be a common mechanism underlying the two phenomena.

There are at least two possible mechanisms by which
D1/D5 receptors could limit excitation and promote
inhibition in cortical networks. First, through a presynaptic
effect, D1/D5 receptor stimulation directly attenuates
recurrent excitation in layer V pyramidal neurons (Gao et
al. 2001). Second, D1/D5 receptors can enhance inhibition
within the network by directly exciting GABAergic
neurons (Seamans et al. 2001; Gorelova et al. 2002;
Bandyopadhyay and Hablitz 2007). Thus, multiple mech-
anisms are likely to contribute to a D1/D5 receptor-
mediated suppression of hallucinogen-induced recurrent
activity. Interestingly, D1/5 agonists are also able to suppress
the increase in network activity produced by low concen-
trations of the GABAA antagonist bicuculline (Fig. 3, lower
traces), demonstrating the ability of D1/5 agonists to restore
inhibitory balance in networks in a variety of situations.

On the basis of various clinical and preclinical studies it
has been proposed that D1/D5 agonists may be useful in
treatment of schizophrenia (Abi-Dargham and Moore 2003;
Marcus et al. 2005). Clinical trials show that D1/D5
antagonists, in contrast to D2 receptor antagonists, exacer-
bate psychosis in schizophrenic subjects (de Beaurepaire et
al. 1995). In addition, in vivo imaging studies show an
upregulation of D1 receptors in prefrontal cortex of
schizophrenic patients as compared to healthy controls
(see Abi-Dargham and Moore 2003). The D1 upregulation
is believed to be due to chronic hypostimulation of the D1
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Fig. 3 Recurrent activity (and associated SIC) induced by either DOI
(upper traces) or the GABAA antagonist bicuculline (bic) (lower
traces) is suppressed by a nanomolar concentration of the D1
dopamine receptor antagonist SKF383393. Note in the superimposed
traces that there is no reduction in the fast EPSC. Modified from
Lambe and Aghajanian 2007
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receptors in that patient population and was predictive of
poor performance during a working memory task. As yet
there has been only one clinical trial testing the effects of a
D1/D5 agonist in schizophrenic patients (George et al.
2007). That study employed a single, slow subcutaneous
infusion of dihydrexidine, which is a short-acting full D1/
D5 agonist with ~10-fold selectivity of D1/D5 over D2
receptors. The drug was relatively well tolerated, but no short-
term improvement was seen either in clinical ratings or
neuropsychological tests. The authors regarded this result as
not surprising in view of the fact that dihydrexidine was given
as a single dose and has only has 30-min half life. More
extended clinical studies were thought to be needed with
longer-acting D1/D5 agonists to fully evaluate potential
therapeutic usefulness. In that regard, a partial rather than full
agonist may be preferable given the possible detrimental
effects of supranormal stimulation of D1/5 receptors (Zahrt et
al. 1997; Vijayraghavan et al. 2007).

Relative merits of proposed treatments

Two examples have been given as to how modulators of
recurrent network activity could useful in the treatment of
schizophrenia, one already tested in Phase II trials and the
other at a much earlier stage. The Phase II clinical trials
with the mGluR2/3 agonist prodrug LY2140023 show
antipsychotic efficacy equivalent in efficacy to a standard
antipsychotic comparison drug, with the important advan-
tage of avoiding many undesirable side effects such as
weight gain and extrapyramidal side effects (Patil et al.
2007). However, a potential drawback of mGluR2/3
agonists is their tendency to produce some reduction in
the fast EPSC, albeit to a lesser degree than their effect on
persistent recurrent network activity (Marek et al. 2000).
Interestingly, selective genetic deletions show that mGlu2,
but not mGlu3 receptor, are most predictive of the
antipsychotic-like activity of mGlu2/3 agonists in preclinical
behavioral studies (Fell et al. 2008; Woolley et al. 2008).
Similarly, pharmacological studies show that a positive
allosteric modulator selective for mGlu2 receptors mimics
the ability of a combined mGlu2/3 agonist to suppress
behavioral effects hallucinogenic drugs (Benneyworth et al.
2007). It remains to be seen whether mGlu2-selective
agonists (or positive modulators) would have less tendency
than mixed mGlu2/3 agonists to reduce the fast EPSC
relative to network activity. As mentioned earlier, D1/D5
agonists can reduce late network activity in the absence of
any suppression of the fast EPSC (Lambe and Aghajanian
2007), possibly conferring a therapeutic advantage. How-
ever, as D1/D5 receptors are located at diverse sites in the
brain and periphery, it is difficult to predict whether actions
of systemically administered D1/D5 agonists at extraneous

sites would limit their potential therapeutic usefulness in
treating schizophrenia (Marcus et al. 2005).

The crucial role of GABA interneurons in network
regulation

The clinical response to mGlu2/3 agonist treatment is no
more rapid than with a standard antipsychotic drug (Patil et
al. 2007), suggesting the existence of underlying structural
changes in schizophrenia that are inherently slow to
reverse. For example, there is growing evidence for a net
reduction in GABA-mediated inhibitory modulation in
schizophrenia due to decline in GABA synthesizing
enzymes and certain interneuron populations in cortex
(Akbarian et al. 1995; Benes and Berretta 2001; Lewis et
al. 2001). Ford and colleagues have suggested that the
search for new treatments would be facilitated by in vitro
experiments by which “…GABA antagonists introduced
into the Petri dish produce the schizophrenia pattern…” of
electrophysiological oscillations (Ford et al. 2007). Predating
this suggestion, it was earlier shown that a subconvulsive
concentration of the GABAA antagonist bicuculline pro-
motes aberrant network activity in brain slices (Aghajanian
and Marek 1999). Moreover, D1/D5 receptor agonists are as
effective in suppressing bicuculline-induced effects on
network activity as they are in suppressing the effects of
hallucinogens (Lambe and Aghajanian 2006). The presumed
mechanism for this suppression is that D1/D5 agonists
counteract the GABAergic deficit produced by bicuculline
by activating GABAergic interneurons. It is significant that a
low, preconvulsant concentration of bicuculline has relatively
little effect on fast synaptic GABA transmission (Luhmann
and Prince 1990; Aghajanian and Marek 1999). This
selectivity implies that bicuculline’s effect is mainly upon
extrasynaptic GABAA channels, which are activated tonical-
ly by low concentrations of GABA rather than high synaptic
concentrations (Yeung et al. 2003). It has been proposed that
non-sedating, subtype-selective positive allosteric modula-
tors of GABAA receptors potentially may have a more rapid
therapeutic effect than existing treatments since they address
more directly the issue of underlying pathophysiology
(Guidotti et al. 2005; Rudolph and Mohler 2006; Lewis et
al. 2008). To date, only one such drug—MK-0777—has
been tested clinically in schizophrenic patients. This drug,
which has high α2/α3 selectivity, was found to improve
working memory and other measures of prefrontal function
in a 4-week trial in chronic schizophrenic patients (Lewis et
al. 2008). Although there was no overall improvement in the
Brief Psychiatry Rating Scale, it was felt the improvement in
cognitive function had sufficient promise to proceed with
further clinical trials with MK-0777 or other related
compounds.
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Role of astrocytes in the network model

The role of astrocytes in the regulation of recurrent network
activity has been largely neglected. Yet in postmortem brain
tissue from schizophrenic subjects, a significant reduction
has been reported in layer V glial cells of dorsolateral
(Rajkowska et al. 2002) and anterior cingulate prefrontal
cortex (Stark et al. 2004), a region homologous to the area
in rat medial prefrontal where most of the slice recordings
are performed. There are a large variety of receptors that
can promote release of glutamate from astrocytes. These
include the metabotropic glutamate mGlu1/5 receptors,
located on both astrocytes and neurons and the protease-
activated receptor 1 (PAR1), located primarily on astrocytes
(see Haydon and Carmignoto 2006); the latter are activated
through the tPA/plasminogen/plasmin serine protease path-
way. The co-activation of PAR1 and mGlu1/5 receptors is
particularly effective in inducing a slow and prolonged
release of glutamate from astrocytes. The slowly released
glutamate can then act upon extrasynaptic neuronal NR2B
receptors to produce slow inward currents or SICs (Fellin et
al. 2004). The astrocytic dependence of NR2B-mediated
SICs would explain how a transient spillover of synaptic
glutamate is able to trigger sustained recurrent network
activity (Fig. 4, top panel). According to this model, two
waves of glutamate are involved the production of SICs as
well as concurrent recurrent activity: an initial wave of
synaptic glutamate spillover onto astrocytes and a second-
ary astrocytic amplification of the neuronal glutamate
signal. Consistent with this idea are preliminary experi-

ments showing that highly selective PAR1 antagonists are
potent blockers of both basal and hallucinogen-induced
SICs and as well as recurrent network activity (Fig. 4,
bottom panel).

Limitations of the in vitro network model

The main strength of the prefrontal brain slice preparation
is that it allows for a dissection of mechanisms underlying
intrinsic recurrent network activity. However, the prefrontal
slice preparation has the inherent limitation of being
disconnected from subcortical efferents and afferents,
including major reciprocal connections with monoaminergic,
mesolimbic, and thalamic systems (Groenewegen and
Uylings 2000). Among these, the midline/intralaminar
thalamic inputs are of particular interest since they comprise
the final link in the ascending arousal pathway to prefrontal
regions. The midline/intralaminar projections are distinctive
in terminating upon apical dendrites of layer V pyramidal
cells of medial prefrontal cortex—categorized as agranular as
it lacks a layer IV, the normal target for thalamic inputs (see
Lambe and Aghajanian 2003). This arrangement creates the
unusual situation in which layer V pyramidal cells serve both
as the main receptive cells for thalamic input and the main
output cells to subcortical regions. Another distinctive
feature of cells in midline/intralaminar versus other thalamic
nuclei is that they are selectively excited by the wake-
promoting peptides hypocretin 1 and 2 (orexin A and B) as
well as nicotine via α4β2 receptors; this excitation occurs at
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Fig. 4 Proposed role of
astrocytes in the generation of
recurrent activity and slow in-
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the level axon terminals as well as the relay cell bodies
(Lambe and Aghajanian 2003).

In behavioral studies, hypocretin or nicotine infused into
medial prefrontal cortex of awake animals improves
performance in a complex cognitive task requiring divided
attention (Lambe et al. 2005). Postmortem studies have
found diminished connectivity between anterior thalamic
nuclei and prefrontal cortical areas, which may contribute
to cognitive deficits that are detectable even at early stages
of schizophrenia (Andreasen et al. 1996; Danos et al. 1998;
Portas et al. 1998; Lewis et al. 2001). These findings are
supported by MRI scans in patients with first episode
schizophrenia showing that fiber pathways in the anterior
limb of the internal capsule, which connect midline/anterior
thalamic nuclei to prefrontal cortex, are reduced in volume
(Lang et al. 2006). The evidence for an underlying loss of
thalamocortical connectivity suggests that there may a
deficit in cortical processing of incoming information from
the ascending arousal system in schizophrenia.

In vivo electrophyiological studies give important
insights on how sensory activation of thalamic inputs
interacts with cortical recurrent network activity. The
interaction of sensory responses with spontaneous depola-
rizations (“UP states”) has been studied with whole cell in
vivo recordings in pyramidal cells of rodent somatosensory
cortex (Petersen et al. 2003). During the UP state, but not
quiescent or DOWN states, there appears to be a high level
of intrinsic synaptic noise indicative of recurrent network
activity. Surprisingly, despite cell depolarization, a sensory
stimulus produces fewer action potentials during UP states
than DOWN states. Thus, the UP state does not seem to
prime for a greater reception of sensory information—
instead there seems to be a competition or interference
between sensory-evoked responses and ongoing spontane-
ous activity. If this pattern holds for prefrontal cortex, then
excessive intrinsic network activity within the cortex might
be expected to interfere with sensory processing. Although
not directly demonstrated, this attenuation of sensory
responses by high levels of intrinsic activity may be
responsible for the decrease in signal to noise ratio that
has been found in schizophrenic patients (Winterer and
Weinberger 2004). Unfortunately, it not feasible to model

this relationship directly in vitro since anatomical thalamic
connections are not readily retained in the medial prefrontal
slice preparation, limiting its ability to model interactions
with afferent inputs that may influence the effects of drugs
acting upon the candidate sites described below.

Targeting novel therapeutic targets

The successful phase II trials with an mGluR2/3 agonist
provides strong incentive for testing agents directed at
alternative sites within the network model for their
clinically usefulness. Table 1 lists a wide array of cellular
and receptor sites located at critical nodal points involved in
the modulation of intrinsic network activity in prefrontal
cortex that are potential therapeutic targets. These should be
regarded only as illustrative of the many factors, known and
unknown, that are involved in regulation of a highly
complex network. As many atypical antipsychotics already
include potent antagonist activity at 5-HT2A receptors as
part of their profile, this receptor has not been listed. The
most selective and potent of these is risperidone, which has
~10- to 20-fold selectivity for the 5-HT2A over the D2
receptor (Schotte et al. 1996). However, it has been
reported that at typical clinical doses, risperdone has as
high a level of D2 receptor occupancy as low dose typical
antipsychotics, making it difficult to isolate the role of 5-
HT2A blockade (Kapur et al. 1999). Although phase III
trials with a selective 5-HT2A agonist (M100907) have been
conducted in schizophrenic patients, they were said to be
discontinued because of less than optimal efficacy (de
Paulis 2001). However, the detailed results of these trials
have not been made available in the open literature, leaving
open the question of whether activation of 5-HT2A

receptors contribute significantly to disordered networks
in schizophrenia.

Undoubtedly, some of the novel antagonists or agonists
that show efficacy in vitro will have serious side effects in
vivo—including unexpected adverse interactions with
efferents and afferents—greatly outweighing their possible
therapeutic benefit. Ideally, selection of the most appropri-
ate therapeutic target will be informed by the underlying

Cellular target Candidate site Clinical efficacy Status

Pyramidal cell mGluR2/3 ( +) high Phase IIb clinical

NR2B (−) – Early clinical

α2 GABAA (+) – Early clinical

α5 GABAA (+) Preclinical

Interneuron D1 (+) – Early clinical

Astrocyte PAR1 (−) – Preclinical

mGluR1/5 (−) – Preclinical

Table 1 Candidate sites for
modulation of aberrant networks

Negative sign (−) antagonist,
positive sign (+) agonist/positive
modulator
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deficit in a given patient. Two examples of suggested
preexisting structural or molecular changes in schizophrenia
have been mentioned previously: deficits GABA inter-
neurons and anterior thalamocortical connections. In addi-
tion, it is likely that many of the susceptibility gene
polymorphisms identified in schizophrenia, such as those
that modulate glutamate or GABA transmission, contribute
to network dysregulation. Ultimately, as the affected site(s)
can vary across patient subtypes, knowledge about under-
lying genetic makeup and developmental pathophysiology
will provide the best guidance for selecting optimal targets
within the network.
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