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Abstract

We are often interested in estimating sensitivity and specificity of a group of raters or a set of new
diagnostic tests in situations in which gold standard evaluation is expensive or invasive. Numerous
authors have proposed latent modeling approaches for estimating diagnostic error without a gold
standard. Albert and Dodd showed that, when modeling without a gold standard, estimates of
diagnostic error can be biased when the dependence structure between tests is misspecified. In
addition, they showed that choosing between different models for this dependence structure is
difficult in most practical situations. While these results caution against using these latent class
models, the difficulties of obtaining gold standard verification remain a practical reality. We extend
two classes of models to provide a compromise that collects gold standard information on a subset
of subjects but incorporates information from both the verified and nonverified subjects during
estimation. We examine the robustness of diagnostic error estimation with this approach and show
that choosing between competing models is easier in this context. In our analytic work and
simulations, we consider situations in which verification is completely at random as well as settings
in which the probability of verification depends on the actual test results. We apply our
methodological work to a study designed to estimate the diagnostic error of digital radiography for
gastric cancer.
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1. Introduction

Diagnostic and screening tests are important tools of modern clinical decision making. These
tests help to diagnose illness to initiate treatment (e.g., a throat culture for streptococcal
infection) or to identify individuals requiring more extensive follow-up (e.g., mammography
screening for breast cancer). Estimation of sensitivity and specificity, measures of diagnostic
accuracy, requires knowledge of the true disease state, which is assessed by a gold or reference
standard. (Throughout, we use both “gold standard” and “reference standard” to mean the
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accepted standard for diagnosis.) Gold standard evaluation may be expensive, time consuming,
or unethical to perform on all subjects and is commonly difficult to obtain in clinical studies.
Latent class models offer a tempting alternative because assessment of the true status is not
necessary. However, it has been shown that latent class models for estimating diagnostic error
and prevalence may be problematic in many practical situations (Albert and Dodd 2004).
Specifically, they showed that, with a small number of tests, estimates of diagnostic error were
biased under a misspecified dependence structure, yet in many practical situations it was nearly
impossible to distinguish between models based on the observed data. The lack of robustness
of these models is problematic; however, the limitations of obtaining gold standard are a
practical reality and reasonable alternatives are desirable.

Although it may be difficult to obtain the gold standard on all subjects, in many cases, it may
be feasible to obtain gold standard information on a fraction of subjects (partial gold standard
evaluation). In radiological studies, for example, gold standard evaluation usually requires
multiple radiologists simultaneously examining images and clinical information. This may be
an infeasible proposition for many studies to collect the gold standard on all subjects. However,
it may be feasible to obtain gold standard information on a fraction of study subjects. Thus,
methodological approaches that incorporate partial gold standard information may be an
attractive alternative to latent class modeling.

Our application is a medical imaging study to compare conventional and digital radiography
for diagnosing gastric cancer (linuma et al. 2000). In this study six radiologists evaluated 225
images on either conventional (n = 112) or digital (n = 113) radiography, to compare the
sensitivity and specificity across techniques and radiologists. A gold standard evaluation was
obtained from three independent radiologists simultaneously reviewing clinical information
along with all imaging data to provide a reference truth evaluation of the image. Specifically,
these radiologists reviewed clinical information such as patient characteristics, chief
symptoms, purposes of the examination, endoscopic features, and histologic findings in biopsy
specimens. This time-consuming consensus review was done on all 225 images, although this
may not be feasible in larger studies or in other studies with more limited resources. Rater-
specific as well as overall sensitivity and specificity were estimated by treating the consensus
review by the three independent radiologists as gold standard truth. Our methodological
development will focus on the data from this study.

Although our primary example is in radiology, the problem occurs more generally in medicine.
For example, similar problems exist for the evaluation of biomarkers in which one wishes to
compare the diagnostic accuracy of a series of tests, where a gold standard exists, but is very
expensive. See, for example, Van Dyck et al. (2004), in which a set of tests for herpes simplex
virus type 2 (HSV-2) was compared, but only a subset of samples was verified with the
reference standard Western blot.

In this article we extend two classes of models, originally proposed for modeling diagnostic
error on multiple tests without a gold standard (Albert and Dodd 2004), to the situation of
estimating diagnostic error for a partially verified design. We examine the robustness of these
models to the assumed dependence structure between tests. In particular, we examine bias and
model selection using asymptotic results and simulation studies. We examine whether
observing gold standard information on a small percentage of cases improves the lack of
robustness to assumptions on the dependence between tests found when modeling without a
gold standard. In Section 2 we describe our approach, which considers various models for the
dependence between tests. In Section 3 we fit the various classes of models to the gastric cancer
dataset and show that the results are quite different when we use the reference standard
evaluation or when we model without a gold standard. In Section 4 we investigate the
asymptotic bias from misspecifying the dependence structure under full as well as partial
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reference sample evaluation. Simulations examining the finite sample properties of partial
reference sample verification are described in Section 5. We illustrate the effect of partial
reference sample verification using the gastric cancer dataset in Section 6. A discussion follows
in Section 7 in which we make general recommendations.

Let Y;=(Y1j, Yiz, ..., Yig)’ be dichotomous test results for individual i, i=1, 2, 3, ..., I, with
Yjj denoting the result from the j th of J tests. We denote by d; the true unobserved disease

status for patient i and by v; an indicator of whether the ith patient is verified by a reference
standard (v; = 1 if verified and v; = 0 otherwise). When a patient is verified, the contribution
to the likelihood is Lj = P(v; = 1]Y;) P(Y;|d;) P(d;). Similarly, when a patient is not verified,

1
the contribution is LFP(VI‘:OW:')Z,:OP(Y:‘WI‘:l)P(dizl). In a general form, if the verification
mechanism is fixed by design (i.e., is not estimated from the data) and does not share parameters
with the probability of disease P(d;) or the diagnostic accuracy P(Y;|d;), then the contribution
of the ith patient to the likelihood (L;) is proportional to

1 1-v;
L; o< [ P(Y|d;)P(d))]" ZP(Yildi:[)P(di:l)] ,

=0

where P(d;j = 1) is the disease prevalence, which will be denoted by Py.

There are three types of verification processes. First, consider verification that is completely
at random, which occurs if the verification process is a simple random sample chosen
independently from the test results Y;. The proportion of individuals verified is denoted by r,
where r = P(vj = 1). Second, consider verification in which the probability of verification
depends on Y;, which we denote as rvi = P(vj = 1|Y;). Of particular interest is when the

J
probability of verification depends on the number of positive tests, rs=P(vi= 1|Zj=lyr'j), s=1,
2, ..., J. This type of verification has been referred to as verification biased sampling (Pepe
2003). An important special case, called extreme verification biased sampling, occurs when
the gold standard test is obtained only on test-positive subjects because it requires an invasive
procedure such as surgery, which is unethical to perform on all subjects if the experimental
tests Yj are negative. Various authors have proposed models for analyzing the results of two
tests under extreme biased sampling (Walter 1999; Hoenig, Hanumara, and Heisey 2002; van
der Merwe and Maritz 2002). The third type of verification occurs when the probability of
verification depends on the true disease status, which is only known for those patients verified,
denoted by rq; = P(vj = 1|d;). This so-called, nonignorable verification has been discussed by
various authors, including Kosinski and Barnhart (2003) and Baker (1995). We focus only on
the first two types of verification processes.

We consider two different ways to specify P(Y;j|d;) that were originally developed for
estimating diagnostic error without a gold standard. The Gaussian random effects and finite
mixture models, which both have attractive features, are very different formulations for
describing conditional dependence between tests. The Gaussian random effects (GRE) model
(Qu, Tan, and Kutner 1996) introduces dependence across tests by assuming that (Yjj|d;, b;) are
independent Bernoulli with proportion given by ®(jq; + og;bi), where the random variables
b; are standard normal and @ is the cumulative distribution function of a standard normal

distribution. Under this model, P(Yildy)= [ {TT7, P(Yijld:. b)} ¢(b) db, where p(b) is the
standard normal density. Under the GRE model, the sensitivity and specificity of the j th test

J Am Stat Assoc. Author manuscript; available in PMC 2009 October 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Albert and Dodd

Page 4

is given by @)1/ y/1+0]) and 1 = @(Bjo/ y/1+07), respectively. A substantially different
model for incorporating dependence is the finite mixture (FM) model (Albert et al. 2001; Albert
and Dodd 2004) in which some individuals who are truly positive are always classified as
positive by any test whereas others are subject to diagnostic error. Similarly, some truly
negative subjects are always classified as negative by any test whereas others are subject to
diagnostic error. Let lig; be an indicator of whether the ith subject, given disease status di, is
always classified correctly, so that l;; = 1 when a true positive subject is always positive and
lip = 1 when a truly negative is always rated negative. Further, define g = P(lijp = 1) and 1 =
P(lip = 1). Test results Yjj, given d; and lig;, are independent Bernoulli with probability

1 ifdi=1 and [;;=1

- Jo if d;=0 and [;p=1

P(Y,j—”dnlld,')_ U)j(l) lfd,ZI and 1[1:0
1 - wj(0) ifd=0and l;p=0, @

where wj(d;) is the probability of the j th test making a correct diagnosis when the individual
is subject to diagnostic error (li1 = 0 or ljp = 0). Under the finite mixture model, the sensitivity
and specificity of the j th test are ;71 + (1 — 171)wj(1) and 5g + (1 — 10)wj(0), respectively. Under
both the GRE and the FM models, estimates of a common sensitivity and specificity across J
tests can be obtained by assuming S = f11= - =y =prand o1(I) =wr(l) = = wy(l) = @
() for1=0, 1.

Depending on the application, the FM or the GRE model may better describe the dependence
structure between tests. Both models need to be compared with a simple alternative, which is
nested within both of these conditional dependence models. The conditional independence (Cl)
model, which assumes the tests are independent given the true disease status, provides such an
alternative. The GRE model reduces to the CI model when g = o1 = 0, whereas the FM model
reduces to the Cl model when 59 =71 =0.

I
For each of the models, estimation is based on maximizing LZI_[,.:,L:', where L; is given by
(1). Standard errors can be estimated with the bootstrap (Efron and Tibshirani 1993).

3. Analysis of Gastric Cancer Data

We estimate the prevalence, sensitivity, and specificity of digital radiography for gastric cancer
using the likelihood in (1) and the GRE, FM, and CI models, under both complete and no
verification. Table 1 shows the overall estimates of prevalence, sensitivity, and specificity for
digital radiography with the consensus measurements as a gold standard and with no gold
standard. Estimates were obtained by assuming a common sensitivity and specificity across
the six raters and were derived under the Cl model, as well as the GRE and FM models.
Bootstrap standard errors are also presented under each model. Interestingly, under complete
verification, overall estimates of prevalence, sensitivity, and specificity, as well as their
bootstrap standard errors, were nearly identical across the three classes of models. In addition,
these estimates were identical to estimates obtained by linuma et al. (2000) using generalized
estimating equations (Liang and Zeger 1986), a procedure known to be insensitive to
assumptions on the dependence structure between tests. These results suggest that estimates
of prevalence, sensitivity, and specificity are insensitive to the dependence structure between
tests under complete verification. When no gold standard information is incorporated, estimates
of prevalence and diagnostic error differ across models for the dependence between tests. This
is consistent with results by Albert and Dodd (2004) who showed that diagnostic error
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estimation may be sensitive to assumptions on the dependence between tests when no
verification is performed.

By the likelihood principle, we compare models based on a comparison of the likelihood values.
Using the gold standard, the log-likelihoods were —314.63, —300.36, and —305.45, for the ClI,
GRE, and FM maodels, respectively (there are three, five, and five parameters for each model,
respectively). We compared the GRE and FM models with the CI model using a likelihood
ratio test because the Cl model is nested within both of these conditional dependence models.
Because the parameters that characterize the conditional dependence are on the boundary (og
= g1 = 0 for the GRE model and 7q = #1 = 0 for the FM model) under the null hypothesis
corresponding to a Cl model, the standard likelihood ratio theory is inappropriate (Self and
Liang 1987). We conducted a simulation study to obtain the reference distribution under the
null hypothesis by simulating 10,000 datasets under the estimated CI model and evaluating the
likelihood ratio test of og = o1 and 59 = #1 = 0 corresponding to the GRE model and FM models.
Based on the observed log-likelihoods and the simulated reference distribution, we reject the
independence model in favor of the GRE and FM models (P < .001 for both models). Further,
parameter estimates characterizing the conditional dependence under both conditional
dependence models are sizable. For the GRE model, oy = 1.1 and ¢y = .37, and for the FM
model 5o = .31 and »; = .38, respectively. A comparison of the two nonnested GRE and FM
models can be made by directly comparing the two log-likelihoods because both models have
the same number of parameters. Under complete gold standard evaluation, this comparison
clearly favors the GRE model.

For the no gold standard case, the log-likelihoods for the Cl, GRE, and FM models were
—283.19, —280.16, and —280.30, respectively. Consistent with Albert and Dodd (2004), these
results suggest that, although it is easy to distinguish between conditional dependence and a
conditional independence model (likelihood ratio tests computed as described previously for
complete verification showed evidence for conditional dependence; P values for the
comparisons of the GRE and FM models relative to the CI model were .009 and .016,
respectively), it may be difficult to choose between the two models for conditional dependence
with no gold standard.

Table 2 shows rater-specific estimates of sensitivity and specificity, along with prevalence, for
models that incorporate the gold standard information and those that do not. As with the overall
estimates of sensitivity and specificity, individual rater estimates are nearly identical across
models for the dependence between tests as well as to the rater-specific estimates presented in
linuma et al. (2000). In contrast, estimates obtained using no gold standard information were
highly model dependent and were very different from those estimates that used the gold
standard information.

Thus, modeling approaches with complete verification appear to be more robust against
misspecification of the dependence structure between tests, whereas approaches with no
verification appear to lack robustness. A natural question is how the statistical properties of
the estimation improve with an increasing proportion of gold standard evaluation. This will be
the primary focus of this article. We discuss asymptotic and simulation results before returning
to this example and varying the amount of verification. We focus on comparing the GRE and
FM models because it was shown in Albert and Dodd (2004) that it is difficult to distinguish
between these rather different models with no gold standard evaluation.

4. Asymptotic Results

We examined the asymptotic bias when the dependence structure is misspecified as a function
of the proportion of samples receiving gold standard evaluation. For simplicity, we examined
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this bias for the case when interest focuses on estimating a common sensitivity and specificity
across raters (denoted as SENS and SPEC, respectively). We examined both verification that
is completely at random and verification biased sampling. The misspecified maximum

likelihood estimator for the model parameters, denoted by #*, converges to the value 8*, where

g =arg max E, [log L(Y;, )],
: (3)

and log L(Y;j, ) is the individual contribution to the log-likelihood under the assumed model
and the expectation is taken under the true model T. The notation

E, (log L,)=E, [log L(Y;, 0)llo-¢- )

denotes the expectation (taken under the true model T) of an individual's contribution to the
log-likelihood under the assumed model M when evaluated at 6*. Sensitivity and specificity
are model-dependent functional forms of the model parameters, SENS* = g4(6*) and SPEC*
= g2(0%), where g4 and g, relate model parameters to sensitivity and specificity. Estimators of
sensitivity and specificity converge to SENS* and SPEC* under misspecified models.
Expressions for an individual's contribution to the expected log-likelihood under the correct
and misspecified models are provided in Appendix A. Asymptotic bias for sensitivity and
specificity is defined as SENS* ' SENS and SPEC* ' SPEC, respectively.

First, we examined the case of completely at random verification (i.e., rg=rforall s =1, 2,
..., J). We initially examined the asymptotic bias of estimators of sensitivity and specificity
when we falsely assumed a GRE model and when the true model was an FM model, as well
as when we falsely assumed an FM model and the true model was a GRE model. This reciprocal
misspecification with the FM and GRE models is an extreme type of misspecification because
the two models are so different.

Table 3 shows the results for various proportions of completely at random verification for five
tests and a presumed constant sensitivity and specificity, with the true model being the FM
model and the misspecified model being the GRE model. When we have no gold standard
information (r = 0), there is serious bias under a misspecified dependence structure and the
expected individual contribution to the log-likelihood under the correctly specified model is
nearly identical (to more than six digits) to the expected log-likelihood under the correctly
specified model, which is consistent with results reported in Albert and Dodd (2004). Thus,
with no gold standard reference and with five tests, estimates of diagnostic error may be biased
under a misspecified dependence structure, yet it may be very difficult to distinguish between
models in most situations. As little as 2% gold standard verification (r = .02) reduces the bias
considerably, and the expected log-likelihoods are no longer nearly identical, making it simpler
to distinguish between models. With 20% verification, the bias is small. For complete
verification (r = 1), marginal quantities such as sensitivity and specificity are nearly unbiased
under a misspecified dependence structure. This is consistent with work by Tan, Qu, and Rao
(1999) and Heagerty and Kurland (2001) who showed for clustered binary data that marginal
quantities (which sensitivity, specificity, and prevalence are) are robust to misspecification of
the dependence structure. The large differences in expected log-likelihoods suggest that it will
be relatively simple to distinguish between models.

Table 4 shows asymptotic bias with five tests when the true model is the GRE model and the
misspecified model is the FM model. As in Table 3, there is substantial asymptotic bias under
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the misspecified model when there is no gold standard evaluation. In addition, the expected
log-likelihood for the misspecified model is nearly identical to the expected log-likelihood for
the correctly specified model, again showing the difficulty in choosing between competing
models with no gold standard information with few tests. Similar to the results in Table 3,
estimates of prevalence, sensitivity, and specificity are asymptotically unbiased under the
misspecified model when there is complete gold standard evaluation (r = 1). Unlike the results
in Table 3, a larger percentage of verification (about 50%) is necessary to achieve approximate
unbiasedness. In both cases, however, a small percentage of verification results in different
expected log-likelihoods under the true and misspecified models, suggesting that it is simpler
to choose between competing models with even a small percentage of gold standard
verification.

Tables 3 and 4 provide an assessment of asymptotic bias under reciprocal model
misspecification for both the FM and the GRE models when the sensitivity and specificity are .
75 and .9, respectively. We also examined the relative asymptotic bias for a wide range of
sensitivity and specificity (a grid ranging from values of .65 to .95 for both sensitivity and
specificity) corresponding to the cases specified in these tables for r = .5. Figure 1 shows the
results corresponding to the models and parameters described in Table 4 when a1 = 3. Over
the wide range of sensitivity and specificity, the maximum relative percent bias was 2.8% for
sensitivity and 5.1% for specificity. Other scenarios provided similar results with all percent
biases being less than 6% over the grid (data not shown).

We examined asymptotic bias of the FM and GRE models under alternative dependence
structures. Specifically, we examined the asymptotic bias when the true conditional
dependence structure P(Y;|d;) is a Bahadur model (Bahadur 1961), a log-linear model (Cox
1972), and a Beta-binomial model, where a description of each of these models is provided in
Appendix B. All three alternative models were formulated so they had the same number of
parameters as the GRE and FM models. For the Bahadur model, we considered the special case
of only pairwise conditional dependence between tests (i.e., all interactions of order 3 and
higher are set to 0). For example, the conditional distribution of Y;|d; is

J . _Y:
POVId=1={[ ], SENS™(1 = SENS)' T} (1+ Y _preije) where

e;j=Y;; — SENS/ y/SENS(1 — SENS) and p; = E[gjjejx|dj = 1] for all j # k for any i. As in Tables
3 and 4 for reciprocal model misspecification, we evaluated the asymptotic bias of sensitivity
and specificity for an increasing fraction r of completely at random verification under a GRE
and FM model when the true model was the Bahadur model. For five tests (J = 5), SENS =
SPEC =.75, and P4 =.20, sensitivity and specificity were nearly asymptotically unbiased under
both the GRE and the FM models with 20% completely random verification. For example,
under a GRE model, SENS* = .50, .63, .72, .74, and .75 for r =0, .02, .2, .5, and 1. Under an
FM model, SENS* = .61, .73, .78, .76, and .75 for the same values of r.

For all three alternative models, we examined the bias in sensitivity and specificity of the GRE
and FM models with 50% completely random verification over a wide range of sensitivity and
specificity values (identical to the grid described for Fig. 1) for a prevalence of .20. Table 5
shows that the maximum relative asymptotic bias was less than 7% for both sensitivity and
specificity for all three alternative models. Thus, estimates of diagnostic error appear to be
quite robust with 50% completely random verification. When prevalence was very low or very
high (e.g., below 5% or above 95%), there was more substantial bias under certain model
misspecification with 50% completely random verification. For example, for a prevalence of .
05 when the true model was the log-linear model, there was a maximum bias of 10% under a
GRE model (as compared to a maximum bias of 4.3% for a prevalence of .20). However, unlike
when there is no gold standard evaluation (r = 0), it is much easier to identify the better fitting
model using likelihood and other criteria for model assessment. Further, for a rare disease,
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completely random verification would not generally be recommended due to efficiency
considerations.

Although random verification is of concern in our application, we also consider verification
biased sampling because it is so common. We examine asymptotic properties under a
misspecified dependence structure with verification biased sampling. Table 6 shows
asymptotic bias and expected log-likelihoods for the situation in which a random sample of
cases among those who test positive on at least one of the five tests is verified (e.g., extreme
verification biased sampling) and where the true model is the FM model and the misspecified
model is the GRE model. Interestingly, these results suggest that, in some cases, an increase
in the proportion verified can result in an increase in bias under the misspecified model. For
example, when #1 = .5 and g = .2, the estimator of sensitivity is only slightly asymptotically
biased (SENS* = .77) with no gold standard evaluation (ry=0fors=0, 1, 2, ..., 5) and
substantially biased (SENS* = .57) under complete verification of any case with positive tests
(ro=0andrg=1fors=1, 2, ...,5). This result is consistent with our simulation results, which
are presented in the next section. This problem occurs more generally under a wide range of
verification biased sampling. For example, situations where one oversamples discrepant cases
can result in bias under model misspecification. Bias can also increase with an increasing
proportion of verification of discrepant cases. As an illustration, under completely random
verification, when the true model is the FM model as described in Table 3 with 51 = .5, the
sensitivity converges to SENS* = .76 and is nearly unbiased when r =.2. When we oversample
discrepant cases ro =r; =.20 and rg = .4 for s = 1, 2, 3, 4, estimates of sensitivity are more
asymptotically biased (SENS* = .73). The asymptotic bias is increased further (SENS* = .71)
whenrg, s=2, 3, 4, is changed from .4 to 1. We found similar results when the true model was
the GRE model and the misspecified model was the FM model (data not shown).

In the next section we examine the finite sample results for both robustness and efficiency
when we observe partial gold standard information.

5. Finite Sample Results

We examine bias, variability, and model selection of the different models using simulation
studies. Table 7 shows the effect of model misspecification on estimates of prevalence,
sensitivity, and specificity when the true model is an FM model and we fit the misspecified
GRE model. Results are shown for sample sizes of 1 = 100 and | = 1,000 and for various
proportions of random verification r. Similar to simulations in Albert and Dodd (2004), we
found that when r = 0 estimates of sensitivity, specificity, and prevalence are biased under a
misspecified model, and it is difficult to distinguish between models based on likelihood
comparisons. In addition, estimates under the misspecified GRE model are substantially more
variable than estimates under the correctly specified FM model. However, with only a small
percentage of samples verified, estimation of sensitivity, specificity, and prevalence has
improved statistical properties. Table 7 shows that bias is substantially reduced when only 5%
of cases are verified. With as little as 20% random verification, estimates of sensitivity,
specificity, and prevalence are nearly unbiased under model misspecification. In addition,
variance estimates are very similar under the misspecified model relative to the correctly
specified model. Under complete verification (r = 1), there is essentially no effect to
misspecifying the dependence structure. The table suggests that there are other advantages to
measuring the gold standard test on at least a fraction of samples or individuals. First, there is
a large payoff in efficiency. For sensitivity, under the correct FM model with | = 1,000, the
efficiency gain relative to no gold standard information (r = 0) is 46%, 276%, and 640% for
5%, 20%, and 100% gold standard evaluation (these calculations were based on variance
estimates computed to the fourth decimal place, whereas the standard errors in Table 7 are only
presented to the second decimal place). This decrease in variance is even more sizable under

J Am Stat Assoc. Author manuscript; available in PMC 2009 October 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Albert and Dodd

Page 9

the misspecified GRE model. Second, it becomes increasingly easier to distinguish between
models for the dependence structure with increasing r. In Table 7 we show the percentage of
times the correctly specified FM model is chosen to be superior than the misspecified GRE
based on the criterion of a separation of likelihoods greater than 1. With five tests (J = 5) and
a sample size of 1 = 1,000, the correctly specified FM was declared to be superior in 12% of
the cases when there was no gold standard tests. The ability to choose the correct model
increased dramatically with even a small fraction of gold standard evaluation. With only 5%,
20%, and 100% verification, the correct model was identified in 45%, 64%, and 79% of the
cases.

Table 8 shows the effect of model misspecification on estimates of sensitivity and specificity
when the true model is a GRE model and the misspecified model is the FM model. As with
the asymptotic results in this situation, a random sample of more than 20% reference standard
evaluation is needed to get approximately unbiased estimates under the misspecified model.
However, unlike when r = 0, where it is difficult to choose the correct model (by the criterion
that the log-likelihood for the GRE model was larger than the log-likelihood for the FM model
by more than 1), we can choose between the GRE and FM models with high probability when
r=.2.

We also examined the robustness of the GRE and FM models when the true dependence
structure is governed by a Bahadur model. Specifically, we simulated data with the conditional
dependence structure [P(Y;|d;)] given by a Bahadur model with pairwise correlation of .2 and
all three and higher way correlations equal to 0. Further, data were simulated corresponding
to SENS = SPEC = .75, P4 =.20, | = 1,000, and J = 5. For r = 0, there was substantial bias
under the misspecified GRE and FM models. In this case, the average sensitivity and specificity
were .52 (SE =.09) and .68 (SE = .05) under the GRE model and .65 (SE = .06) and .87 (SE
=.04) under the FM model. In addition, it was difficult to distinguish between the correctly
specified Bahadur model and the GRE or FM model. For example, the misspecified FM model
had a larger likelihood than the correctly specified Bahadur model in 40% of the simulated
realizations. Both the GRE and the FM models resulted in nearly unbiased estimates of
sensitivity and specificity for r =.20. The average estimates of sensitivity and specificity were .
73 (.03) and .74 (.01) for the GRE model and .77 (.03) and .77 (.01) for the FM model when
r =.2. Also, the likelihood for the correctly specified model was larger than the likelihood of
the FM and GRE models in more than 99% of the simulated realizations. Thus, with only 20%
completely random verification, both the GRE and the FM models are robust to model
misspecification, and it is relatively easy to distinguish between models.

Table 9 shows simulation results for the case of four raters under a correctly specified FM
model and a misspecified GRE model. Estimates of sensitivity and specificity, which are
seriously biased with no gold standard evaluation, are nearly unbiased under the misspecified
model with 20% random verification. As in Table 7, this table illustrates the pay-off in
efficiency with at least some partial gold standard evaluation under both the correct and the
misspecified models. This table also shows the percentage of realizations where the FM model
has a larger likelihood than the GRE model. Unlike with no gold standard evaluation, the FM
model is almost always correctly identified with 20% verification. In addition, unlike with r =
0, models with 20% verification result in the correct ordering of sensitivity and specificity
almost all of the time. We also performed simulations for the case of four raters when the true
model is a GRE model and the misspecified model is the FM model. Under the misspecified
FM model, bias is substantially reduced for r =.20 as compared to r = 0. Furthermore, estimates
of sensitivity, specificity, and prevalence computed under the FM model were nearly unbiased
for r = .5 (data not shown).
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Next, we examine verification biased sampling. Our asymptotic results show that estimates of
diagnostic error and prevalence can be biased when we oversample discrepant cases under a
misspecified model, which was in contrast to results with random verification. We conducted
simulations to examine this further. We examine bias in sensitivity, specificity, and prevalence
estimates from a GRE model when the FM model is the correct model. We simulated under
an FM model with J =5, I = 100, 59 = .20, 51 = .50, P4 = .20, SENS = .75, and SPEC = .90
(same parameters as in rows 5-8 in Table 3) and fit both the correctly specified FM and the
misspecified GRE models. When all individuals with at least one positive value were verified
(rg=1fors=1,2,...,5and ry=0), we had sizable bias under the misspecified model. Average
estimates of prevalence, sensitivity, and specificity were .27 (SE =.08), .61 (SE =.13), and .
89 (SE =.02) under the misspecified GRE model and .20 (.04), .75 (.07), and .90 (.02) under
the correct model.

Under the correctly specified model, oversampling discrepant cases may improve the precision
of our estimates. Thus, an interesting question is whether the increase in efficiency from
oversampling discrepant cases is worth the potential of serious bias under a misspecified model.
We conducted a simulation where we simulated under a finite mixture model and fit the
correctly specified FM model and the misspecified GRE model both under completely random
verification and under a verification process where we oversampled discrepant cases. We
simulated data with J =5, 1 = 1,000, P4 = .2, 1 = .5, 59 = .2, SENS = .75, and SPEC =.90. We
oversampled by obtaining a gold standard result on 40% of discrepant cases and only 5% of
cases where Y; are all concordant. For the completely at random verification cases, we chose
21% verification to correspond to the overall proportion of verification in the oversampling
cases. Figure 2 shows the distribution of sensitivity estimates for each of the four scenarios.
The figure shows that there is an efficiency gain in estimating sensitivity by oversampling
discrepant cases. Specifically, there is a 28% efficiency gain in oversampling as compared to
completely random verification. In addition, the figure demonstrates the robustness of
sensitivity estimates to model misspecification under completely random verification and the
lack of robustness under oversampling. In this particular case, the pay-off in efficiency with
oversampling under the correct model is small relative to the potential for bias due to model
misspecification. Furthermore, the correct model was definitely selected more often under
completely random verification than under oversampling. The FM model had a likelihood
greater than 1 more than the GRE model in over 99.5% and 54% of the simulations under
completely random verification and under the mechanism that oversamples discrepant cases,
respectively.

6. Gastric Cancer Example Continued

Next, we return to the gastric cancer dataset and use only partial gold standard evaluation. Our
initial focus is on examining verification that is completely at random. We evaluated designs
with different probabilities of verification (r). To capture the variability associated with
different amounts of verified sampling, we resample data with replacement and incorporate
the reference standard on a given image with probability r. Table 10 shows results for an
assumed common and for an assumed rater-specific sensitivity and specificity for r ranging
from .1 to .8. In each situation, we fit both the FM and the GRE models. A comparison of these
results with those presented for complete verification and for no gold standard evaluation
(Tables 1 and 2) is most revealing. The results suggest that the common as well as the rater-
specific estimates for r = .50 are close to those presented for complete verification. In addition,
the results for r = .2, although not very close to those presented for the complete verification
case, are substantially closer than those estimated with the latent class models under r =0
(Table 2).
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We also examined extreme bias verification. Specifically, we evaluated a design whereby we
verified all images in which at least one of the six radiologists rated the image positive for
gastric cancer (52% of images were declared positive by at least one radiologist). As with
random verification, we constructed datasets by resampling images with replacement and
incorporating reference standard information whenever a positive image for any radiologist
was recorded. For a common sensitivity and specificity, estimates of sensitivity, specificity,
and prevalence were .78 (SE = .05), .90 (.01), and .23 (.04) for the FM model and .72 (.11), .
90(.02), and .23 (.06) for the GRE model, respectively. There was greater discrepancy between
the estimates across the two models under extreme verification bias than for a comparable
proportion verified under a completely random verification mechanism (r = .50 in Table 10).
Large differences between the FM and the GRE models for rater-specific estimates were also
found (data not shown). These results, along with the analytic and simulation results,
demonstrate less robustness under verification biased sampling.

7. Discussion

It has been shown in previous work that estimates of diagnostic error and prevalence are biased
under a misspecified model for the dependence between tests and that, with only a small number
of tests, it is difficult to distinguish between models for the dependence structure using
likelihood and other model diagnostics (Albert and Dodd 2004). Under complete verification,
results on generalized linear mixed models would suggest that the estimation of marginal
quantities (which prevalence, sensitivity, and specificity are) are insensitive to misspecification
of the dependence between tests (Tan et al. 1999; Heagerty and Kurland 2001). Our results
confirm this. Furthermore, we showed that it is much simpler to distinguish between models
with complete verification. A natural question is whether gold standard verification on even a
small percentage of cases improves the statistical properties of estimators of sensitivity,
specificity, and prevalence. We examined both whether observing partial verification lessens
the bias when the dependence structure is misspecified and whether one is able to more easily
distinguish between different models for the dependence structure between tests. For the
situation where verification is independent of the test results Yj, gold standard evaluation on
even a small percentage of cases greatly lowers the bias for estimating prevalence, sensitivity,
and specificity under a misspecified model. In addition, identifying the correct model for the
dependence structure using likelihood comparisons becomes much easier with even a small
percentage of gold standard evaluation. Although there are advantages to performing the gold
standard test on as many individuals as possible, this is not often possible due to limited
resources. Our results suggest that between 20% and 50% gold standard evaluation results in
large improvements in robustness, efficiency, and the ability to choose between competing
models over no gold standard information. If the gold standard test is expensive, performing
the gold standard test on more than 50% of patients may not be costeffective.

We also examined situations in which the probability of verification depends on observed test
results (i.e., verification biased sampling). An important special case of verification biased
sampling is extreme verification biased sampling where individuals who test negative on all
tests do not receive gold standard evaluation. Such verification sampling occurs in situations
where the gold standard is invasive (e.g., surgical biopsy) and it is considered unethical to
subject a patient to the invasive test when there is little evidence for disease. Unlike for a single
test where sensitivity, specificity, and prevalence are not identifiable under extreme verification
bias sampling (Begg and Greenes 1983; Pepe 2003), these quantities are identifiable with
multiple tests and an assumed model for the dependence between these tests. However, unlike
the case where verification is completely at random, estimates of sensitivity, specificity, and
prevalence may not be robust to misspecification of the dependence between tests with a large
fraction of verification.
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A gold standard can be defined in various ways depending on the scientific interest. The gold
standard test could be a laboratory test, a consensus evaluation of an image, or an assessment
of clinical disease. The nature of the gold standard will determine how diagnostic accuracy is
interpreted. In the gastric cancer study, the gold standard was a consensus assessment (across
three radiologists) of all available clinical information, including imaging data. All suspect
gastric cancers were confirmed with biopsies, while patients who were negative had limited
follow-up of two months to see if gastric cancer symptoms developed. A longer follow-up
would have been ideal in assuring that these negative cases did not develop gastric cancer.

Other types of verification biased sampling schemes may be employed to improve efficiency.
For example, our simulation results show that oversampling discrepant cases can result in
improved efficiency over sampling completely at random. Our results further show that,
although oversampling discrepant cases can improve efficiency, such a strategy loses the
attractive feature of decreasing bias with an increasing proportion of verification found for a
completely random verification mechanism. In addition, our results suggest that, for a
comparable proportion of verification, choosing the correct model for the dependence between
tests is more difficult for a verification process in which we oversample discrepant cases as
compared with completely random verification.

Irwig etal. (1994) and Tosteson, Titus-Ernstoff, Baron, and Karagas (1994) considered optimal
design strategies for the case of a single diagnostic test. Optimal design for multiple correlated
tests isan area for future research. However, the choice of an optimal design will depend heavily
on assumed models and parameter values for the dependence between tests. For this reason,
we question the practicality of developing an optimal design in this situation.

A common criticism of latent class models for estimating sensitivity, specificity, and
prevalence without a gold standard is that, without a gold standard, it is difficult to
conceptualize sensitivity and specificity (Alonzo and Pepe 1999). Partial verification lessens
the problem of conceptualizing the truth because a gold standard test needs to be defined and
evaluated on at least a fraction of the cases.

The different models presented for analyzing partial verification data use a latent class structure
for observations that do not have gold standard evaluation. In contrast with the full latent class
modeling used when there is no gold standard evaluation, the semilatent class approach is more
conceptually appealing, more robust under verification completely at random, and allows for
model comparisons using likelihoods with only small number of tests.
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Appendix A: Expected Individual Contribution to the Log—Likelihood Under
a Correct and Misspecified Model

This is evaluated under the assumption of a common sensitivity and specificity across J tests,
where the number of positive tests S is a sufficient statistic. Denote by Zgp an indicator of
whether the individual is verified, has S of J positive tests, and is verified with disease status
D. Let Xg be anindicator for an individual not being verified and having S positive tests. Denote
by T the true model and M the assumed model. The expected (under T) log-likelihood of the
assumed model M is
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E; [log L(Y;.6,,)]

1 J
=d§_:0 ;()ET [Z;q] log [PM (S=s|D=d) PM (D:d)]

J
+ 2 E; [X,log[Py (S=5ID=0) Py, (D=0)
5=
+P,, (S=s|D=1) P,, (D=1)] +C,, (A1)

where P\(S|D) and P(S|D) are the conditional distributions for the sum of J binary tests from
the assumed and true models, respectively. Additionally, Pyy(D) and P(D) are the probabilities
of disease under the assumed and true models, respectively, and C,, is a constant corresponding
to the verification process. Denote by rs = P(V;|S = s) the probability of verification for a
particular observed sum s. The expected values Et [Zgg] and E1[X;] can be expressed as

E, [Zsg)=r;P(S =s|D=d)P(D=d) (A.2)

and

E; [X,1=(1 = ro[ P(S=sID=1)P(D=1)+P(§ =5|D=0)P(D=0)]. (A.3)

Appendix B: Alternative Models for the Conditional Dependence between
Tests
Bahadur Model

Let zjj be the probability of a positive response conditional on d; for the j th test on the ith

subject. Let eij=Yij = mij/ \/ﬂfj(l = 7)) and |etpijk = E[eijeik|di], Pijkl = E[eijeikei||di], aR
pijki---3 = E[€ijjeikeil-.-ejyldi]. The probability distribution can be expressed as

1d)=o(Y:ld: T Vi Z v
f(Y'ld')‘é(Y'ld')l_[,-=1”fj (1=mi)™", where g(Yildi) = 1 + Zjexpijeijei + ZickeipijuiCiieineil +

=+ pijkl--- I8ij€ik X € =" €jy-

Log-Linear Model

The probability distribution can be expressed as

J
FOYVidy=exp(Y 0+ Y OicYiYick 40, VY- Y, +) where A is a
normalization factor so that f (y;j|d;) sum to 1 over all values of y;, and where §'s depend on
di.

Beta-Binomial Model

This distribution assumes that the probability of a positive test (conditional on d;) is common
across the J tests. The probability distribution is P(Y;|dj) = B(S + a, J — S + 5)/B(«, f5), where

J
S:ijlyf'j, and the two parameters « and $ depend on di;.
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Figure 1.
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Contour plot of relative asymptotic bias in sensitivity and specificity for 50% completely at
random verification when the true model is a GRE model with P4 = .20, 69 = 1.5, o1 = 3, and
J = 5. Relative asymptotic bias of sensitivity and specificity is defined as (SENS* ' SENS)/
SENS (a) and (SPEC* ' SPEC)/SPEC (b), respectively. The contour plot was generated for
sensitivities and specificities over an equally spaced grid ranging from .65 to .95 with 400

points.
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Figure 2.

Distribution of estimates of sensitivity using the FM and GRE model under completely random
(CR) verification as well as under oversampling. Data were simulated under an FM model with
J=5,1=1,000, SENS =.75, SPEC = .90, P4 = .2, 1 = .5, and 5 = .2. One thousand simulated
realizations were obtained.
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Table 1
Estimation of overall prevalence, sensitivity, and specificity for digital radiography using no gold standard (GS) and
with the consensus rating as the gold standard

Estimator Model GS No GS
P, cl 240" 18(04)
GRE 2404 1619,
FM 24 0s) A7 0a)
SENS cl 75(06) 895)
GRE 75(06) 9239,
EM 75(06) 91(05)
SPEC cl 9y, 89(0p)
GRE 9 gp) 8843,
FM 910y 90(02)

NOTE: Models were fit under the conditional independence (CI), finite mixture (FM), and Gaussian random effects (GRE) models using linuma et al.'s

data.

*
Standard errors were estimated using a bootstrap with 1,000 bootstrap samples.
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Range in relative asymptotic bias for the GRE and FM models when the true conditional dependence structure is (i) a
Bahadur model with all correlations of order 3 and higher equal to 0, (ii) a log-linear model with a three-way interaction,

and (iii) a beta-binomial model

True model Estimator GRE FM
Bahadur model® SENS —2.8-.19% —.83-4.4%
SPEC ~.75-.18% ~.40-1.6%
Log-linear model? SENS 0-4.3% 0-7.0%
SPEC -.20-1.3% 0-3.7%
Beta-binomial model® SENS -.13-0% 17-4.3%
SPEC -.07-.05% 14-3.8%

NOTE: The range is over a range of sensitivities and specificities between .65 and .95. The range in relative bias is for Pg = .20, J = 5, and for 50%

completely random verification (r = .5).

aBahadur model with two-way correlations of .20 and all correlations of order 3 and higher equal to 0.

bLog-linear model with log P(Yi|dj) = Ad; + .51 + A, where | is an indicator that is equal to 1 if at least three or more of the Yjj's are equal to 1 and where

Aisanormalizing constant so that P(Y j|dj) sumto 1 over all possible Yj. The parameters fd; were chosen to correspond to the different values of sensitivity

and specificity.

CP(Yi|di) followed beta-binomial distributions with g = .4 (for both dj = 0 or 1) and « varied corresponding to the desired sensitivity or specificity.
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