Noise aliasing and the 3D NEQ of flat-panel cone-beam CT:
Effect of 2D/3D apertures and sampling
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The ability to tune an imaging system to be optimal for a specific task is an essential component of
image quality. This article discusses the ability to tune the noise-equivalent quanta (NEQ) of
cone-beam computed tomography (CBCT) by managing noise aliasing through binning of data at
different points in the reconstruction cascade. The noise power spectrum, modulation transfer
function, and NEQ for CBCT are calculated using cascaded systems analysis. Binning is treated as
a modular process, insertable between any two stages (in both the 2D projection domain and in the
3D reconstruction domain), consisting of the application of an aperture, followed by the resampling
of data (which introduces noise aliasing). Several conditions were examined to demonstrate the
validity of the model and to describe the effect on the image quality of some common reconstruc-
tion and visualization techniques. It was found that when downsampling data for increased recon-
struction speed, binning in 2D results in a superior low-frequency NEQ, while binning in 3D results
in a superior high-frequency NEQ. Furthermore, visualization procedures such as slice averaging
were found not to degrade the NEQ provided the sampling interval is unchanged. Finally methods
for reducing noise aliasing by oversampling are examined, and a method to eliminate noise aliasing
without increasing reconstruction time is proposed. These results demonstrate the ease with which
the NEQ of CBCT can be modified and thus optimized for specific tasks and show how such
analysis can be used to improve image quality. © 2009 American Association of Physicists in
Medicine. [DOI: 10.1118/1.3166933]
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I. INTRODUCTION

Cone-beam computed tomography (CBCT) with flat-panel
detectors (FPDs) is becoming widely used in a broad spec-
trum of medical imaging applications, including preclinical
imaging, diagnosis (e.g., breast imaging), and image-guided
procedures (e.g., surgery, interventional radiology, and radia-
tion therapy). FPD-CBCT offers submillimeter spatial reso-
lution and soft-tissue visibility across a large field of view
from a single rotation about the object. While artifacts con-
tinue to present a significant challenge to image quality, the
performance of such systems is fundamentally limited by the
spatial resolution, noise, and noise correlations, each of
which depend on the properties of the imaging system (e.g.,
system geometry and FPD), acquisition technique (e.g., X-ray
spectrum and dose), and the operations performed in recon-
struction and visualization. A prevalent approach to describ-
ing these fundamental limits to imaging performance in-
volves Fourier metrics such as the modulation transfer

3830 Med. Phys. 36 (8), August 2009

0094-2405/2009/36(8)/3830/14/$25.00

function (MTF), noise-power spectrum (NPS), and noise-
equivalent quanta (NEQ). These descriptors have become
common for 2D imaging systems, may be determined by
experimental measurements' and by theoretical calculations
(e.g., cascaded systems analysis),3_5 and have been proven
useful in system design and optimization.6_17 These metrics
can be described similar to 3D imaging, including tomosyn-
thesis and CBCT."#%

With a knowledge of the imaging task and an appropriate
model observer, these metrics can be extended to a descrip-
tion of task performance as described by ICRU Report No.
54.2° Within such a framework, the imaging task is charac-
terized by a function describing the spatial frequencies of
importance in discriminating between two hypotheses—e.g.,
“signal present” (abnormal) versus “signal absent” (normal).
Detection of a large, low-contrast stimulus, for example,
tends to emphasize low frequencies, with task performance
improved for systems with a superior low-frequency NEQ.

© 2009 Am. Assoc. Phys. Med. 3830
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TaBLE 1. Signal and noise transfer relations. The term g; describes the mean x-ray fluence at stage i, and g;
describes the mean gain at stage i. The terms u and v refer to 2D spatial coordinates in the detector plane, with
Au; and Av; being the respective sampling intervals at stage i, and f,, and f, referring to the spatial-frequency
counterparts. Similarly, x, y, z refer to 3D spatial coordinates in the reconstruction with Ax;, Ay,, and Az; being
the respective sampling intervals at stage i, and f,, f, f, being the 3D spatial-frequency counterparts.

Stage Signal Noise
Gain Stage qi(uvv)zé_’iqifl(uvv) Si(fuafv)zgfz(fu va)+0'§[‘7ifl+saddi(fwfv)
Stochastic 67,‘(14»U)=67i71(u»v)j*Pi(u,U) S k) =ISi1Funf ) =G T Fnf ) + i
spreading stage
Deterministic qi(u,v)=q;_1(u,v)**Pu,v) St f)=Sics s f )T Fous )

spreading stage
Sampling stage

qi(u,v)=q;_,(u, ) (u/ Au;, v/ Av,)

Si(fu 9fv) = Si—l(fu 5fv)**AuiAviIII(quui 5vaUi)

Discrimination of fine details, on the other hand, tends to
emphasize higher frequencies, therefore favoring systems
with a superior high-frequency NEQ.

Processes of blur and sampling affect the NEQ signifi-
cantly through the influence of aliased noise. In 2D imaging,
this is evident in the NEQ of indirect-detection FPDs (which
involve presampling blur in the scintillator) and direct-
detection FPDs (which have little or no presampling blur
and, therefore, a relatively higher amount of aliased noise).
In CBCT as well, the influence of aliased noise on the 3D
NEQ depends on the blur and sampling processes of the
imaging chain—including not only those of 2D image for-
mation but also a myriad of blur and sampling (i.e., “bin-
ning”) processes invoked in 3D image reconstruction. Since
the latter involves parameters that may be freely selected in
the course of reconstruction, this framework suggests the ca-
pability to modify such parameters to maximize NEQ (i.e.,
minimize aliased noise) with respect to a given task.

The potential to “tune” the system NEQ in a task-specific
manner motivates the analysis of binning considered in this
paper. Binning presents a large parameter space, as it can be
freely adjusted in 2D (in the projection data) or in 3D (in the
reconstruction). As shown below, it may be integrated in cas-

caded system analysis of CBCT as a modular process, con-
sisting of application of an aperture followed by resampling,
which may be inserted between any two stages in the recon-
struction cascade. This paper examines specific experimental
and theoretical binning conditions to demonstrate the accu-
racy of the model, consider the effect on NEQ of commonly
applied reconstruction and visualization techniques, and
identify binning methods that maximize the 3D NEQ.

Il. THEORETICAL METHODS
Il.A. Signal, noise, and binning in CBCT
I.LA.1. NPS calculations

Noise power in CBCT can be analyzed using a cascaded
system analysis model. The model consists of a serial and
parallel cascade of gain, spatial spreading, and sampling
stages to describe the detector performance]’27 followed by a
deterministic serial cascade describing the reconstruction
process.23 For completeness yet brevity, the transfer relations
for each type of stage are summarized in Table I, and the
specific stages contributing to this cascade are summarized
in Table II below, with notation adapted from the above ref-

TaBLE II. Summary of stages in the cascaded system model for CBCT.

Stage Type of process Description Parameter

0 Incident fluence 9o

1 Gain (binary selection) Interaction of x-ray quanta in g
detector

2 Gain (stochastic) Production of secondary quanta F 2y
(including parallel cascade)

3 Spreading (stochastic) Spread of secondary quanta T5(fosf)

4 Gain (binary selection) Coupling to aperature (photodiode) I

5 Spreading (deterministic) Integration by pixel aperature Ts(fosf)

6 Sampling (aliasing) Detector sampling (f o)

7 Gain (deterministic)+ Additive electronics noise Saad?(fusto)

Additive noise

8 Gain (deterministic) Log normalization

9 Spreading (deterministic) Ramp filter To(fosf)

10 Spreading (deterministic) Apodization filter Tio(fusfs)

11 Spreading (deterministic) Interpolation T (furfs)

12 Spreading (deterministic) Backprojection O (frofyof2)

13 Sampling (aliasing) 3D Sampling HI(f . fy.2)
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FiG. 1. Illustration of the cascaded system analysis model of image formation and reconstruction in CBCT. Stages are numbered from 1 to 13, with the
“insertable” binning process labeled as A (aperture) and B (sampling). Binning can be implemented at any point indicated by a vertical arrow, where the solid
black arrows [labeled (i), (ii), and (iii)] represent cases that are examined in this work.

erences.

Such analysis allows the combined effects of each ele-
ment of the reconstruction cascade to be examined in relation
to the 3D NPS and NEQ. An important characteristic of the
reconstruction cascade (stages 8—13) is that, although recon-
struction is deterministic, it presents an irreversible process
that does affect the image quality and NEQ. Specifically,
noise aliasing, which occurs when the image is averaged
(over a given aperture) and sampled (at a given pixel or
voxel size), prevents deterministic filters from canceling out
the NEQ and diminishes performance at spatial frequencies
where signal power is low. The sections below specifically
address the effect of applying a given aperture (i.e., a 2D
aperture in the projection domain and/or a 3D aperture in the
reconstruction domain) in combination with sampling (i.e.,
2D sampling at a given pixel spacing in the projection do-
main and/or 3D sampling at a given voxel spacing in the
reconstruction domain)—collectively referred to as binning.

The reconstruction cascade is illustrated in Fig. 1, includ-
ing binning as a process that may be arbitrarily “inserted” in
the cascade at locations of the vertical arrows. Binning can
be implemented digitally between any two stages in the re-
construction cascade and can even be implemented physi-
cally on the detector before readout (e.g., “binned readout”
in which multiple detector rows are read simultaneously,
modeled as binning between stages 5 and 6). Table III sum-
marizes the associated notation for binning following stage
“P,” denoted by “P”A for the aperture process and “P”’B for
the sampling process.

Typical binning applied in CBCT reconstruction occurs
after the stages in Fig. 1 marked (i) (stage 7), (ii) (stage 12),

and (iii) (stage 13) as discussed below. The binning process
implemented at location (ii) is implicit to the reconstruction
algorithm, as discussed in more detail below. While these
three possibilities are not exhaustive, they are common,
simple, and serve to illuminate many important issues con-
cerning image quality in CBCT. The 3D NPS [S5(f.f,.f.,)]
that results from binning at locations (i), (i), and (iii) (as
indicated in Fig. 1) is shown in Egs. (1a)—(1c) (dropping the
arguments of functions for conciseness):

— 6[0t
mM*(GottpeZ18284)°
X[(S7T5,) # # HLpT50TT f] % % I3, (1a)

Sl3

— 0[0t
mM*(qoapeZ18284)

Si3 (S7T%0T%1f)* * %k 115, (1b)
— 0[0t

mM*(G0a34818284)

XAL(ST T f) # % # I3 T35} % % % Iag,  (1c)

Sl3

where m is the number of projections, M is the magnification
factor, a,, is the width of the photodiode in each pixel, and
f= sqrt(f%+ f%). The term 6, describes the total acquisition
angle of a tomographic scan, which describes a continuum
between projection imaging and CBCT.*? For the case of
CBCT scans as considered here 6, is taken to equal .
CBCT presents opportunities to exploit binning in a man-
ner that is optimal to NEQ and a given imaging task, as pixel
or voxel sizes used in reconstruction are not constrained by

TaBLE III. Summary of binning processes and notation for binning subsequent to stage “P.”” The table shows the
example of a separable aperture and sampling function and thus is only written in one direction for the sake of
brevity. In this case, the aperture and sampling functions are described in the u direction only with an aperture

width of A, Aup and sampling distance of B,Aup.

Stage “P” Process Description Transfer relation
“P"A Spreading Integration aperture Tpp=sinc(27A,Aupf,) -+ (Rect aperture)
(deterministic)
“P” B Sampling Resampling Hlpg =B, Auplll(f,B,Aup) % -
(aliasing)
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physical limitations (only computational limitations). One
can therefore adjust binning (and potentially other filters in
the reconstruction cascade) to tune the NEQ to a given task
without modifying system hardware. As such, the impact of
these processes on the image quality needs to be carefully
understood.

Il.LA.2. 2D detector binning (i, stages 7A and 7B)

The first opportunity for digital binning in CBCT occurs
immediately following the detector readout (stage 7). As al-
luded to above, such binning is not equivalent to integrating
charge over multiple pixels on the detector prior to readout
(which is an important option handled within this framework
as indicated by the first gray arrow in Fig. 1—viz., summing
pixel signal prior to addition of amplifier noise—but is not
specifically examined here). Digital binning at stages 7A and
7B describes a mathematical process occurring after a raw
projection image is read out (e.g., read into computer
memory). In this process, neighboring pixels are averaged
(or otherwise digitally filtered according to T5,), producing a
continuous signal that is subsequently resampled according
to I1l;y into a new discrete matrix at a given sampling inter-
val.

Digital binning of the projection image is common in
CBCT since FPDs typically present a larger image format
(e.g., 1024 X 1024) than is required or may be efficiently
managed, and data are binned to a pixel size consistent with
the imaging task. For example, the detector employed in ex-
perimental studies below has a 1024 X 1024 pixel matrix
(RID-1640A, PerkinElmer Optoelectronics, Santa Clara,
CA), yet the nominal reconstructed volume typical in IGRT
applications (e.g., Synergy, Elekta Oncology Systems, At-
lanta, GA) is 256 X 256X 256 voxels. This factor of 4 is a
result of 2D digital postreadout binning on the detector—i.e.,
stage 7A (with A,=A,=4) and 7B (with B,=B,=4).

1l.A.3. 3D sampling (ii, stages 12A and 12B)

A second binning process is implicit in the selection of the
3D sampling interval in 3D reconstruction (i.e., stages 11—
13). The interpolation kernel applied at stage 11 acts as an
aperture (an essential factor in limiting very high-frequency
noise aliasing, as noted by Kijewski and Judyzs) and, to-
gether with the backprojection transfer function in stage 12,
defines a continuous 3D function that may be sampled arbi-
trarily at stage 13. Unlike binning at other stages in the cas-
cade, this process is essential to reconstruction. The parallel
between this and other binning processes is made explicit
through the identification of stages 12A and 12B. Before the
usual sampling at stage 13, the data can be further filtered or
averaged at stage 12A and sampled into an arbitrary 3D sam-
pling grid at stage 12B.

While this description leaves the possibility for many dif-
ferent 3D aperture and sampling procedures, typically all that
is performed at this stage is the selection of a 3D voxel size.
In this simple case T, is equal to unity (such that stages 11
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and 12 define the aperture for this process), and the sampling
interval for I11,,5 is set equivalently to III,5 (such that stage
13 defines the sampling for this process).

Il.A.4. 3D reconstruction binning (iii, stages 13A
and 13B)

A final opportunity for binning occurs after 3D image
reconstruction (following stage 13). Such corresponds to av-
eraging or filtering (followed by resampling) of voxels in
3D. This is a common aspect of 3D reconstruction and
visualization—e.g., the simple process of slice averaging, de-
scribed within this framework as an aperture in the
z-direction [T)35 ~ sinc(27A_f.)] resampled at the new or
original slice interval [described by Il 35(f..f,.f;)]. This
process differs from process (ii) in an important respect:
Namely, it includes an adjustable rectangular aperture,
whereas process (ii) implicitly includes a fixed and radially
symmetric aperture. While some binning methods can be
implemented equivalently in either (ii) or (iii) (for example,
downsampling can be implemented equivalently at either
stage), others cannot (for example, the effect of upsampling
at stage 12B cannot be reproduced at stage 13B).

II.B. Binning: Apertures and sampling

The effect of binning on the image quality (i.e., on the
MTF, NPS, and NEQ) may be described in terms of transfer
functions (Tps and Illpg) mentioned briefly above and are
detailed below. In general, binning can be applied to datasets
in any number of dimensions, with 2D and 3D binning the
pertinent cases here.

Il.B.1. Apertures

Adjacent data points can be averaged by convolution with
an aperture (or window function). For example, a rectangular
aperture presents a simple, separable case characterized by a
width in each direction (e.g., A,) in units of the sampling
interval at the previous stage (e.g., Au). The transfer function
for such an aperture, after an arbitrary stage P, is simply

Tpa(funfy) = sinc(27A , Aupf,)sinc(2wA,Avpf,) (2a)
for a binning process in the 2D detector domain, or
Tpa(fif, yvf z) = sinc(27A  Axpf,) sinc(ZWA),Aypf y)
Xsinc(27A Azpf.) (2b)

for a binning process in the 3D reconstruction domain. The
resulting NPS is given in terms of the NPS at the previous
stage (Sp) by

SPA(fwfv) = SP(fmfv)Sincz(zWAuAquu)SinCZ(ZWAUAUPfU)
(3a)

or

SPA(fx’fy’fz) = SP(fx’fwfz)Sincz(zWAxAfox)
Xsinc*(27A, Aypf,)sinc*(27A Azpf,) (3b)

Application of an aperture yields data that are continuous in
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the spatial domain and integrable in the Fourier domain, with
high-frequency noise power attenuated by the sinc functions.

II.B.2. Sampling

Since the dataset defined by an aperture (at stage “P”A) is
continuous, it can be sampled (at stage “P”B) at any fre-
quency. The sampling process is characterized by a new sam-
pling interval in each direction (e.g., B,) in units of the sam-
pling interval of the previous stage (e.g., Au). This process
causes noise aliasing by convolution of the NPS with the
Fourier transform of the sampling function,

SPB(fusfv) = SPA(fwfv) * BuAuPIII(fuBuAuP)
* B,AvpllI(f,B,Avp) (4a)
in the 2D projection domain, or

SPB(fx?fy’fz) = SPA(fxvfy’fz) * BxAxPIII(fxBxAxP)
« ByAypllI(f,B,Ayp) * B AzplII(f.B.Azp)
(4b)

in the 3D reconstruction domain. The convolution causes
high-frequency noise to be aliased back to lower frequencies,
resulting in a periodic NPS. While the application of an ap-
erture changes the spatial resolution and the variance, the
sampling process changes the spatial-frequency content of
noise through aliasing without affecting the total variance
since an integral over the Nyquist region of Egs. (4a) and
(4b) is equal to an integral over all frequencies in Egs. (3a)
and (3b).

II.B.3. Binning notation

For the simple rectangular apertures as considered here, a
binning process can be described by its aperture width and
sampling distance in each direction. In each case, the terms A
and B are used to describe the rectangular aperture width and
new sampling distance, in units of the sampling distance at
the previous stage. For example, 2D detector binning (stages
7A and 7B in Fig. 1) can be described by

(AM’AU) (Bll’BU) > (Sa)

showing the aperture and sampling distances in the horizon-
tal (#) and vertical (v) directions on the detector. For ex-
ample, (1, 2) (1, 2) denotes binning of detector rows.

Similarly, the 3D sampling distance (stage 12B in Fig. 1)
can be written as

(B,.B,,B.), (5b)

showing the sampling distance in 3D in the axial (x and y)
and longitudinal (z) directions. For stage 12, it is unneces-
sary to note the aperture width explicitly because the aper-
ture is defined implicitly by the transfer function in stage 11
(interpolation), as described in Sec. II A 3. For example,
(0.5, 0.5, 0.5) corresponds to reconstructing with a voxel size
equal to half of the detector pixel size (divided by the mag-
nification factor) in each direction.

For 3D postreconstruction binning (stage 13B in Fig. 1),
the process can be described by
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(Ax’Ay’Az)(Bx’By’Bz)’ (SC)

showing the aperture width and sampling distance in each of
the x, y, and z directions. For example, (1, 1, 2) (1, 1, 2)
corresponds to slice averaging (and sampling at an interval
equal to the new slice thickness).

Il.C. Aliasing and image quality

Besides the well-known trade-offs between blur and
noise, analysis of the above aperture and sampling processes
can elucidate the effects on the image quality associated with
aliasing. When high-frequency noise aliases to lower fre-
quencies as in Eq. (4a) and (4b), information on the image is
lost. This loss is particularly severe if aliased noise adds to
frequencies where signal power is low. However, the effect
on the image quality is less severe if sampling is performed
such that aliased noise adds primarily to frequencies with
high signal power. This suggests the capability to tune sam-
pling intervals in the reconstruction cascade in a manner ad-
vantageous to a specific task. With careful selection of bin-
ning parameters, aliased noise can be relegated to
frequencies that are least important for a given task.

Binning can also result in signal aliasing, causing con-
structive or destructive interference depending on the place-
ment of the object with respect to the 2D pixel matrix and
3D voxel sampling grid. As discussed in Ref. 29, a position-
averaged description of image quality metrics (e.g., the MTF
averaged over all possible locations of the incident PSF) is a
reasonable interpretation of the NEQ as usually reported, and
as such may be invoked with respect to binning to mitigate
complications associated with incorporating signal aliasing
in the analysis. Alternatively, a band-limited task may be
assumed, rendering signal aliasing negligible, and is neces-
sarily invoked in defining a unique MTF (i.e., a specific,
consistent relationship between the input and the output at
each frequency).

Additional assumptions and limitations associated with
this analysis are those intrinsic to linear cascaded system
analysis and Fourier-based descriptions of imaging perfor-
mance. The imaging system is assumed to be linear and shift
invariant, and the data are considered stationary in first and
second order statistics. For these assumptions to be consid-
ered valid in CBCT, the analysis should be restricted to a
region near isocenter (i.e., near the center of reconstruction).
In this region, projection rays are approximately parallel, so
the spatially varying fan-beam weights are near 1, and the
magnification factor is nearly constant for each projection.
Under this restriction, position-dependent effects relating to
magnification, such as those that affect the radial symmetry
of the NPS as described by Baek and Pelc,30 are believed to
be small. The theoretical analysis described below is devel-
oped within the limits of this local (central field) approxima-
tion, and the experimental measurements are performed in a
manner that follows such approximation. For example, in the
regions of interest considered in experimental analysis of
NPS and NEQ, the magnification factor ranges at most by
0.1 from the nominal magnification factor of 1.55. Variations
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FIG. 2. (a) Photograph of the skull phantom used to demonstrate the effects of binning on CBCT image quality. [(b)—(d)] Axial, coronal, and sagittal slices of
a typical CBCT reconstruction. The arrows mark spherical inserts (for analysis of SDNR) and the temporal bone (for qualitative assessment of spatial

resolution and noise).

associated with such spatial dependence were neglected, and
under the assumption of stationarity, these regions were av-
eraged to yield the measured result (with error bars reflecting
the statistical and spatial variation within the ensemble). All
results below are therefore understood to be “local” descrip-
tions of NPS and NEQ. The applicability of CSA at greater
distances from isocenter (in regions where the central field
approximation cannot be invoked), analysis of the spatially
varying NPS, and the impact of nonstationary noise on de-
tectability is a subject of on ongoing research.”’ Furthermore,
physical effects that can be relevant to image quality in
CBCT, such as x-ray scatter, heel effect, residual noise or
artifact associated with dark/flood corrections, and geometric
misalignment, are neglected in the current analysis.

11.D. Calculation of NPS and NEQ

The NPS was calculated using the model described in
Sec. II A. The frequency content of aliased noise is investi-
gated, in particular, to identify knowledgeable sampling
strategies giving improved image quality with respect to a
specified task. As such, the “aliased-only” NPS was calcu-
lated from contributions at points (i)—(iii) (as indicated in
Fig. 1). In each case, the aliased noise resulting from a given
stage “P” is calculated by subtracting the postaperture NPS
(Spa) from the postsampling NPS (Spg). The aliased-only
noise power (Sp jiasea=Spp—Spa) is propagated through the
remaining stages of the cascade, and aliased-only noise
power for each binning stage is combined (S,jiusea=S7 aliased
+812.aliased TS 13.atiased)- Calculating the aliased-only NPS in
this manner ensures that all the aliased noise introduced in
the reconstruction cascade is accounted for, and that none is
counted twice.

The NEQ describes the spatial-frequency-dependent
signal-to-noise ratio, quantifies the tradeoffs between reso-
lution and noise, and includes the effect of aliased noise. For
CBCT, it is calculated as

MTFZ(fxsf*vfz)
NPS(fo.fy.f2)
The factor of 6,,f (with 6= for CBCT) accounts for ra-

dial sampling density and is included such that the NEQ can
be interpreted as the number of quanta falling on an ideal

NEQ(fx’fy’fz) = Btotf (6)
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detector and reconstruction system, at each spatial frequency,
that would yield the same NPS and defines an NEQ that is
bounded at low fre,quencies.zz’n’32

lll. EXPERIMENTAL METHODS
lll.LA. Phantoms and imaging bench

A phantom was selected to quantitatively and qualita-
tively demonstrate the effects of binning. As illustrated in
Fig. 2, the phantom incorporated a natural human skeleton of
the head and neck along with low-contrast, soft-tissue-
simulating spherical inserts. The spheres permitted quantita-
tive examination of contrast and noise, while qualitative as-
pects of spatial resolution and noise could be appreciated by
visualization of fine skeletal anatomy, such as the temporal
bone.

The phantom was imaged on a CBCT benchtop with
source-to-axis distance of 93.5 cm and source-to-detector
distance of 144.4 cm (magnification of 1.54), chosen similar
to systems for CBCT-guided radiation therapy. The bench
incorporated a flat-panel detector with a 250 mg/cm? CsI: Tl
converter and a 1024 X 1024 matrix of a-Si:H photodiodes
and TFTs (0.4 mm pixel pitch, 80% fill factor; RID-1640A,
PerkinElmer Optoelectronics, Santa Clara, CA). Images were
obtained at 120 kVp, with 4.5 mm Al and 1.1 mm Cu total
(inherent+added) filtration. A total of 320 projections was
acquired over a 360° orbit, with 1.25 mA s per projection
(4.97 mR in-air exposure to the detector). As described pre-
viously, the corresponding dose to the center of a 16 cm
diameter head phantom was 13 mGy (estimated assuming a
16 cm water cylinder as in Ref. 33). Dark-flood corrections
were based on the mean of 50 dark and 50 flood-field images
acquired immediately before image acquisition. CBCT re-
construction was performed using a modified FDK
algorithm34 using a variety of aperture sizes and sampling
intervals corresponding to stages 7A/B, 12A/B, and 13A/B
in Fig. 1. A “smooth” Hann filter (stage 10) was used in all
cases.

111.B. NPS measurements

In addition, the effects of binning on the 3D NPS were
evaluated in CBCT reconstructions of air, measured as re-
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TaBLE IV. Example cases of binning examined in calculations of NPS and NEQ.

Stage 7 Stage 12 Stage 13
Case (A, A) B, B) B B, B) (A, A, A) (B, B, B) Description
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1:1 nominal reconstruction
2 2 2 3 3 1 1 1 1 1 1 1 1 1 2D whitened
3 3 3 2 2 1 1 1 1 1 1 1 1 1 2D colored E . tal ficati
4 11 1 1 1 1 1 2 2 2 3 3 3 3D whitened rperimental vertiication
5 1 1 1 1 1 1 1 3 3 3 2 2 2 3D colored
6 2 2 2 2 1 1 1 1 1 1 2D downsampling “Half-Res”
7 1 1 1 1 2 2 2 1 1 1 1 1 1 3D downsampling } fast recon time
8 1 1 1 1 1 1 1 1 1 2 1 1 2 Thicker slice interval Slice ¢ .
1 1 1 1 1 1 1 1 1 2 1 1 1 Original slice interval lee averaging
10 2 2 2 2 05 05 05 1 1 1 1 1 1 Quantum sink
11 1 1 1 1 0.5 05 05 1 1 1 1 1 1 3D Oversampling
12 1 1 0.5 0.5 2 2 2 1 1 1 1 1 1 2D

ported previously.23 Air-only images were acquired at
120 kVp with 5.1 mm Cu total added filtration (attenuating
the x-ray spectrum similar to 20 cm water”), with 4 mA s
per projection (0.27 mR exposure to the detector). The 3D
NPS was calculated from zero-mean realizations, A/, accord-
ing to'

b

b.b
NPS = (|[FFT[A|) ==

: ()
L.L,L.

where the zero-mean image, A/, was obtained by subtraction
of two volumes, each scanned and reconstructedr under iden-
tical conditions (and normalizing the result by \2) to remove
deterministic trends in the data and yield a NPS describing
only quantum noise fluctuations. The factors b,, by, and b,
are the sampling distances in the x, y, and z direction, respec-
tively, and L, L, and L_, are the length of each realization in
the x, y, and z directions. An ensemble of 36 realizations was
used, with each realization a cube of ~3.3 cm side length,
with the corresponding b; and L; depending on the aperture
and sampling parameters after stages 7, 11, and 12.
Three-dimensional NPS were analyzed for a variety of
binning conditions detailed in the Sec. III C. For display pur-
poses, a radial average of the measured NPS was computed
for each axial slice using 64 frequency bins per slice. One-
dimensional profiles of the NPS were taken slightly above
the axial plane and off the f, axis (at ~0.4 mm™) to avoid
on-axis artifacts. Error bars were taken equal to twice the
standard deviation of all measured samples in each frequency
bin combined in quadrature, normalized by the square root of
the number of samples in each bin. This method of radial
averaging for display purposes served to reduce the noise in
experimental plots and condenses a large amount of informa-
tion to a form that is easily interpretable. For consistency,
this method was used in presenting theoretically calculated
power spectra as well, including those that are not necessar-
ily radially symmetric, recognizing that the radially averaged
NPS curves exhibit distortions not reflective of the NPS in
any single direction, but is in some way representative of the
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NPS overall. The 3D NPS is reported with units of x> mm?,

where u refers to linear attenuation and itself carries units of
-1

mm~.

lll.C. Binning conditions (under-and oversampling)

Validation of the basic 3D cascaded system model was
shown in Ref. 23. In the current paper, we specifically exam-
ine the effects of binning using the flexibility of the model to
(i) compare theoretical calculations and experimentally mea-
sured NPS over a broad variety of binning conditions; and
(i1) demonstrate the effects of various matched and mis-
matched aperture and sampling intervals on NEQ and image
quality. The specific conditions examined are summarized in
Table IV.

Case 1 corresponds to a typical reconstruction in which
there is a one-to-one correspondence between pixels on the
2D detector and voxels in the 3D reconstruction at isocenter.
That is, the voxel size is chosen equal to the pixel size di-
vided by the magnification factor.

Cases 2-5 were selected to test the agreement of the theo-
retically calculated NPS with experimental measurements
under various binning conditions. In these cases, binning is
applied after stage 7 (cases 2 and 3) or stage 13 (cases 4 and
5) in such a way that the aperture size is not equal to the
sampling distance. Reconstructions that are sampled at inter-
vals wider than the aperture (as in cases 2 and 4) result in
reduced correlations between neighboring pixels (referred to
as “whitened”); conversely, reconstructions sampled at inter-
vals narrower than the aperture (as in cases 3 and 5) result in
increased correlation between neighboring pixels (referred to
as “colored”).

Cases 6 and 7 illustrate two means of achieving improved
reconstruction speed. Both are implemented by performing
fewer backprojection calculations (fewer voxels) in 3D by
choosing a larger 3D sampling interval. In case 6, the pro-
jection data are first binned in 2D and then backprojected to
maintain a 1:1 correspondence between 3D voxels and
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binned 2D pixels. In case 7, the projection data are un-
touched, and a large voxel size is selected when defining the
reconstruction matrix.

Cases 8 and 9 correspond to two examples of “slice aver-
aging” in 3D reconstructions, where pairs of adjacent slices
are averaged to reduce noise. In case 8, the 3D image is
sampled at the new (thicker) slice interval, while in case 9
the 3D image is sampled at the original (thinner) slice inter-
val.

Finally, cases 10-12 illustrate the effect of under- and
over-sampling in relation to the aliased noise introduced at
stage 13. In case 10, data are binned and downsampled in
2D, and then upsampled again in 3D, demonstrating the par-
allels between this process and a quantum sink (as often
considered in detector design). In case 11, the negative effect
of aliased noise at stage 13 is managed simply by oversam-
pling the 3D reconstruction matrix, a process that comes at a
high computational price. In case 12, the computational price
is circumvented by oversampling in 2D (and downsampling
to the original voxel size in 3D), thus filtering high-
frequency noise such that it does not alias to lower frequen-
cies at stage 13.

IV. RESULTS
IV.A. 3D Images under various binning conditions

Images of a soft-tissue-simulating sphere (+50 HU con-
trast to background) and skull phantom (region about the
temporal bone) corresponding to cases 1-11 in Table II are
shown in Fig. 3. Case 12 was omitted as it could not be
implemented in the current version of our 3D reconstruction
software. Window and level were selected independently in
each case to span the range of voxel values in each region
shown and therefore maximize display in a comparable man-
ner between images. The images are seen to exhibit signifi-
cant qualitative differences in contrast, detail, noise magni-
tude, noise correlation, and variation between axial and
sagittal (or coronal) views depending on the binning condi-
tions. As a basic quantitative descriptor, the signal difference
to noise ratio of each sphere is included in the figure. The
differences (and/or similarities) are discussed individually
with respect to the NPS and NEQ for each of the binning
cases below.

It is worth noting that despite the varied appearance of
images, the SDNR is equal for cases 1, 7, and 11, for cases 6
and 10, and for cases 8 and 9. This reflects the fact that
variance, and thus SDNR, depends on the spatial filters ap-
plied but not on the sampling interval. Nonetheless, changing
the sampling interval at stage 7B affects the variance indi-
rectly by changing the cutoff frequency of the apodization
filter at stage 10.

IV.B. The aliased 3D NPS

The aliased noise introduced in the reconstruction process
is of particular interest because it results from an irreversible
aspect of the (otherwise purely deterministic) reconstruction
process, leading to information loss. For a typical 1:1 recon-
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Case ia ittal Sagittal

SDNR = 5.3

FiG. 3. CBCT images reconstructed under various binning cases listed in
Table II. The left two columns show images of a soft-tissue-simulating
sphere in the axial and sagittal plane. The right columns show images in the
region of the temporal bone.
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FIG. 4. The MTF for case 1 is shown along the (a) axial and (b) longitudinal directions. The detector MTF is shown as a dotted line, the reconstruction filters
are shown as a dashed line (including the Hann apodization window), and the overall system MTF is shown as a solid line. The gray region indicates where
the first aliased copy of the NPS is concentrated and illustrates that the low MTF in the axial direction leads to a small amount of aliasing in this direction
[£.=0, as shown in (c)], and the higher MTF in the longitudinal direction leads to greater aliasing in the longitudinal direction [e.g., f,=0, as shown in (d)].

struction (case 1), grayscale images of the aliased-only NPS
are shown in Figs. 4(c) and 4(d). The magnitude of the
aliased-only NPS is governed by the system MTF, including
the reconstruction (Hann) filter, above the Nyquist
frequency—each shown in Figs. 4(a) and 4(b). The detector
MTF shown is a smooth fit to experimental measurements
performed in a previous study,27 and the reconstruction filters
are calculated analytically from the model presented above.

One can see that in a typical reconstruction aliased noise
contributes at mid- to high frequencies in the axial direction,
as well as at high frequencies in the longitudinal direction.
However, for the various reconstruction conditions examined
here, aliased noise power is concentrated in different regions
of frequency space. Plots of the aliased-only NPS are shown
in comparison to case 1 in Fig. 5. The differences (and/or
similarities) in aliased-only noise power are discussed indi-
vidually with respect to the NPS and NEQ for each of the
binning cases below.

IV.C. Comparison of theory and measurement

The theoretical and measured NPS are shown in Figs. 6(a)
and 6(b) for cases 1-5. Agreement between theory and mea-
surement is fairly good in each case, as expected from pre-
vious work. One observes a stark difference between the
NPS for cases 2 and 3 compared to cases 4 and 5. The 2D
downsampling in cases 2 and 3 reduces the cutoff frequency
of the apodization filter applied at stage 10, greatly decreas-
ing the total variance and causing the NPS to fall off quickly
at high frequencies in the axial direction. In the longitudinal
direction, the effect of the aperture is seen to dominate the
falloff of the NPS, where cases 2 and 4, with an aperture of
width A=2, exhibit a slower falloff, while cases 3 and 5,
with an aperture of width A=3, exhibit a faster falloff. While
the most obvious differences in NPS depend on whether bin-
ning is applied in 2D or 3D, the largest effect on the aliased-
only NPS is the sampling frequency. Cases that are whitened
(cases 2 and 4) exhibit orders of magnitude more noise
power than cases that are colored (cases 3 and 5).
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Of course, aliased noise must be considered with respect
to the quantum noise and MTF, each contained and quanti-
fied in the NEQ. The analysis below reveals that sampling
frequency and noise aliasing have a larger impact on NEQ
than the gross differences between the NPS for 2D versus 3D
binning. Cases 2 and 4, with high aliased noise power, ex-
hibit the lowest NEQ. Between these two cases, binning in
2D results in superior performance at very low frequencies,
and binning in 3D results in superior performance at higher
frequencies. For cases 3 and 5, which have little aliased noise
power, the NEQ maintains a value close to that for 1:1 re-
construction until near the Nyquist frequency, where noise
aliasing begins to dominate. As before, binning in 2D results
in superior performance at very low frequencies, while bin-
ning in 3D results in superior performance at higher frequen-
cies.

Many of these effects are evident in the images in Fig. 3.
First, an obvious difference can be seen between 2D binning
(cases 2 and 3) and 3D binning (cases 4 and 5). In the
former, the cutoff frequency of the apodization filter at stage
10 dominates gross image features. Both cases 2 and 3 ap-
pear blurry and have a high SDNR, higher in case 2 due to a
stronger apodization filter (despite a weaker aperture). For
the latter, the effect of the aperture dominates the SDNR, and
case 5, which has a wider aperture, exhibits a higher SDNR
than case 4. Noise aliasing, which is most apparent in the
temporal bone image in case 4 but can also be seen in case 2,
degrades image quality in a manner exemplified by the NEQ
in Figs. 6(c) and 6(d).

IV.D. Applications of over- and undersampling

Three pertinent examples are discussed below with re-
spect to over- and undersampling in the 3D NPS: (i) Binning
for improved reconstruction speed (cases 6 and 7); (ii) slice
averaging (cases 8 and 9); and (iii) binning to increase or
reduce aliasing (cases 10-12).



3839 D. J. Tward and J. H. Siewerdsen: Noise aliasing and the 3D NEQ 3839

107 107
S Case 4 (b)
8 o4
10 <10 Case 2
g é \/Case 3
"5107 2107 /
& 4 g
z - =
510" 5
& &4
% <1 %’
10 Case 5
Case3
12 <12
1075 i 3 3 W mr T 15 2
5 Axial Frequency f, (mm™) 7Longitudina[ Frequency f, (mm™")
107 107
(© | — (d
g]o-g Case 7
£ /Cases
"2107

3 0.5 1 5 2

1 2 0 1.
Axial Frequency f, (mm™) Longitudinal Frequency f, (mm’™")

(©

0 0.5 1 1.5 2
Longitudinal Frequency f, (mm)

Axial Frequency f, (mm™)

107 107
(@ (h)
108 108
£ £
! 2107
Wy vy
S 2 0
= - 10
Y @
2 Case 10 3
26" 216" <
Case 11,12 Case 11,12
16" /\ —* 16" _l

0 1 2 3 0 0.5 1 15 2

Axial Frequency f, (mm™) Longitudinal Frequency f, (mm’")

FIG. 5. Plots of the aliased-only NPS for cases 1-12 (see Table II) in the
(left column) axial and (right column) longitudinal direction on a logarith-
mic scale. Plots shown are radial averages as described in Sec. III B.

IV.D.1. Binning for improved reconstruction speed

Cases 6 and 7 correspond to “half-res” reconstructions
with a corresponding eightfold decrease in the number of
voxels and improved reconstruction speed by an order of
magnitude or more, depending on the particular implemen-
tation of reconstruction software. The NPS for these cases,
compared to case 1, are shown in Figs. 7(a) and 7(b). For
case 6, binning in the projection domain (after stage 7) de-
creases the NPS at all frequencies largely due to spatial fil-
ters (the aperture of stage 7A and the apodization filter with
a reduced cutoff frequency at stage 10). In case 7, downsam-
pling in the reconstruction domain (after stage 12) increases
the NPS at all frequencies, an effect that is entirely due to
noise aliasing.

Medical Physics, Vol. 36, No. 8, August 2009

x 108

NPS (uZmm?)

3 1.5 2
Longitudinal Frequency f, (mm’T)
6
8 x 10
©
b ‘T‘A
£ £
€ €
o o
w w
z =
3 0 0 0.5 1 15 2

1

Axial Frequency f, (mm™') !

Longitudinal Frequency f, (mm'")
FiG. 6. The NPS for cases 1-5 (see Table II) shown in (a) axial and (b)
longitudinal directions, showing good agreement between the measured and
the predicted NPS for a variety of binning conditions. The NEQ for these
cases are shown in the (c) axial and (d) longitudinal directions. The NEQ is
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One notices from Figs. 5(c) and 5(d) that aliased noise is
much lower when binning in 2D (case 6) as compared to
simply downsampling in 3D (case 7). Less aliased noise is
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FiG. 7. The NPS for cases 1, 6, and 7 shown in the (a) axial and (b) longi-
tudinal directions. The NEQ are shown in the (c) axial and (d) longitudinal
directions. The NEQ exhibits superior low-frequency performance for case 6
and superior high-frequency performance for case 7.
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observed in case 6 due to both the aperture applied at stage
7A and to the reduced cutoff frequency of the apodization
filter at stage 10.

The NEQ for cases 1, 6, and 7 are shown in Figs. 7(c) and
7(d). Despite the higher NPS at all frequencies for case 7, the
NEQ is seen to be superior at high frequencies for this
method in both the axial and longitudinal directions. Case 6
is superior at low frequencies. This, and the fact that both
have a reduced NEQ as compared to case 1, has important
implications with respect to frequencies of interest in the
imaging task when downsampling for the sake of faster re-
construction.

The qualitative effects of these shifts in noise magnitude
and frequency content can be seen in Fig. 3. For case 6, the
sphere is conspicuous, owing to an improved SDNR associ-
ated with the binning process. However, the fine structure in
the temporal bone is washed out by blur, and the low NEQ at
high frequencies reduces the ability to identify fine struc-
tures. Case 7 exhibits considerably “whiter” (uncorrelated)
noise resulting from heavy noise aliasing, reducing visibility
of the sphere but maintaining sharper detail in the high-
frequency structures of the temporal bone.

IV.D.2. Slice averaging

Slice averaging is represented by both cases 8 and 9, with
NPS shown in Figs. 8(a) and 8(b). The NPS for case 8 is
higher at all frequencies in both the axial and longitudinal
directions but has a reduced Nyquist frequency in the longi-
tudinal direction as a result of downsampling at stage 13B.
Both cases 8 and 9 exhibit an NPS reduced in comparison to
case 1, particularly in the longitudinal direction.
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The downsampling implemented in case 8 results in in-
creased aliased noise, chiefly in the longitudinal direction, as
can be appreciated from Figs. 5(e) and 5(f), or by comparing
case 8 and 9 in Fig. 8(b). In case 9, no noise aliasing is
introduced other than that present in a 1:1 reconstruction.
The reduced magnitude of aliased noise for this case as com-
pared to case 1, visible in Figs. 5(e) and 5(f), is due to the
aperture applied at stage 13A, which affects both the aliased
noise and the entire NPS equally.

The NEQ for these conditions are shown in Figs. 8(c) and
8(d). The NEQ for case 9 is greater than that for case 8 at all
frequencies, but the difference is most pronounced for fre-
quencies in the longitudinal direction. It is, in fact, equal to
the NEQ for a 1:1 reconstruction, emphasizing the fact that
noise aliasing is the only process that degrades image quality
in an otherwise deterministic reconstruction. This illustrates
that blurring adjacent slices, without downsampling, is an
effective way to reduce the impression of noise without com-
promising detectability.

The effects of the changes in noise magnitude and fre-
quency content associated with the two cases of slice aver-
aging can be seen in Fig. 3. The two exhibit an identical
SDNR (improved slightly as compared to a 1:1 reconstruc-
tion) as they each involve the same set of spatial filters, but
the noise is considerably whiter for case 8 in the sagittal (and
coronal) view. The effect on spatial resolution can be seen
from images of the temporal bone, and aliasing can be seen
to degrade the visibility of fine structures in case 8.

IV.E. Oversampling: The good, the bad, and the ugly

IV.E.1. The bad: 2D undersampling creates a
quantum sink

The theoretical framework illustrates the intuitive fact that
if information is lost at an early stage in the cascade (e.g., by
undersampling), it cannot be restored at a later stage (e.g., by
upsampling). This phenomenon is encountered frequently in
detector design and referred to as a quantum sink, where if
the number of information carrying quanta in a detector
drops below the number of input quanta, no amount of sub-
sequent amplification will restore the lost information. For
projection imaging, the addition of aliased or electronics
noise in the detector creates a quantum sink by reducing the
relative number of useful quanta at high spatial frequencies
where the NEQ is already low. By analogy, the addition of
aliased noise in the 3D images reduces the relative number of
useful quanta at both low and high frequencies where the
NEQ is already low, creating a similar effect. No amount of
subsequent upsampling will restore the lost information.
Methods used in detector design to reduce the impact of
typical quantum sinks also have a parallel in 3D reconstruc-
tion and will be explored in the remaining two sections. The
NPS for case 10 is seen in Figs. 9(a) and 9(b) below. It
exhibits a very low magnitude due primarily to the low cut-
off frequency of the apodization filter in stage 10. The
aliased noise present in this case is most prominent in the
longitudinal direction but is lower than that for a 1:1 recon-
struction in the axial direction, as seen in Figs. 5(g) and 5(h).
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The NEQ drops for this case near 1 mm™' (the Nyquist
frequency established at stage 7B), as can be seen in Figs.
9(c) and 9(d). Above this frequency, but below the Nyquist
frequency of the oversampled 3D image, the NEQ rises again
due to high-frequency replicants of a low-frequency signal.
This is aliasing, but in a different sense than is typically
considered, creating deterministic yet incoherent high-
frequency content and giving the artifactual impression of
noise added to the expected image. While an ideal observer
could extract information from these high frequencies (for
example, by applying a template based on knowledge of the
aliased signal and using the correlation between this template
and the image as a decision variable), the high-frequency
behavior seems to detract from qualitative (human observer)
assessment of image quality. That is, the high-frequency rep-
licants contain information but make the image appear less
like the underlying object. Since this information at high
frequencies is redundant (it is not independent of that at low
frequencies), it would not improve the detectability index
even for the ideal observer. However, it is still useful to
include this redundant information in the NEQ: For example,
if a subsequent process corrupts information at low frequen-
cies, it may be beneficial for an ideal observer to base deci-
sions on the high-frequency copy. The presence or absence
of this phenomenon helps to differentiate conditions exam-
ined in the following two cases.

One can qualitatively appreciate these features in the im-
ages shown in Fig. 3. The low NPS magnitude is reflected in
a high SDNR and the ability to easily visualize the sphere.
The SDNR in this case is equal to that for case 6, and despite
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the fact that case 10 has a higher sampling frequency, there is
little difference in the ability to resolve high-frequency struc-
tures.

IV.E.2. The ugly: Brute-force 3D upsampling
provides antialiasing

The most obvious way to reduce aliasing and avoid quan-
tum sinks such as that demonstrated above is simply to up-
sample at stage 13 (as in case 11). The resulting NPS is seen
in Figs. 9(a) and 9(b), and the lack of aliased noise is appar-
ent in comparison to case 1, particularly at high longitudinal
frequencies. Upsampling at stage 13 can all but remove the
deleterious effect of aliased noise in the NEQ, as can be seen
in Figs. 9(c) and 9(d), where the NEQ is improved at high
frequencies in comparison to 1:1 reconstruction (case 1).

While this provides an improvement in the image quality,
it comes at a high computational price (eight times more
voxels are sampled than in case 1, with reconstruction time
increased roughly eightfold) and results in low-frequency to
high-frequency signal aliasing, as discussed in Sec. IVE 1,
also evident in the NEQ in Figs. 9(c) and 9(d). From the
images in Fig. 3, one sees that the SDNR for this case is the
same as for 1:1 reconstruction, yet the sphere can still be
visualized. The removal of the noise aliasing from stage 13
results in an improved ability to resolve high-frequency
structures in the temporal bone and the edges of the sphere.

IV.E.3. The good: Upsampling in 2D also provides
antialiasing

A more elegant means to manage aliasing is to employ
“presampling blur” following stage 7 analogous to that im-
parted by a lowpass scintillator at stage 3 in indirect FPDs
(as opposed to the higher-pass characteristic of direct-
detection FPDs, which is analogous to the previous case).
Upsampling the data after stage 7 (as in case 12) raises the
Nyquist frequency of the data to above the Nyquist fre-
quency of the detector. This can be implemented digitally,
after readout, and thus does not depend on the capabilities of
the detector. Upsampling even by nearest-neighbor interpo-
lation, with its low computational cost, will raise the Nyquist
frequency and is sufficient for these purposes. If the cutoff
frequency of the reconstruction filter (stages 9 and 10) is not
correspondingly increased, then high-frequency noise power
is zeroed by the reconstruction filter. This places high-
frequency NPS replicants farther apart in frequency space,
resulting in a little or no aliasing at stage 13 even when
downsampling in 3D back to the original detector sampling
rate. The NPS for case 12 can be seen in Figs. 9(a) and 9(b)
and is nearly identical to that for case 11 up to the detector
Nyquist frequency.

The corresponding NEQ in Figs. 9(c) and 9(d) have a
Nyquist frequency equal to that for case 1 and are drawn in
bold to distinguish them from overlapping curves. This pro-
cess results in nearly the same NEQ as for case 11 but is
achieved without the additional computational expense. Fur-
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TABLE V. Summary of findings related to each case of binning examined. See also Table IV.

Case  Comments

Typical reconstruction, vulnerable to high frequency aliasing

These cases are unlikely to be used in practice; implemented here to test theory vs. experiment

> NEQ worse than case 1

The superior downsampling method for low frequency tasks
The superior downsampling method for high frequency tasks

A poor choice; NEQ is unnecessarily degraded
NEQ is unaffected

O 0 2 N[Wn B W N —

NEQ equal to case 1

A very poor choice; significant information loss

—_ —
—_ o

—_
[\S)

High-frequency aliasing is eliminated through upsampling in 3D but at a high computational cost

High-frequency aliasing is eliminated through upsampling in 2D with negligible computational cost

NEQ worse than case 1

} NEQ better than case 1

thermore, it produces no high-frequency aliased signal, thus
presenting the image without obscuration that could only be
distinguished by an ideal observer.

V. DISCUSSION

The results shown above demonstrate some of the effects
of binning on the NEQ of CBCT. Cases 2-5 illustrate the
major differences in the imaging performance that can be
achieved on the same physical system by employing subtly
different reconstructions. They confirm the accuracy of this
model and demonstrate the necessity to include deterministic
binning in the reconstruction cascade. Cases 6 and 7 describe
the effects of downsampling to increase reconstruction
speed. The results indicate that binning and downsampling in
2D before reconstruction (case 6) is favorable for low-
frequency tasks, but downsampling alone (without applying
an aperture) (case 7) is preferable for high-frequency tasks
despite the appearance of high quantum noise; neither
method performs better than a 1:1 reconstruction (case 1). In
cases 8 and 9, it was demonstrated that slice averaging can
be performed without affecting the NEQ, so long as the sam-
pling interval is not increased. In cases 10-12, methods for
reducing the aliased noise introduced in the reconstruction
process are examined, and one is suggested (case 12) that has
the opportunity to improve the image quality without signifi-
cantly increasing reconstruction time. The advantages and
disadvantages associated with each binning/sampling scheme
are summarized in Table V.

The cases examined above are a small subset of opera-
tions that are typically performed in reconstructing and visu-
alizing 3D data. The two-step modular binning process, as
suggested here, has the flexibility to describe a range of other
processes, including various interpolation schemes (for ex-
ample, A=1, B=0.5, describes nearest-neighbor interpola-
tion) and the effect of slice extraction (for example, A=1,
B=infinity describes the extraction of a single slice), under a
common framework, rather than special cases (e.g., as in
Refs. 28 and 36). The simple rectangular apertures consid-
ered here can be further extended to describe a wide range of
filtering and sampling operations, providing the flexibility to
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tune the NEQ to a specific imaging task under a set of con-
straints (such as those imposed by acquisition, reconstruc-
tion, or visualization hardware and software, or simply by
workflow). In the context of task-specific imaging, the ability
to optimize the NEQ at certain frequencies (although at the
possible expense of others) through binning is essential for
the selection of knowledgeable reconstruction techniques. In
some cases, the effect of various reconstruction/binning pa-
rameters on NEQ is relatively small; in others, the effect is
significant and fairly complex. The ability to analyze acqui-
sition and reconstruction techniques within a common ana-
lytical framework, and in a manner that may be tuned to
specific imaging tasks, is an important step in understanding
fairly complex relationships among fundamental factors gov-
erning image quality, optimizing CBCT system performance,
and ultimately translating imaging systems that provide suf-
ficient image quality within real constraints of radiation dose
and image acquisition/reconstruction speed.
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