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Abstract

The first total synthesis of (−)-plicatic acid has been achieved by a concise and enantioselective route.
In this synthesis, a conceptually new strategy featuring an asymmetric epoxidation-intramolecular
epoxy-ring-opening Friedel-Crafts reaction sequence was developed for the stereoselective
construction of the 2,7’-cyclolignane skeleton bearing contiguous quaternary-quaternary-tertiary
stereocenters. The implementation of this strategy was enabled by the development of a modified
protocol for the Seebach epoxidation with TADOOH, which affords an unprecedented, highly
enantioselective and diastereoselective epoxidation with a range of α-carbonyl-β-substituted
acrylates 3.

Plicatic acid has been identified as the causative agent of occupational asthma.1a–d

Furthermore, plicatic acid has been shown to cause inflammatory and allergic reactions,
including increased concentrations of immunoglobulins, histamine, leukotrienes, eosinophil
and T-cell levels in the blood.1e–g Plicatic acid was isolated in 1959 by MacLean and co-
workers from western red cedar (Thuja plicata).2a The relative and absolute configurations
were assigned by X-ray crystallographic analysis and optical rotatory dispersion (ORD)
studies, respectively.2b–c A concise total synthesis of this natural product could establish a
means for access to analogues that could be valuable for biomedical studies aiming to elucidate
the molecular mechanism underlying the biological activities of plicatic acid. Our interest in
the total synthesis of plicatic acid is also motivated by the synthetic challenges imposed by its
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rather unusual lignan skeleton that is densely functionalized and bears a motif of contiguous
quaternary-quaternary-tertiary stereocenters.3

As illustrated in Scheme 1, our retrosynthetic analysis presents a new strategy to create the
2,7’-cyclolignane skeleton in order to achieve a stereoselective construction of the B ring
bearing the contiguous quaternary-quaternary-tertiary stereocenters. We envisaged that the key
intermediate, α-hydroxy ketone 2a, could be synthesized from olefin E- 3a by an asymmetric
epoxidation followed by an intramolecular Friedel-Crafts reaction to open the epoxide ring in
4a. The stereoselective construction of the quaternary center at C(8) is to be accomplished via
a C(8’) hydroxy-directed nucleophilic addition to the ketone in 2a.

The implementation of this synthetic strategy, however, required us to fill a significant gap in
the current repertoire of asymmetric epoxidations, namely the lack of a highly
diastereoselective and enantioselective nucleophilic epoxidation of trisubstituted electron-
deficient olefins such as the α-carbonyl-β-substituted acrylates 3a.4 Accordingly, we first
focused on the establishment of a highly enantioselective and diastereoselective asymmetric
epoxidation of α-carbonyl-β-substituted acrylate 3b. Through considerable experimentation,
we discovered that Seebach’s nucleophilic epoxidation with TADOOH as the terminal
oxidant5 could be promoted by a catalytic amount of LiOH, which, interestingly, proceeded
smoothly in THF at 0 °C to transform 3b into epoxide 4b as a single diasteoreomer4f in 92%
ee and 98% yield (4b, Table 1). Significantly, the scope of this modified Seebach epoxidation
could be extended to a variety of acrylates (3b–i) bearing either an α-alkoxycarbonyl or an α-
ketone group (4b-i, Table 1).

We next turned our attention to the application of this new protocol to the asymmetric
epoxidation of the olefin intermediate E-3a (Scheme 2). Benzylation of eugenol (5) followed
by oxidative cleavage of the olefin afforded aldehyde 7, which was transformed into β-ketoester
8 in 92% yield using Roskamp’s protocol.6 The Knoevenagel condensation of 8 and 9 furnished
olefin 3a as a 5:3 E/Z mixture, which could be separated by chromatography. The Z-3a was
found to isomerize to E-3a in the presence of pyridine in refluxing benzene. Thus, E-3a could
be obtained in 80% overall yield from one cycle of Knoevenagel condensation-isomerization.
Gratifyingly, the key LiOH-catalyzed asymmetric epoxidation of E3a - with (S,S)-TADOOH
generated epoxide 4a in 98% ee and 83% yield. A screening of various Lewis acids revealed
TfOH as the optimal catalyst, which effectively promoted the Friedel-Crafts reaction in a
loading of 4.0 mol %. Thus, α-hydroxy ketone 2 was obtained as a 4:1 diastereomeric mixture
in favor of the desired diastereomer 2a (Scheme 2), which was isolated in 70% yield by silica
gel chromatography. Notably, the Friedel-Crafts reaction also proceeded in a highly
regioselective manner as the other regioisomer was not detected.

With α-hydroxy ketone 2a in hand, a stereoselective addition of the hydroxymethyl group to
the ketone in 2a stood as the final obstacle for the construction of the full carbon skeleton of
plicatic acid. Our initial attempts to realize a C8’-OH-directed addition with a metal reagent
such as vinylmagnesium bromide,7a vinyl-lithium,7b vinylcesium chloride7c or
benzyloxymethyl magnesium chloride7d were unsuccessful. These basic metal reagents only
deprotonated the benzylic proton at C7 in 2a, thereby leading to enolization, rather than
nucleophilic addition to the C8-carbonyl group. We then explored an alternative strategy to
execute a formal stereospecific addition of a hydroxymethyl group to the ketone with the C-C
bond formation implemented under nearly neutral conditions (Scheme 2). Thus, the C8’-OH
in 2a was first silylated with ClSi(Me)2CH2Br to form 10 in 75% isolated yield (94% yield
brsm). To our delight, 10 underwent a SmI2-mediated, intramolecular Barbier reaction8 in the
presence of 10 mol % of NiI2

9 to afford hydroxysilane 11, which was subjected to a Fleming-
Tamao-Kumada oxidation10 to furnish the triolester 12 in 50% overall yield from 10. However,
triolester 12 decomposed rapidly when subjected to hydrolysis by LiOH. On the other hand,
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upon treatment with the slightly basic sodium propanethiolate, 12 was converted to carboxylate
13 in 97% yield.11 Global debenzylation of 13 followed by cationic exchange delivered
synthetic (−)-plicatic acid (1) in 72% yield. Extensive spectroscopic and chromatographic
analysis of a 1:1 mixture of synthetic and natural (−)-plicatic acid showed the two to be
indistinguishable.12

In summary, the first asymmetric total synthesis of (−)-plicatic acid was accomplished in 12
steps and 14% overall yield from eugenol. In this synthesis a conceptually new strategy
featuring an asymmetric epoxidation-intramolecular epoxy-ring-opening Friedel-Crafts
reaction sequence was developed for the stereoselective construction of a structurally complex
2,7’-cyclolignane skeleton. The implementation of this strategy was enabled by the
development of a modified protocol for the Seebach epoxidation with TADOOH, which affords
an unprecedented, highly enantioselective and diastereoselective epoxidation with a range of
α-carbonyl-β-substituted acrylates 3.
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Scheme 1.
A Retrosynthesis for (−)-Plicatic Acid (1)
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Scheme 2.
Total Synthesis of (−)-Plicatic Acid (1)
a Conditions: (a) NaH, BnBr, quant. (b) (1) NMO, cat. OsO4; (2) NaIO4, quant. (c)
N2CHCOOEt, cat. SnCl2, 92%. (d) 9, piperidine, PhCOOH, 80% (after one cycle), E/Z = 5:3.
(e) (S,S)-TADOOH, cat. LiOH, 83%, 98% ee. (f) TfOH (0.04 eq.), 0 oC to r.t., 70% 2a, 17%
2b. (g) ClSi(Me)2CH2Br, imidazole, 75% (94% brsm). (h) SmI2, NiI2 (0.1 eq.), 0 oC, 58%. (i)
H2O2, NaHCO3, 87% (90% brsm). (j) n-PrSNa, DMF, 97%. (k) H2, Pd/C, MeOH, then
Dowex-50, 72%.
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Table 1
Asymmetric Nucleophilic Epoxidation of Various Acyclic Trisubstituted Olefins

a
See Supporting Information for details of reaction conditions.

b
Isolated yields are reported.

c
Ee’s were determined by HPLC analysis.
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