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Abstract

Ultrasound motion estimation is a fundamental component of clinical and research techniques that
include color flow Doppler, spectral Doppler, radiation force imaging and ultrasound-based elasticity
estimation. In each of these applications, motion estimates are corrupted by signal decorrelation that
originates from nonuniform target motion across the acoustic beam. In this article, complex principal
component filtering (PCF) is demonstrated as a filtering technique for dramatically reducing echo
decorrelation in blood flow estimation and radiation force imaging. We present simulation results
from a wide range of imaging conditions that illustrate a dramatic improvement over simple bandpass
filtering in terms of overall echo decorrelation (<99.9% reduction), root mean square error (<97.3%
reduction) and the standard deviation of displacement estimates (<97.4% reduction). A radiation
force imaging technique, termed sonorheometry, was applied to fresh whole blood during
coagulation, and complex PCF operated on the returning echoes. Sonorheometry was specifically
chosen as an example radiation force imaging technique in which echo decorrelation corrupts motion
estimation. At 2 min after initiation of blood coagulation, the average echo correlation for
sonorheometry improved from 0.996 to 0.9999, which corresponded to a 41.0% reduction in motion
estimation variance as predicted by the Cramer-Rao lower bound under reasonable imaging
conditions. We also applied complex PCF to improve blood velocity estimates from the left carotid
artery of a healthy 23-year-old male. At the location of peak blood velocity, complex PCF improved
the correlation of consecutive echo signals from an average correlation of 0.94 t0 0.998. The improved
echo correlation for both sonorheometry and blood flow estimation yielded motion estimates that
exhibited more consistent responses with less noise. Complex PCF reduces speckle decorrelation
and improves the performance of ultrasonic motion estimation.
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INTRODUCTION

Determining the relative motion between reference and shifted signals is a common procedure
in application areas including radar, sonar, speech processing and medical imaging. Referred
to as time delay estimation (TDE), this technique is also central to many medical ultrasound

modalities. Notable motion estimation applications include blood flow estimation (Bohs et al.
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1993; Bonnefous and Pesque 1986; Embree and O’Brien 1990; Jensen 1996; Kasai et al.
1985; Loupas et al. 1995), phase aberration correction (Flax and O’Donnell 1988; Ng et al.
1994; Nock and Trahey 1992; Sumino and Waag 1991), tissue elasticity estimation (O’Donnell
et al. 1994; Ophir et al. 1991; Skovoroda et al. 1995) and acoustic radiation force imaging
(Bercoff et al. 2004; Fatemi and Greenleaf 1999; Nightingale et al. 2002; Viola and Walker
2003; Viola et al. 2004; Walker et al. 2000). Because of its broad application, many algorithms
for TDE have been devised. These methods aim to optimize accuracy, precision, computational
efficiency, delay range and noise performance, among other criteria.

In general, TDE algorithms use pattern-matching functions to estimate the optimal delay
between two or more discretely sampled signals (Giunta 1999; Jacovitti and Scarano 1993).
Regardless of the particular pattern-matching function used, all TDE algorithms exhibit an
intrinsic bias and variance. The bias of an estimator is defined as the difference between the
expected value of that estimator and the true value of the variable that is being estimated. The
estimator variance is a function of two types of errors: false peak errors and jitter errors. False
peak errors occur at integer multiples of the signal periods and generally occur with low
probability under reasonable imaging parameters and conditions. Because of the low
probability that these errors will happen and because they are easily distinguishable, they may
be readily identified and removed. In contrast, jitter errors are generally small in magnitude
and represent a fundamental limit on performance for a given set of imaging parameters, signal-
to-noise ratio (SNR) and signal correlation. For an unbiased estimator, the minimum achievable
variance can be predicted theoretically using the Cramer-Rao lower bound, which was derived
for medical ultrasound by Walker and Trahey (1995) after previous work by Carter (1987), as
follows:

2
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where At is the true time delay, At is the estimated time delay, fy is center frequency, T is kernel
length, B is fractional bandwidth, p is signal correlation, and SNR is electronic signal-to-noise
ratio. Equation (1) indicates that given a set of imaging parameters (fg, B and T), the
performance of an unbiased TDE estimator is highly dependent on the signal correlation and
electronic SNR.

Whereas both electronic noise and signal decorrelation degrade TDE performance, they result
from different physical phenomena and generally possess different frequency spectra.
Electronic noise, which is generally considered to be arandom process, originates from thermal
noise in resistors, quantization noise in analog-to-digital converters and intrinsic amplifier
noise. Because electronic noise is considered to be random, it is typically modeled as additive
noise with a uniform power spectrum. In contrast, echo decorrelation results from the varying
echo contributions from different scatterers between different signal acquisitions. In radiation
force imaging, for example, a gradient of deformations across the point spread function causes
signal decorrelation that, in turn, leads to corruption of TDE estimates and an underestimation
of peak displacement (McAleavey et al. 2003; Palmeri et al. 2006; Viola and Walker 2002).
Echo decorrelation from radiation force application is shown schematically in Fig. 1.
Differential scatterer motion corrupts the echo data, leading to errors in the displacement
estimates.

In applications where deformations are larger, such as blood flow estimation and elastography,
decorrelation originates not only from a gradient of displacements across the acoustic beam,
but also from targets moving into and out of the acoustic beam. Unlike electric noise, echo
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decorrelation is typically modeled by adding noise sources that contain the same frequency
spectrum as the primary signal of interest (Walker 2001). In this study, decorrelation was
modeled as the superposition of a desirable displacement signal of larger magnitude with two
undesirable displacement signals of lower magnitude. All signal components exhibited the
same shaped power spectrum. In addition, random Gaussian noise was included to simulate
the contribution from electronic SNR.

To minimize the effects of noise and decorrelation and therefore improve TDE performance,
signal separation techniques may be used before TDE. Finite impulse response (FIR) and
infinite impulse response (IIR) filters are widely used to improve SNR. However, these
frequency domain-based techniques are unable to separate signals with overlapping spectra
and, therefore, are generally ineffective in reducing signal decorrelation. In contrast, regression
filters offer an alternative approach that assumes signals are the summation of polynomials in
the time domain (Kadi and Loupas 1995). The utility of regression depends heavily on the
selection of the polynomial constituents forming the signal basis. Although the polynomial
basis for regression filtering can be formed from an a priori model of previous data examples,
this strategy is typically not feasible in medical ultrasound in which different tissue structures
and imaging parameters dramatically change the statistical structure of received data. Instead,
adaptively forming the polynomial signal basis is a more appropriate approach.

In medical ultrasound, adaptive regression filtering has been demonstrated via blind source
separation (BSS) techniques applied to clutter rejection and filtering physiological motion,
radiation force—induced displacements and blood velocity profiles (Gallippi and Trahey
2002, 2004; Gallippi et al. 2003; Kruse and Ferrara 2002; Ledoux et al. 1997). Similarly, Yu
and Cobbold (2008) have applied eigen-based decomposition techniques to estimate flow using
atechnique called the Matrix Pencil. BSS has also been employed with data mining techniques
to automate the identification of tissue structures exhibiting similar displacement responses to
acoustic radiation force excitation (Mauldin et al. 2008).

In this study, we will examine a specific instance of BSS called complex principal component
filtering (PCF) as a method for improving echo correlation and SNR and, thus, improving
overall TDE performance.

Complex PCF

Mathematically, principal component analysis (PCA) is defined as an orthogonal linear
transformation of the data onto a new coordinate system such that the projection of the data
onto the first coordinate (called the first principal component [PC]) has the greatest variance.
Likewise, the second PC, which is orthonormal to the first, has a projection with the second
greatest variance, and this trend persists for all new PC coordinates. When applied to ensembles
of radiofrequency (RF) data, the goal of PCA is to separate source signals of interest from
undesired secondary source signals and noise. To filter the undesirable source signals using
PCF, the input data matrix is mapped onto a new signal subspace that spans only the PC
coordinates of interest.

Toillustrate the application of complex PCF to ensembles of echo data, first consider the matrix
of complex echo data X (with dimensions [M x N]). The matrix X has been mean reduced so
that each column has zero mean and the matrix contains a single ensemble of A-lines. Columns
of X represent the N number of A-lines in the ensemble, each containing M samples. The M
samples span the “fast time” dimension with time intervals determined by the sampling rate
after complex demodulation. Conversely, the rows of X are oriented in the “slow time”
dimension, so that there are N samples with periods determined by the pulse repetition
frequency (PRF). With this orientation, there are M observations (rows) and N variables
(columns). Filtering is performed in the observation or row dimension, which corresponds to
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slow time in our application. The first complex PC, vq (with dimensions [N x 1]), may be
expressed as follows (Jolliffe 2002):

vi=arg max var{Xv}=arg max E{(le)z}
[MI=1 [viI=1 (2)

where e Ill?lli)i indicates that the argument is maximized under the condition that vy is a unit
vector, var denotes variance, and E denotes expectation value. Therefore, the first PC, vy, is
the unit vector that maximizes the variance of the projection onto X. Similarly, the k" PC
coordinate may be found recursively, as follows:

k=1
X=X — XZvivf for 2<k<N
i=1 3)

Vi=arg max {var(Yk,lvk)} for 2<k<N

[MI=1 (4)

where v" is the conjugate transpose of v.

An alternative approach to computing principal components, which is used in this article, is a
linear algebra approach called the covariance method. Given that the covariance matrix of the
mean-reduced ensemble of echo data is typically unknown, the sample covariance matrix C
(with dimensions [N x N]) can be computed as follows:

- xx
M—1 )

The PCs can then be calculated by performing an eigenvalue decomposition to diagonalize
C, as follows:

vICv=A ®6)

where V isan N x N matrix of eigenvectors arranged in columns, which are the computed PCs.
The diagonal matrix A contains eigenvalues that are arranged to correspond with the associated
PCsin V.

To perform complex PC-based filtering, the orthonormal PCs that correspond to the signal of
interest are adaptively selected to form a matrix W (with dimensions [N x L]), where L
represents the number of selected PCs. The projection operator, Py (with dimensions [N x NJ)
is then formed to map the input data matrix X onto the new signal subspace retaining only the
PCs of interest as follows:

Pi=WW* )

Y=XPy ®)
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where Y (with dimensions [M x NJ) is the output signal of the complex PC filter and W” is the
conjugate transpose of W. Therefore, a reduced rank approximation of the original data set can
be computed to form an adaptively filtered output (Strobach 1996). In this study, the echo data
were made complex using the Hilbert transform applied to RF echo data. Only the real part of
the filtered RF data, Y, was used for TDE. The advantage of allowing PCF to operate on
complex echo data is that trends in displacement can be captured with the first, most energetic
principal component. In contrast, when PCF operates on real echo data, even small shifts
through ensemble length require multiple principal components. Visual inspection is generally
required when deciding which real PCs to retain, whereas complex PCF does not require user
input.

The primary objective of this study is to test the efficacy of complex PCF for overcoming
speckle decorrelation and improving motion estimation. The first aim is to determine whether
PCF improves echo decorrelation and time delay estimates in synthetic ultrasound data that
are simulated with decorrelation and noise. The PCF method is compared to the typical
bandpass filtering approach, and the performance of each method is quantified in terms of time
delay root mean square (RMS) error, time delay standard deviation and echo correlation. The
second aim is to validate the applicability of PCF for improved TDE in sonorheometry and
blood flow estimation.

MATERIALS AND METHODS

Simulation methods

To assess the performance of the proposed technique, broadband ultrasound signals were
simulated with varied SNR, delay, TDE window length and PCF window length. Synthetic
ensemble data were constructed by summing a desirable, peak delay signal with two
undesirable, lower energy signals that mimicked a range of displacements across the acoustic
beam. These simulations were analyzed to determine the ability of complex PCF to separate
the desired, peak displacement signal from the undesirable and decorrelating signals present
in the lateral regions of the tracking beam. An illustration of the physical basis for the
decorrelation model is shown in Fig. 1.

Time delay estimation was applied to simulated data that had undergone bandpass filtering,
PCF or both. TDE performance was analyzed in terms of signal correlation, standard deviation
and RMS error between the estimated and true delay profile. In both simulated and
experimental data, only the first PC was retained. This PC corresponded to a matrix W (with
dimensions [N x 1]) as shown in filtering egns (7) and (8). The dimension N corresponded to
slow time or the number of transmissions in the ensemble. Furthermore, PCF operated on
complex echo data in all instances via the Hilbert transform. Because the amount of echo shift
is retained in phase information, it was preferable for PCF to operate on complex data, which
contains phase information, rather than the real component of the echo data.

Unless otherwise noted, simulations used the default values summarized in the Table. The PCF
kernel length Tpcg represents a typical value suitable for the radiation force imaging
application sonorheometry. When PCF is applied to clinical RF echo data, it is advantageous
to use longer kernel lengths if the displacements within the kernel window are approximately
stationary. Furthermore, although an ensemble length of 400 echo lines may not be appropriate
for blood flow imaging, it is typical in the sonorheometry application. The SNR reported in
the Table reflects the ratio of signal to additive Gaussian distributed white noise. Synthetic,
broadband ultrasound signals were generated in MATLAB (The MathWorks, Natick, MA,
USA) by convolving Gaussian distributed white noise with a Gaussian weighted sinusoidal
ultrasound pulse given as follows:
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psf(t)=e T sin(2n fyt) )
0.42466
o=
Bfo (10)

where B is fractional bandwidth, fy is center frequency, and 0.42466 relates the full width at
half maximum value of a Gaussian to its standard deviation.

Tomodel asum of different target deformations across the acoustic beam, the default ensemble
st (with dimensions [M x N]) was defined as the sum of three independent ensembles of echo
data, each with different weighting coefficients and constant velocity, as follows:

Sp=W1S1+wW2852+w3s3 (11)

where w are weighting coefficients (w1 >wy >ws3), and s represents independent M x N matrices
(s1,S2 and s3) of simulated ensemble data. The ensemble with the greatest weighting coefficient
also corresponded to the ensemble with the greatest time delay, so that if d is the peak delay
for ensemble s then:

di=4d,=8d; (12)

Within this simulation framework, the goal of complex PCF is to reject random noise across
all frequencies and to reject the undesirable signals s, and s3 while retaining the most
energetically significant signal s;. By keeping only the most energetic signal (corresponding
to the greatest time delay), correlation of echo signals should improve, and bias and standard
deviation in TDE measurements should be reduced. Simulations were also performed in which
sq corresponded to the signal with the lowest velocity rather than the highest. Another set of
simulations was performed with exponential rather than linear velocity, five signal components
rather than three and more narrow velocity separation between components.

TDE was performed on ensembles of simulated echo data after either frequency-based or
regression filtering. A schematic of the different processing approaches is illustrated in Fig. 2.
The bandpass filtering method is represented in the left column, and the complex PCF method
is represented in the right column.

In the case of the complex PCF approach, echo data were first processed to generate a complex
representation via the Hilbert transform. Next, the complex data were windowed over a
predefined PCF kernel length and then filtered in the acquisition time or slow time dimension.
In this way, the resulting PCs represented echo delays across the length of the ensemble. Only
the first PC was retained, so that matrix W was a vector of the first PC and filtering was
performed via egns (7) and (8). Time delays were estimated from the real part of the reduced
rank output of our complex PC filter. In all simulation instances, the FIR bandpass filter was
50 taps and had a center frequency of 10 MHz with a fractional bandwidth of 50%.

The spline-based TDE algorithm described by Viola and Walker (2005) was used to estimate
time delays. The delay profiles through ensemble length were formed using two different
variations: N to 1 delay estimation and N to N—1 delay estimation. A delay profile is defined
as a vector representing the cumulative time delay across ensemble length. The N to 1 delay
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technique determined the Nth time delay (4fy) by estimating the delay between the first
reference signal (e1) of the ensemble and the Nth shifted signal (ey) as follows:

Aty =splineTDE (e, ey) "9

Conversely, the N to N—1 delay technique computed the Nth time delay as the addition of the
delay between signal N—1 and the Nth shifted signal and the previously computed N—1 delay
(4tn-1) as follows:

At,=splineTDE(e,, e, )+At, (14)

A1,=0 (15)

Because the N and N—1 echoes are consistently spaced in time (assuming constant PRF) and
generally exhibit small relative shifts, the N to N—1 delay profile technique has the advantage
of decreased and more constant decorrelation across the ensemble. In contrast, the N to 1
method will tend to have increased decorrelation as the time between the first and Nth echo
grows. The improved correlation of the N to N—1 method is offset by an accumulation of error.
This accumulation of error is illustrated in eqns (14) and (15) in which the Nth delay is
dependent on the previous N—1 delay. In contrast, the N to 1 method from eqn (13) exhibits
no dependence on previous delay values. Another important difference between the N to N—1
and N to 1 methods is their associated computational load. Whereas the N to 1 delay profile
method only requires one spline operation per delay profile, the N to N—1 method requires N
—1 transformations of the discretely sampled echo signals to continuous spline representations.

Under a given set of simulation conditions, performance statistics were computed over 1000
trials. The RMS error over a single estimated delay profile was computed as follows:

_ /z’i |AT; — Al
RMS(AD=A|=E L 7
N (16)

where At and At are the true and estimated time delays, respectively, and N is the ensemble
length.

Experimental application I: Complex PCF for sonorheometry displacement estimation

By observing the dynamic displacements induced in blood by acoustic radiation force,
sonorheometry has been shown to provide a noncontact means for assessment of blood
coagulation in vitro (Viola et al. 2004). In sonorheometry, radiation force ultrasound was used
to transfer momentum to coagulating blood and ultrasound tracking methods were used to track
resulting displacement. As a means to improve echo correlation and displacement estimation
in sonorheometry, complex PCF was applied to experimental RF data.

Radiofrequency data were acquired using a 10 MHz, 1.0-cm diameter, single piston transducer
(model V327, GE Panametrics, Waltham, MA, USA) with a 4.0-cm focal length. The piston
transducer was coupled to a custom-designed sonorheometry system, which consisted of two
transmit channels, four receive channels, a field-programmable gate array and power supply
circuitry (Violaetal. 2007). Received echoes were bandpass filtered, digitized at 65 MHz with
12 bits precision, and then transferred via a USB 2.0 cable to a laptop computer where the data
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were processed in MATLAB (The MathWorks). Experiments were performed using 1 mL of
the fresh blood samples placed in polystyrene cuvettes, which were modified as described
below. Blood samples were obtained via a 20-gauge intravenous catheter placed in a peripheral
arm vein of a healthy 39-year-old male subject. The initial 3 mL of blood was discarded; 1-
mL blood samples were then obtained, and 10 experiments were performed on each of these
samples.

Each cuvette was modified by drilling a 7-mm diameter hole through the front and back and
sealing both holes with a 250-um polydimethylsiloxane film. The hole and film allowed the
acoustic beam to propagate through the blood sample with minimal attenuation. Blood was
then mixed with 125 ul of 0.1% kaolin solution to initiate the clotting process, with the first
acquisition taking place 30 s after adding kaolin. An ensemble of sonorheometry data consisted
of 400 pulses transmitted at a PRF of 400 Hz for a total duration of 1 s. A single experiment
consisted of a series of ensembles repeated every 6 s for 8 min. Experiments were performed
with written consent from all subjects and in accordance with the protocol approved by the
Institutional Review Board at the University of Virginia.

Time delay estimations were made using the spline TDE algorithm after either FIR bandpass
or complex PC filtering. Complex PCF was applied to the experimental RF in the same way
that it was applied to the simulated echo data. The PC kernel window length was identical to
the simulation default, which corresponded to 20 periods or approximately 1.5 mm.
Displacement profiles of coagulating blood were calculated, and the material properties were
estimated by fitting displacement responses to a discrete viscoelastic model. The model used
in this study was a modified Voigt model with an added mass, which has been shown to
characterize the response of coagulating blood to a step excitation of acoustic radiation force
(Viola et al. 2004). The differential equation governing this viscoelastic model, with acoustic
radiation force modeled as a step function with magnitude A can be written as follows:

2

d d
Au(t)=kx(1)+u Ex(1)+m Fx(l) an

where u(t) is the unit step function, x(t) is the resulting displacement, k is the elastic constant,
u 1s the coefficient of viscosity, and m is an inertial constant. Two mechanical parameters of
interest in this article are the time constant parameter z and the steady-state displacement
parameter X5, Which can be expressed, respectively, as follows:

k (18)

Xss=

| >

(19)

Experimental application Il: Complex PCF for improved blood velocity estimation

Complex PCF was also applied to M-mode RF data obtained in the left carotid artery of a 23-
year-old healthy male subject. In this experimental setting, ensembles of raw RF echo data
were collected at a sampling frequency of 40 MHz, a PRF of 10 kHz and a center frequency
of 5 MHz using an Ultrasonix Sonix RP scanner and a L14-5 linear array transducer (both
obtained from Ultrasonix, Vancouver, BC, Canada). The scanner was modified to acquire an
ensemble of 156 A-lines from transmitted pulses with a fractional bandwidth of ~25%.
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Returning echoes from the carotid artery were arranged into 13 ensembles with 12 A-lines per
ensemble. Wall filtering was performed across the slow time dimension with a 50-tap, digital
FIR high-pass filter that had a cutoff frequency of 120 Hz. The ensembles were then processed
using a conventional blood velocity estimation technique that included a bandpass filter and
the TDE algorithm described by Loupas et al. (1995), which is called the “Loupas TDE
algorithm.” This technique was compared to the PCF method with the same Loupas TDE
algorithm. In the PCF instance, the PCF kernel window length corresponded to 10 periods. A
TDE kernel length corresponding to 3 periods was utilized in both bandpass and PCF instances.
Because the center frequency in blood flow experiments (5 MHz) was half of the center
frequency used for sonorheometry (10 MHz), the spatial extent of the PCF kernel window
corresponded to ~1.5 mm in both instances. Just as there are tradeoffs to consider when
choosing kernel lengths for TDE, there are similar tradeoffs between PCF performance and
spatial sensitivity when choosing the appropriate PCF kernel length. These tradeoffs are further
addressed in the Discussion.

Simulation results

The default simulation values, which are listed in the Table, include a 10-MHz center
frequency, 65-MHz sampling frequency, 20-dB SNR, 50% fractional bandwidth, 3 period TDE
kernel window length, 20-period PC kernel window length, an ensemble length of 400 Alines
and maximum delay per ensemble length of three samples.

Results in Fig. 3 show (a) RMS error, (b) standard deviation at acquisition 400 and (c) the
average decorrelation between consecutive echoes (average N to N—1 decorrelation) when
SNR was varied and all other simulation parameters were held constant. Results are illustrated
for bandpass, complex PCF and bandpass with complex PCF methods, which were used in
conjunction with either the N to 1 or N to N—1 methods for delay profile estimation. As viewed
in Figs. 3a and b, there is a negligible difference between bandpass and PCF combined
versus PCF alone. Therefore, through the remainder of this article, we omit results for combined
complex PCF with bandpass filtering. In Fig. 3b, the average standard deviation was calculated
for the 400th time delay estimate. As the Table indicates, the peak time delay for the simulated
ensemble was three samples and, therefore, Fig. 3b represents the standard deviation for spline
TDE at a shift of three samples. Sample PCs and simulated RF from the variable SNR
simulations are displayed in Fig. 4. In Fig. 4a, normalized PC phases (top) for PCs 1, 2 and 3
(from top to bottom) with the corresponding simulated echo data (bottom) are illustrated for
an SNR of 5 dB. The simulated echo data are shown across the PC kernel window length of
20 periods or 130 samples for each of the 400 echo acquisitions. The simulated RF after a 50-
tap bandpass filter is shown on the left; simulated RF after complex PCF is displayed on the
right. Similarly, Fig. 4b illustrates the normalized PC phase and the simulated RF over a range
of 130 samples at 40-dB SNR.

Figure 5 displays simulation results obtained from 1000 trials in which maximum displacement
over the ensemble was variable and all other simulation parameters were held constant. Root
mean square error, standard deviation at acquisition 400 and N to N—1 decorrelation are
displayed, respectively, in Figs. 5a through c. The maximum displacement per ensemble was
varied between 0.25 and 7 samples, and results are displayed for bandpass filtering and PCF
techniques with both N to 1 and N to N—1 estimates used to form delay profiles. In Fig. 6a, the
normalized phase of PCs 1, 2 and 3 (from top to bottom) with 0.25 maximum displacement
are displayed at the top with corresponding bandpass filtered RF (left) and complex PCF
filtered RF (right). In the same manner, Fig. 6b displays the normalized phase of PCs 1, 2 and
3, accompanied by bandpass filtered RF (left) and complex PCF RF (right) when simulated
RF data had a maximum displacement of seven samples. RF data are shown over a 130-sample
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window, which corresponds to the PC kernel window length used in the simulation. Figures 7
and 8 display the RMS error, standard deviation at acquisition 400 and decorrelation trends
observed over the course of 1000 trials when only PC kernel window and TDE kernel window
lengths, respectively, were varied.

Figure 9 shows simulation results similar to Fig. 3 depicting (a) RMS error, (b) standard
deviation at acquisition 400 and (c) the average decorrelation between consecutive echoes
when SNR is varied from 5 to 40 dB. In row | of Fig. 9, simulated ensembles of echo data were
formed where the signal of interest s; had the lowest velocity of the three signal components
as given by the following:

11
di==~dr=~d
1735785 (20)

Inrow Il of Fig. 9, simulated ensembles of echo data were formed with five signal components
rather than three. Furthermore, rather than a constant velocity, the component displacement
profiles followed an exponential trend where v, (t) is displacement through time, d is the steady-
state displacement, t is time from 0 to 1 s, and 7 is the time constant set to 0.25 s, as follows:

Un(1)=d,(1 — &7 7) @1)

The five signal components also had a lesser separation in velocity than other simulations
performed in this study. The steady-state displacement of each signal component for Fig. 9
(row I1) were given as follows:

7 4
di=~dy=~dy=2d,=4d
1mg e 3T (22)

Sonorheometry results

A total of 10 sonorheometry experiments were performed using 1-mL blood samples from a
healthy 39-year-old male volunteer. In an individual experiment, a single interrogation
consisted of 400 A-lines obtained at a PRF of 400 Hz for a total interrogation time interval of
1 s. This process was repeated every 6 s; results are displayed from 0.5 min to approximately
6.5 min, relative to the time at which the kaolin solution was added to the blood. In Fig. 10a,
the average N to N—1 RF decorrelation is shown for both bandpass and complex PCF techniques
across 10 sonorheometry experiments at the same interrogation depth. Error bars indicate the
addition or subtraction of the standard deviation from the mean. Sample displacement profiles
resulting from either the bandpass filter technique or the complex PCF technique are displayed
in Fig. 10b, where delay profiles were formed using the N to N—1 method described in egns
(14) and (15). The corresponding RF data, from which the profiles in Fig. 10b were generated,
are shown in Fig. 10c after a bandpass filter (left) or complex PCF (right). The phase,
normalized by the maximum phase value, of the first three PCs associated with the RF data in
Fig. 10c are shown in Fig. 10d.

Example sonorheometry results are shown in Fig. 11. Displacement profiles were calculated
every 0.2 mm across a 2-mm range for a total of 10 displacement profiles; profiles were formed
using the N to N—1 method. In Fig. 11a, the average peak displacement plus or minus the
standard deviation across the same 2-mm range in depth is illustrated when profiles were
calculated from RF data that were filtered with either the bandpass technique or the complex
PCF technique. The steep drop in displacement from approximately 30 microns to 0 microns
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reflects the rapid clotting of the blood sample. To model the relevant viscoelastic characteristics
of the blood response to acoustic radiation force, the displacement profiles were fit to a
viscoelastic Voigt model with an added mass term as illustrated by eqn (17). The average
decorrelation, or 1 minus correlation, between the model fit and the actual displacement profile
generated from either bandpass filtered or complex PCF RF is displayed in Fig. 11b. Error bars
indicate the mean plus or minus the standard deviation over 10 depths spanning a 2-mm range.
The time constant parameter, which is independent of force as expressed by egn (18), was
extracted from the viscoelastic model fits of the displacement profiles across depth.

Images of time constant values across the 2 mm window are illustrated in Fig. 11c, where
complex PCF-rendered parameters are shown on the top and bandpass filtered parameters are
shown on the bottom. Similarly, images of steady-state displacement values, calculated from
eqn (19), are illustrated in Fig. 11d for PCF-derived (top) and bandpass-derived (bottom)
displacement profiles. In the images shown in Figs. 11c and d, the parameters are masked when
the fit between the displacement profile and the viscoelastic model achieve a correlation value
<0.95.

Blood flow results

The axial component of blood velocity was estimated in the left carotid artery of a healthy 23-
year-old male subject. A B-mode image of the artery is shown in Fig. 12a; the dotted red line
shows the line of interrogation for 156 M-mode acquisitions. The M-mode data were organized
into 13 ensembles of 12 A-lines each, and blood velocities were estimated with either the
bandpass and Loupas techniques or the complex PCF and spline techniques. Sample RF data
for the same range in depth are illustrated in Fig. 12b after a bandpass filter (left) or complex
PCF (right) was applied to the acquired RF. In Fig. 12c, blood velocity profiles are shown for
the two techniques, with negative velocity indicating blood motion toward the transducer.
Velocity profiles in Fig. 12c were calculated using either bandpass filtering or PCF methods
from an ensemble of 12 A-lines that spanned a duration of 1.2 ms. Maximum blood velocities
are shown to reach as much as 7 cm/s, and the vertical, dotted red lines indicate the proximal
(left) and distal (right) walls of the carotid artery. The average N to N—1 RF decorrelation
across the 12 ensembles versus imaging depth is displayed in Fig. 12d. The RF decorrelation
is compared between the bandpass and Loupas techniques versus the PCF and Loupas
techniques, where the red dotted lines indicate the location of the carotid proximal and distal
walls.

DISCUSSION

The advantage of allowing PCF to operate on complex echo data can be understood if we first
consider the characteristics of observations in both complex and real echo data instances. In
our typical motion estimation environment, as illustrated in Fig. 1, returning echoes are shifted
through acquisition time. The ensemble of returning echoes is arranged for PCF, so that an
observation at a given depth (or M fast time value) is composed of N real or complex values.
These values correspond to the returning echo values at N acquisition times. When PCF
operates on real echo data, these observations follow the oscillatory behavior of the returning
echoes. Because the set of M real observations are zero mean, eqn (2) is satisfied with the first
PC reflecting some constant offset. Thus, when operating on real echo data, PCF requires
maintaining multiple PCs to capture echo delay through acquisition time. In contrast, the
observations from the complex echo data instance follow the characteristics of complex
exponentials with accumulating phase across acquisition time. Because the phase of the
complex valued observations is not zero mean, PCF can capture the desirable signal component
(echo delay through acquisition time) with only the first PC. As reflected in eqgn (2), this
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approach of selecting only the first PC is based on the assumption that the desirable signal
component is also the most energetic.

Simulations were performed by generating artificial ensemble data, which were the sum of
three signal components: sq, s and s3. The primary signal of interest s; had the maximum
delay, whereas signals s, and s3 had less delay and energy and added decorrelation to our signal
model. As explained by eqgn (1), decorrelation and additive noise in the ensemble data present
fundamental limitations on TDE performance. Therefore, the objective of these simulations
was to assess which signal separation technique, frequency-based bandpass filtering or
regression-based complex PCF, provides the best means for reducing the decorrelation and
noise constraints on TDE performance.

In Fig. 3, the effects of PCF for reduced echo decorrelation and noise were examined against
the alternative frequency-based filtering approach for varied levels of additive noise. The first
apparent trend in the data was that PCF with bandpass filtering provided no additional benefit
than PCF alone. From these results, it was concluded that the combined approach provided no
additional benefit, and so it was omitted from later simulation comparisons. The next apparent
trend was that, for SNR values between 5 dB and 40 dB, the PCF technique resulted in TDE
estimates with lower bias, as reflected in RMS error values in Fig. 3a, and lower TDE standard
deviation, as reflected in Fig. 3b. This trend was independent of whether the Nto 1 or N to N
—1 delay profile estimation technique was utilized. An explanation for this trend may be found
in the N to N—1 decorrelation values, which are shown in Fig. 3c. With higher correlation
between successive echo signals, eqn (1) predicts that the PCF method would exhibit a lower
standard deviation in delay estimates, which was verified in Fig. 3b. Furthermore, with the
lower RMS error seen in Fig. 3a, it may be concluded that complex PCF is more efficacious
at rejecting random noise along with undesirable signal components s, and s3 than the bandpass
filtering technique across a range of 5 dB to 40 dB SNR. It is also apparent from Fig. 3 that
the relative improvement in TDE performance with complex PCF increased as SNR decreased.

The last apparent trend from Fig. 3 is that, for either the bandpass or the PCF technique, there
was a crossover point between which the delay profile method exhibited a lower RMS error
and standard deviation. When the bandpass filtering technique operated on the simulated RF,
the N to N—1 delay profile method had a lower standard deviation and RMS error at SNR values
of <20 dB, but the N to 1 performed better at SNR values < 20 dB. For complex PCF, this
switch occurred between 5 dB and 10 dB SNR — 10 dB lower than the bandpass instance.
Due to error accumulation with the N to N—1 instance, the N to 1 technique is preferred under
low SNR. The lower SNR value at which the N to 1 method becomes preferable in the complex
PCF case illustrates that complex PCF rejected a larger amount of noise than bandpass filtering.

Example PCs and RF data from the SNR simulations are illustrated in Fig. 4 for SNR values
of 5 dB and 40 dB. For both SNR values, it is clear that the first PC, which was the only PC
retained for filtering, was also the only PC that represented the desired signal component of
constant velocity across the ensemble. The second and third PCs, which were orthonormal to
PC 1, represented noise and energy from the undesired and decorrelating signal components.
As reflected in Fig. 3, the difference between the RF data after a bandpass filter (left) and PC
filter (right) was more visible at lower SNR values.

By varying the slope of delay across the ensemble, simulations were performed to examine the
impact of delay magnitude on the PCF technique; results are shown in Fig. 5. There are two
dominant trends present in the data. First, given the same delay profile estimation technique,
either N to N—1 or N to 1, the RMS error, standard deviation and decorrelation was always
lower for complex PCF. Second, for bandpass filtering, there was a shift in optimal delay profile
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technique, where the N to 1 technique had a lower RMS error and standard deviation at total
shifts < 1.5 samples. Conversely, the N to N—1 method exhibited superior performance at total
shifts < 1.5 samples. This trend, which is similar to what was observed in Fig. 3, can be
explained by a larger amount of decorrelation across the ensemble with larger total shifts.
Because the N to N—1 technique performed better under greater decorrelation, this delay profile
estimation method was preferable for greater displacements.

Increased decorrelation with larger shift is apparent in the RF data of Fig. 6. In Fig. 6a, with a
maximum shift of 0.25 samples, random noise represents the only visible cause of signal
corruption. In Fig. 6b, however, with a maximum shift of seven samples, the data were visibly
corrupted by decorrelation. The bandpass filtered data (left) exhibits significantly more signal
decorrelation than the complex PCF data (right). Further, the PCs shown in Figs. 6a and b
illustrate the same characteristics as those in Fig. 4 in which the first PC (top) represents the
desired signal component with constant delay across the ensemble and PCs 2 and 3 (below)
represent undesired signal components.

In Figs. 7 and 8, the impact of kernel lengths for PCA filtering Tpcg and spline TDE T are
shown, respectively. When only Tpcg was varied and all other simulation parameters were
held constant, the complex PCF method provided better results with longer Tpcr as displayed
in Fig. 7. Because a larger Tpcp, corresponding to a larger number of observations, allowed
for a better estimate of the sample covariance matrix, superior filter performance resulted.
Figure 8 shows that the advantage of complex PCF over bandpass filtering is negligible with
increased TDE kernel lengths. Although decorrelation is dramatically reduced by PCF at
greater values of T, as shown in Fig. 8c, the RMS error and standard deviation differences are
minimal. Equation (1) suggests that decorrelation no longer dominates TDE performance at
large values of T, where TDE kernel length dominates performance.

Although larger TDE kernel lengths produced lower error and standard deviation, there are
costs associated with larger TDE kernel lengths in practical applications, including increased
computational cost and decreased sensitivity to displacement changes through depth. Because
clinical data often exhibit a large range of displacement magnitudes and profiles through depth,
it is preferable to be sensitive to these displacement changes by selecting a smaller T. Thus,
there is a practical tradeoff, and one must selecta T that balances these effects. There isasimilar
tradeoff with respect to Tpcg When complex PCF is applied to clinical RF data. Although
increasing Tpcp results in a better estimate of the covariance matrix, it only does so when the
displacement profile is stationary across the analysis window. If the RF data at different ranges
exhibit differing displacement profiles, the shape of the first PC retained during complex PCF
may be impacted. In this way, a very large Tpcp could provide biased results. This possibility
is especially true when different regions within the window exhibit differing gains, which is
common under frequency-dependent attenuation. For this reason, it is desirable to choose a
large Tpcr only if the echo data within the interval are approximately stationary.

Figure 9 illustrates the (a) RMS error (b) standard deviation at acquisition 400 and (c) average
decorrelation for simulations when SNR was varied, but other simulation parameters were held
constant. Rather than the desirable signal component s; also having the greatest velocity,
simulations illustrated in row I of Fig. 9 assigned the lowest velocity to the desirable signal
component as given by egn (20). The results show that PCF performs at least as well in terms
of RMS error and standard deviation under these circumstances as in Fig. 3, when s; was
assigned the greatest velocity given by egn (12). Thus, we conclude that the efficacy of our
PCF algorithm does not rely on the desirable signal component having the greatest
displacement, but only that our signal of interest is the most energetic.
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Furthermore, row Il of Fig. 9 shows the performance of PCF versus bandpass filtering when
there are five signal components that exhibit nonuniform velocity through ensemble length and
a smaller difference between velocity magnitudes. By simulating the echo data with signal
components that had more similar velocity trends, the resulting simulated RF did not contain
as much decorrelation. Thus, PCF did not offer gains in RMS error and standard deviation as
large as those reported in Fig. 3. However, as expected, PCF still produced large gains in TDE
performance at lower SNR levels. Thus, simulation results summarized in row Il of Fig. 9
illustrate that the PCF methods do not rely on a specific number of components, constant
velocity or a specified difference between magnitudes of component velocities. However, these
results do indicate that PC filtering will offer larger gains in TDE performance when there is
more decorrelation and noise present in the echo data.

Complex PCF has been demonstrated to outperform the conventional bandpass filtering
technique when ultrasound echo data were simulated with decorrelation and noise over a wide
range of imaging conditions. Therefore, the first specific aim of this study was achieved.

Application I: Sonorheometry

The application of complex PCF to sonorheometry achieved superior performance over typical
bandpass filtering. As shown in Fig. 10a, the average RF decorrelation over 10 trials decreased
by at least an order of magnitude under complex PCF. For example, at 2 min after initiation of
blood coagulation, correlation improved from 0.996 to 0.9999. Example displacement profiles,
illustrated in Fig. 10b, exhibited much less noise and a more well-behaved response. Figure
10c shows ensembles of RF from which the displacement profiles of Fig. 10b were calculated.
The RF displayed less decorrelation and noise under PCF (right). Following the simulation
trends, Fig. 10d shows that the first PC computed from the RF data is the only PC with the
desired delay characteristics.

In Fig. 11a, the peak displacement values obtained with PCF showed a much smoother
response. Further, the results in Fig. 11b illustrate that PCF yields a better fit between
displacement profiles and the viscoelastic model. This trend was especially true prior to blood
clotting, which occurred at approximately 4 min. After blood clotted, there was no
displacement, and therefore, the correlation between the estimated displacement profile and
the viscoelastic model tends toward zero. Results from Figs. 11c and d show much more
consistent results when viscoelastic parameters were extracted from PC filtered displacement
profiles (top) versus bandpass filtered profiles (bottom).

Application II: Blood velocity estimation

In clinical blood velocity estimation, complex PCF was applied to ensembles of 12
interrogations with a Tpcp length of five periods. In this setting, complex PCF improved RF
correlation and provided apparently less noisy velocity profiles. The dramatic improvement in
correlation is illustrated in Fig. 12b, where the PC-filtered RF shows a marked reduction in
data corruption from decorrelation. In addition, Fig. 12d illustrates the reduction in
decorrelation across interrogation depth, and Fig. 12c¢ displays velocity profiles from both
bandpass and Loupas methods or PCF and Loupas methods. At the peak velocity depth of ~14
cm as displayed in Fig. 12c, correlation between echoes N and N—1 improved from an average
of 0.94 with bandpass filtering to an average of 0.998 with complex PCF. Because the
interrogation angle was not factored into our blood velocity measurements, the values reported
in Fig. 12c do not represent the true blood velocity in the carotid artery. Instead, it is likely that
these velocities are underestimated.

Thus, if the angle of interrogation between the transducer and the vessel wall were assumed to
be 15°, our measurements would represent blood velocities in the carotid artery of
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approximately 27 cm/s. Figure 12c shows that the PCF and Loupas techniques produced cleaner
velocity profiles, which appeared more physiological. This observation included a peak
velocity near the center of the vessel and decreasing velocity toward the vessel walls. In
contrast, the bandpass and Loupas methods showed a velocity profile with a much rougher
response through depth and an unanticipated hump in the velocity profile ~15 mm in depth.

In contrast to the sonorheometry application, the highest energy signal in blood flow estimation
is not necessarily the desired signal from blood. If the received echo data are corrupted by
clutter or reverberation signal that is greater in amplitude than signal from the blood, then
complex PCF will not capture the blood velocity characteristics with the first PC. Instead the
first PC will reflect the higher energy signal from reverberations or clutter. In this study, this
problem is avoided by applying a wall filter before performing complex PCF. A similar
assumption of clutter rejection applies to the Loupas algorithm (Loupas et al. 1995). However,
this assumption of the highest energy signal corresponding to signal from blood is not necessary
for complex PCF to operate in blood flow estimation. For instance, if there is no wall filter
applied to the echo data, then complex PCF could be applied to blood velocity estimation by
retaining only the second PC, which would correspond to the next highest energy signal or
blood in this example. These alternative methods will be examined in future work.

By validating the applicability of PCF in two experimental applications of TDE -
sonorheometry and blood flow estimation — the second aim of this study was achieved.

Computational efficiency

An important consideration when examining complex PCF, especially when applied to real-
time filtering applications, is the associated computational load. For an ensemble of echo data
with dimensions M x N, bandpass filtering requires an estimated (2MlogM + M2)N number of
operations. In this example, M is the number of samples through fast time, whereas N is the
number of A-lines acquired through ensemble length, or slow time. If the ensemble is
windowed by Tpcp, so that the PCF subset of echo data has dimensions T x N, then PCF requires
approximately (2TN + N + N2)NP number of operations for P number of depths. Therefore,
dimensions of M, N, T and P must be considered when comparing the computational efficiency
of either filtering approach.

For example, if we consider the default parameters used in simulation, and considering M equal
to 1000, then the bandpass filtering approach becomes more computationally efficient only if
P is greater than 4. Alternatively, if we consider N equal to 12, as in the blood flow application,
then bandpass filtering becomes more computationally efficient only if P is greater than 484.
Whereas a small P and larger N is more suitable for the sonorheometry application, a larger
P and smaller N is more suitable for applications such as blood velocity estimation and acoustic
radiation force impulse imaging.

CONCLUSION

Complex PCF was demonstrated in TDE simulation and two different experimental
applications. Simulations using synthetic ultrasound data showed that complex PCF
dramatically reduced decorrelation and noise, thus reducing TDE error and standard deviation
compared to conventional bandpass filtering. Simulation results illustrated greater gains in
standard deviation and RMS error from complex PCF than bandpass filtering in environments
with high noise levels and decorrelation. Furthermore, complex PCF showed greater gains in
standard deviation and RMS error than bandpass filtering when the TDE kernel window was
reduced and when the PCF kernel window was increased. When echo data were simulated with
lower levels of noise but higher decorrelation, the N to N—1 method, where delays were
computed from consecutive lines of RF, showed lower RMS error and standard deviation. In
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sonorheometry, complex PCF reduced RF decorrelation by at least an order of magnitude and
displacement profile noise was clearly reduced. Similarly, when complex PCF was applied to
blood velocity estimation, the RF correlation was improved, which resulted in cleaner velocity
profiles. This investigation supports the use of complex PCF for overcoming speckle
decorrelation in TDE applications.
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Fig. 1.

A depiction of the relationship between differential scatterer motion and uncertainty in
displacement estimation. A spatially varying acoustic radiation force field is applied to a set
of targets over N acquisitions from time ty to ty—1. The nonuniform force field induces a gradient
of scatterer displacements across the point spread function (PSF). In the illustration, different
displacements are associated with different shades of gray circles (scatterers) in the target field.
The echo signals from all scatterers across the PSF are summed to give the resulting received
echo. The delays in echo signals from different sets of scatterers are illustrated prior to the
summation node at the transducer. As the gradient of displacements increases through
acquisition time, the correlation between successive received echoes decreases, which results
in increasing uncertainty in displacement estimates. The displacement profile estimated from
the received echo signal is illustrated as the solid line with error bars, indicating uncertainty in
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the displacement estimate. The dashed lines correspond to the different sets of scatterers and
indicate the actual displacements of these scatterers.

Ultrasound Med Biol. Author manuscript; available in PMC 2010 February 1.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duosnue\ Joyiny Vd-HIN

Mauldin et al.

Page 20

Bandpass Filtering PCA Filtering

Fig. 2.

Two RF filtering algorithms for motion estimation are illustrated with simulated echo data and
resulting displacement profiles for each method. The left branch illustrates the application of
bandpass filtering on an ensemble of RF data to estimate displacements. The right branch
illustrates the steps taken when complex PCF is applied to the same ensemble of RF data to
estimate displacements. RF data were simulated at an SNR of 5 dB, and displacement profiles
were estimated by the spline TDE technique and the N to N—1 delay profile estimation method.
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Fig. 3.

Simulation results over 1000 trials when SNR is varied from 5 dB to 40 dB. Plots display (2)
RMS error, (b) standard deviation at acquisition 400 and (c) average decorrelation between
consecutive echoes (average N to N—1 decorrelation). Results are shown for the bandpass (BP)
filter, complex PCF and combined bandpass filter and complex PCF techniques. The RF data
filtering methods were applied in conjunction with either the N to N—1 or N to 1 delay profile
estimation technique.
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Fig. 4.

Filtered ensembles of RF are illustrated after either bandpass filtering (left) or complex PCF
(right) applied to ensembles of RF simulated with (a) 5-dB SNR (bottom) and (b) 40-dB SNR
(bottom). The normalized phase of associated PCs are displayed for (a) the 5-dB SNR instance
(top) and (b) the 40-dB SNR instance (top). The PCs are shown with the first, most energetic
PC on the top and the third PC on the bottom.
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Fig. 5.

Simulation results over 1000 trials when maximum displacement per ensemble is varied from
0.25 samples to 7.0 samples. Plots display (a) RMS error, (b) standard deviation at acquisition
400 and (c) average decorrelation between consecutive echoes (average N to N—1
decorrelation). Results are shown for the bandpass (BP) filter and complex PCF. The RF
filtering methods were used in conjunction with either the N to N—1 or N to 1 delay profile
estimation technique.
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Fig. 6.

Filtered ensembles of RF data are illustrated after either bandpass filtering (left) or complex
PCF (right) applied to ensembles of RF data that were simulated with (a) 0.25 samples of
displacement across the ensemble (bottom) and (b) 7.0 samples of displacement across the
ensemble (bottom). The normalized phase of associated PCs are displayed for (a) the 0.25
sample simulation (top) and (b) the 7.0 sample simulation (bottom). The PCs are shown with
the first, most energetic PC on the top and the third PC on the bottom. By summing uncorrelated
signal components of different shifts, decorrelation was induced in simulated RF.
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Fig. 7.
Simulation results over 1000 trials when PCF kernel length is varied from 6 periods to 50
periods. Plots display (a) RMS error, (b) standard deviation at acquisition 400 and (c) average
decorrelation between consecutive echoes (average N to N—1 decorrelation). Results are shown
for the bandpass (BP) filter and complex PCF techniques. The RF filtering methods were
applied in conjunction with either the N to N— or N to 1 delay profile estimation technique.
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Fig. 8.
Simulation results over 1000 trials when TDE kernel length is varied from 1 period to 16
periods. Plots display (a) RMS error, (b) standard deviation at acquisition 400 and (c) average
decorrelation between consecutive echoes (average N to N—1 decorrelation). Results are shown
for the bandpass (BP) filter and complex PCF techniques. The RF filter methods were used in
conjunction with either the N to N—1 or N to 1 delay profile estimation technique.
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Fig. 9.

Simulation results over 1000 trials when SNR is varied from 5 dB to 40 dB. Plots display ()
RMS error, (b) standard deviation at acquisition 400 and (c) average decorrelation between
consecutive echoes (average N to N—1 decorrelation). In row I, simulations were performed
when the desired sighal component corresponded to the smallest velocity given by eqn (20).
In row I1, simulations were performed with five signal components, which followed the
exponential trend depicted in eqn (21). The simulated velocity of the signal components are
given by egn (22). Results are compared between bandpass (BP) filtering and complex PCF
techniques. The RF data filtering methods were applied in conjunction with either the N to N
—1 or N to 1 delay profile estimation technique.
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The average decorrelation between consecutive echoes (average N to N—1 decorrelation) is
presented for both bandpass filtering and complex PCF techniques. Error bars indicate the
standard deviation added to (top) or subtracted from (bottom) the average decorrelation.
Decorrelation values are averaged over 10 sonorheometry experiments from 1-mL fresh blood
samples of a healthy 39-year-old male subject. Example displacement profiles are illustrated
in (b) after either bandpass (BP Filter) or complex PCF (PC Filter) methods. The filtered RF
data from which the profiles in (b) were rendered are shown in (c) with bandpass filtered RF
on the left and PC filtered RF on the right. (d) The normalized phase of PCs 1 through 3 (from
top to bottom) rendered from complex PCF are displayed. Only the first PC was retained during

filtering.
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Fig. 11.

(a) The average peak displacement from 10 displacement profiles rendered across a 2-mm
window in depth are displayed. Average peak displacements are shown for each sonorheometry
interrogation, which occurred every 6 s and are displayed from 0.5 min to 6.5 min. Results
illustrate the peak displacement values obtained via bandpass filtering (BP Filter) versus
complex PCF (PC Filter) of the RF data prior to TDE. Error bars indicate the standard deviation
added to (top) or subtracted from (bottom) the average over 10 ranges. (b) Average
decorrelation values (one minus correlation) between the displacement profiles and a
viscoelastic Voigt model with added mass are illustrated; error bars indicate the mean = the
standard deviation over 10 depths. Images are rendered across a 2-mm window of the blood
sample for (c) time constants and (d) steady-state displacement. Viscoelastic parameters
determined after complex PCF are shown on top, and derived parameters after bandpass
filtering are shown on bottom. Parameter values in (c) and (d) are masked when the
displacement profile fit the viscoelastic model with < 0.95 correlation.
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Fig. 12.

(a) A B-mode image from the left carotid artery of a healthy 23-year-old male volunteer is
illustrated, with the red, dotted line marking the line of interrogation for acquired M-mode
data. (b) Sample RF data after either a bandpass filtering (left) or complex PCF (right) is
illustrated. (c) Estimated velocity profiles are shown for either bandpass or complex PCF
technique. The red, dotted lines indicate the location of proximal and distal vessel walls. (d)
Average decorrelation between consecutive echoes (average N to N—1 decorrelation) versus
interrogation depth are illustrated, with red, dotted lines indicating the proximal and distal
vessel walls.
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Parameter Value
Center frequency (f;) 10 MHz
Sampling frequency (f;) 65 MHz
Signal-to-noise ratio (SNR) 20dB
Fractional bandwidth (BW) 50%

TDE kernel length (T) 3 periods
PCF kernel length (Tpcg) 20 periods

Ensemble length

Displacement

400 echo lines

3 samples

TDE = time delay estimation, PCF = principal component filtering.

Ultrasound Med Biol. Author manuscript; available in PMC 2010 February 1.



