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Abstract
Non-tumor cell based model systems have recently gained interest in pharmacogenetic research as
a hypothesis generating tool. The hypotheses generated from these model systems can be followed
up in functional studies, or tested in individuals taking the same investigational agents. The
current cellular phenotypes (e.g. cytotoxicity) of interest in these studies are based on effects of an
individual dosage of a drug on the cell lines, or a summary of results at many dosages of a drug
(e.g. dose that inhibits 50% of cell growth, GI50). A more complete analysis of the impact of
genetic variation on all aspects of the dose-response curve may lend additional insight into the
pharmacogenomics of a particular drug. This paper illustrates the use of a Bayesian hierarchical
nonlinear model for the analysis of pharmacogenomic data with cytotoxicity endpoints. The model
is illustrated with cytotoxicity and expression data collected on cell lines from a pharmacogenomic
study of the drug gemcitabine. By completing an analysis based on the entire dose-response curve,
we were able to detect additional genes that affect not only the GI50, but also the slope of the
curve, which reflects the therapeutic index of the drug. Simulation studies also demonstrate that in
comparison to the analyses based on the commonly used summary measure GI50, investigation of
the impact of genetic variation on all aspects of the cytotoxicity dose-response curve are more
informative, and more powerful with respect to detecting the effect of gene expression on
cytotoxicity.
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1. INTRODUCTION
Recently, there has been an increased interest in “individualized medicine” in the research
and treatment of cancer. This in turn has increased awareness of the study of
pharmacogenetics and pharmacogenomics in cancer research. Pharmacogenetics is the study
of the role of inheritance in individual variation in response to drugs, nutrients and other
xenobiotics [1,2]. In this post-genomic era, pharmacogenetics has evolved into
pharmacogenomics, a discipline that has been heralded as one of the first major clinical
applications of the striking advances that have occurred and continue to occur in human
genomic science (http://www.fda.gov/cder/genomics/genomic_biomarkers_table.htm)[3–7].
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Pharmacogenomics is the study of the influence of genetic variation across the entire
genome on drug response (e.g., efficacy, toxicity) in patients.

In the late 1980s, the National Cancer Institute (NCI) developed a collection of human
tumor cell lines (NCI60) from a variety of common solid tumors, such as lung, colon and
breast, for anti-cancer drug screening [8]. Recently, pharmacogenomic research has
incorporated non-tumor cell-based model systems [9–12]. The use of these non-tumor cell
lines are gaining in popularly due to greater availability of samples. Hypotheses generated
with the cell-based model system can then be tested in individuals treated with the drug, or
followed-up in functional studies.

Currently, investigation of the genomic relationship with drug concentration endpoints from
cell lines is often completed by either analyzing a drug concentration endpoint measured at a
single drug dosage or a summary measure of the dose-response curve of the concentration
endpoints (e.g., dose that inhibits 50% of cell growth, GI50). Drug concentration endpoints
are any measurable cellular phenotypes that are related to drug concentration, one example
being cytotoxicity (measured as the percent of surviving cells after exposure to the drug). An
analysis of the impact of genetic variation on all aspects of the dose-response curve may
lead to more insight into the pharmacogenomics of a particular drug. For example, by
investigating the impact of genetic variation on the slope of the dose-response curve, one
may be able to determine genetic variation responsible for differences in therapeutic index,
the comparison of the amount of a therapeutic drug that causes the therapeutic effect to the
amount that causes toxic effects, between subjects treated with the drug.

Although numerous methods exist to evaluate subject-specific effects on nonlinear dose
response curves, application to pharmacogenomic studies has been lacking. One possible
method, used in the past for the analysis of population pharmacokinetic studies, is a
Bayesian hierarchical nonlinear model fit using Markov chain Monte Carlo (MCMC) [13–
16]. Bennett, Racine-Poon and Wakefield (1996) give a nice overview of MCMC methods
for hierarchical nonlinear models in Markov Chain Monte Carlo in Practice [17]. For a
review of non-Bayesian estimation of nonlinear mixed effects model, the reader is refer to
Davidian and Giltinan [16].

Over the last few decades, applications of Bayesian methods by Markov chain Monte Carlo
(MCMC) [18,19], and in particular the Gibbs Sampler [20], have increased with the
advancement of computers and computational methods, particularly with their application to
genetic data [21]. Use of a Bayesian hierarchical nonlinear model, allows determination of
the impact of genetic variation on all aspects of the dose-response curve, along with possible
incorporation of prior knowledge into the model. In addition, by analyzing the data within a
hierarchical nonlinear model, researchers are able to partition the variation in response to the
drug into: genetic variation, unexplained “between-subject” variation, and within-subject
variation (inter-observation-time variation, and residual random error). Understanding the
magnitude of these various sources of variation has important clinical implications. For
example, a large amount of unexplained between-subject variation in cytotoxicity can imply
that a drug will be difficult to use in a heterogeneous population because of uncontrolled
toxicity. Hence, the Bayesian hierarchical nonlinear model can offer insights into the
understanding of the pharmacogenomics of a particular drug.

This paper outlines a Bayesian hierarchical nonlinear model for analysis of
pharmacogenomic-cytotoxicity studies involving the use of a cell based “model system”
[22]. We begin by describing the motivating pharmacogenomic study involving the anti-
cancer drug gemcitabine, used to treat a variety of solid cancer tumors such as pancreatic
and breast cancer. This pharmacogenomic study will be used in the application of a
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Bayesian hierarchical nonlinear model to determine if mRNA expression for genes within
the gemcitabine pathway is related to cytotoxicity. In addition, three simulation studies are
presented comparing the findings from the hierarchical nonlinear model to the results from
the analysis using the GI50, a commonly used summary measure of the curve.

2. METHODS AND MATERIALS
2.1. Description of Gemcitabine Pharmacogenomic Cytotoxicity Data

Pancreatic cancer is a rapidly fatal disease with a 5-year survival rate of less than 5%
[23,24]. Gemcitabine is the standard chemotherapy for pancreatic cancer, drug response
varies widely among individuals. Genetic variation at each step within the gemcitabine
metabolic pathway including: transport, metabolism, and drug target could potentially
influence: the quantity of drug transported into the cell, the rate of active drug formation,
and the quantity of active drug reaching its target(s) resulting in metabolic inactivation of
the drug. The goal of this pharmacogenomic study is to identify genetic variation, in the
form of gene expression levels, associated with response to gemcitabine treatment
(measured as cytotoxicity) through the use of a cell line model system.

2.1.1. Cell lines, Drug and Cytotoxicity Assays—194 EBV-transformed B
lymphoblastoid cells (39.7% male) derived from 60 Caucasian-American (CA), 52 African-
American (AA) and 59 Han Chinese-American (HCA), as well as 23 CEPH (also CA)
subjects were purchased from the Coriell Institute (Camden, NJ). These cell lines were
obtained from the Coriell at different times, as far as 20 years apart, 79 (40.7%) obtained
greater than 10 years prior to the experiment. The drug gemcitabine (dFdC) was provided by
Lilly. Cytotoxicity assays were performed with the human lymphoblastoid cells using the
CellTiter 96 AQueous Non-Radioactive Cell Proliferation Assay (Promega Corporation).
Gemcitabine cytotoxicity data (measured as percent of surviving cells) were collected at
drug dosages 1000, 100, 10, 1, 0.1, 0.01, 0.001, and 0.0001 uM for the entire set of cell
lines. An example of the gemcitabine cytotoxicity data for a subset of four different cell
lines is shown in Figure 1.

2.1.2. Basal Affymetrix U133 Plus2.0 GeneChip gene expression data—Whole
Genome expression data for cell lines was obtained with Affymetrix U133 plus 2.0
expression array chip. The RNA extraction and the expression array assay were performed
following the Affymetrix GeneChip® expression technical manual (Affymetrix, Inc., Santa
Clara, CA). Before the assay, RNA quality was tested using an Agilent 2100 Bioanalyzer.
The Affymetrix GeneChip® contains over 54,000 probe sets designed based on build 34 of
the Human Genome Project. Each probe set containing 11 probes of which nucleotide
sequence is specifically designed to hybridize the targeted gene. The mRNA expression
array data were normalized on the log2 scale using GCRMA methodologies [25–27]. For
illustration of the Bayesian hierarchical nonlinear model, only the 30 probe sets within the
gemcitabine metabolic pathway were analyzed.

2.2. Bayesian Hierarchical Nonlinear Model for Pharmacogenomic Cytotoxicity and
Expression Data

Often, pharmacogenomic measurements taken at different concentrations may best be
characterized by a nonlinear model. Although non-linearity can sometimes be removed by
different data-transformations, the resulting models lose the structural dose-response
relationship that makes sense to clinical pharmacologists, particularly when planning drug-
dosing experiments, along with interpretation on the original scale. The nonlinear model for
the relationship between the response (Yi) and the drug concentration (Di) is Yi = f (β, Di) +
εi, where f (β, Di) is a function that is nonlinear in terms of β.
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Let there be N cell lines in which J doses of the drug are applied to each cell line. In addition
to drug dosage, additional covariates of gender, ethnicity and mRNA gene expression values
are recorded for each cell line. In general, the relationship between the cytotoxicity response
and drug dosage exhibits a sigmoidal shape that can be modeled with a four parameter
logistic function. The four parameter logistic model is the most common model fit to in-vitro
dose response data and is the recommended function for use by the NIH Chemical
Genomics Center (http://www.ncgc.nih.gov/guidance/section3.html). Following is the
Bayesian hierarchical nonlinear model (HNLM) used to assess the effect of mRNA gene
expression for genes within the gemcitabine pathway on the gemcitabine cytotoxicity dose-
response curve using a four parameter logistic function, where cytotoxicity is measured as
proportion of cells alive at each dose of the drug. For situations in which the four parameter
logistic function is inadequate, the model can be modified using a different nonlinear
function.

Let Yij represent the response for cell line i at dose j (Dj), i = 1,…, N and j =1,…, 8 with Yij

~ N(ηij, σ2) and . The responses at infinite and
zero concentration are represented by β1i and , respectively. The parameterβ3i represents
the log(EC50) with EC50 representing the effective concentration that kills 50% of the cell
or refers to the concentration of a drug which induces a response halfway between the
baseline and maximum. In the four parameter logistic model, the EC50 is equivalent to the
GI50. For other nonlinear functions, the GI50 may or may not be represented by a parameter
in the nonlinear model. Lastly, β4i represents the slope of the dose-response curve. For
computational issues, we have re-parameterized the model such that . We have
chosen not to explicitly model the dependency within each individual response due to the
limited number of measurements for each cell line. As discussed by Davidian and Giltinan
[16], due to numerous parameters involved in HNLM, without tremendous amount of data it
is difficult to sort out the intra- and inter-individual covariance components, and thus
modeling within-individual correlation should be approached with caution. There appears to
be autocorrelation between dosages, seen in a lag plot (Figure 2) of 6 randomly selected cell
lines. To verify the adequacy of the model that does not model the within-subject
correlation, model checking was completed as outlined in section 2.3. The results of model
checking, as described in section 3.1., indicated that fitting a model assuming no within-
individual correlation was adequate.

Next, we let β1i = exp{α1i}, β2i = exp{α2i}, β3i = α3i + γ3 (GEi), and β4i = α4i + γ4 (GEi),
where GEi represents the mRNA gene expression for cell line i. For the analysis of
gemcitabine cytotoxicity, only the effect of mRNA gene expression on the log(EC50) and
the slope is modeled, as there appears to be little variation in response at zero or infinite
drug dosage for gemcitabine. If relevant for the drug of interest, the model could be
extended to allow for the gene expression to impact β1i and/or β2i.

A multivariate normal distribution is used to model the curve parameters, allowing
dependency amongst the parameters (e.g., as the log(EC50) increases, so may the slope).
That is, αi = (α1i,α2i,α3i,α4i)T ~ MVN(μ, V) with μ = (μ1, μ2, μ3, μ4)T ~ MVN(μ0,Σ) and V−1

~ Wishart(R,4). To specify a non-informative Wishart prior on V−1, the degrees of freedom
were set equal to the rank of V, rank(V) = 4, where in general the smaller the degrees of
freedom, the less informative the prior. A non-informative, diffuse prior for μ was set, in
which, μ0 was set to (2.3, 4.5, −3, 1.5) based on both biological knowledge and visual
inspection of individual dose-response curves for the 194 cell lines treated with gemcitabine
and Σ = c×Idenity matrix with c = 1002. Lastly, non-informative, diffuse proper priors were
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placed on the remaining parameters in the model (e.g., γ3 ~ N(0,1002), γ4 ~ N(0,1002), and1/
σ2 ~ Gamma(0.001,0.001)).

2.3. Model Diagnostics
With inferences based on posterior distribution, which in turn are based on the specified
probability model, model diagnostics is critical in Bayesian analyses. It is often the case that
multiple models will fit the data reasonably well and provide consistent answers to the
scientific question/hypothesis. The main question is “How much do the posterior
distributions change if another, reasonable, model is assumed?” As outlined by Gelman et al
[19], the posterior predictive distribution was utilized to check the fit of the model using
discrepancy measures. The discrepancy measures of the posterior predictive distribution
utilized to assess model fit for the HNLM were: the minimum, median, and maximum of the
simulated replicate data. The distributions of these discrepancy measures where then
compared to: the minimum, median, and maximum values in the observed phenotypic data.
In addition to these three measures, we also compared the simulated data to the observed
data by visually displaying and assessing the residuals (simulated replicate data minus the
observed data). Convergence of the MCMC was monitored using the convergence measure

, as discussed by Gelman et al [19], along with trace plots. The measure  converges to
1 as number of iterations of MCMC approaches ∞, where  indicates the chain has
converged.

2.4. Simulation Study
mRNA gene expression data was simulated from a normal distribution with mean 0 and
variance 3. For the simulation study designed to access the power to detect an expression
effect on log(EC50), the cytotoxicity values for each cell line were simulated from a
multivariate normal distribution MVN(ω,ψ) with mean

withβ1 = 10, β2 = 95, β4 = 1.5 and β3 = −3+0.055(mRNA expression) and covariance
matrix; ψ that has an auto correlation structure with lag of 1 with variance τ2= 100 and auto-
correlation parameter ρ = 0.65. The vector D contains the eight drug concentrations of 1000,
100, 10, 1, 0.1, 0.01, 0.001, and 0.0001, selected to mimic the drug concentrations for the
gemcitabine study. One-hundred datasets, each containing 250 subjects/cell-lines, were
generated in which each subject/cell line had 8 simulated cytotoxicity measurements, and
one simulated value for an expression probe set.

Each simulated dataset was analyzed using both the HNLM described in section 2.2 and an
analysis based on the summary measure GI50. For the analysis of the association of the
GI50 with expression, Pearson correlation coefficients were calculated for GI50 and
expression levels and a Wald test was used to test the null hypothesis of no correlation or
association. For the Bayesian models, a significant effect was noted if the 95% credible
interval for the parameter does not contain 0. For the frequentist analysis of GI50, we
defined a significant effect if the two-side p-value ≤ 0.05. Power was estimated as the
proportion of simulations that a method correctly detected the simulated expression effect.
False positive rates were estimated likewise as the proportion of falsely detected effects
when no expression effect was simulated.
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The simulation study to assess the power to detect expression effects on the slope was
completed in a similar manner as for the simulation study for log(EC50) with β1 = 10,β2 =
95, β3 = −3, and β4 = 1.75+0.1(mRNA expression). Lastly, 100 null dataset with 250
subjects/cell lines each were simulated with no effect of expression on any aspect of the
curve.

3. RESULTS
3.1. Gemcitabine Pharmacogenomic Study

The GCRMA normalized log2 expression data was regressed on gender, race, and the
storage time of each cell lines, or time since submission of each cell line to Coriell
(dichotomized at 10 years). The binary variable of storage time was included to adjust for
the differences observed in expression values with respect to time since Coriell submission
of each cell line. The residuals from this regression model were then standardized, resulting
in a standardized, adjusted, GCRMA normalized mRNA expression value. GI50 summary
cytotoxicity values were log transformed, and then in a similar fashion adjusted for gender,
race, and storage time as above before standardizing. Pearson correlation coefficients for the
relationship between the standardized adjusted GI50 with each of the 30 standardized,
adjusted, GCRMA normalized, expression probe sets within the gemcitabine pathway were
calculated. A test of the null hypothesis of no correlation was conducted using a Wald test.

For analyses using the HNLM, the adjusted, normalized, log2 mRNA expression values and
unadjusted cytotoxicity data were model as outlined in section 2.2, using WinBUGS 1.4.3
[28,29]. In addition to the expression effects modeled for β3i and β4i, race, gender and
storage time were also included as covariate effects on all level-two parameters (β1i, β2i, β3i
β4i). For each of the 30 probe sets within the gemcitabine pathway, three independent chains
were run with different starting values, each for 60,000 iterations. The first 10,000 iterations
were subsequently removed for burn-in, and every 5th iteration was kept in order to reduce
serial correlation, and save on storage space. Convergence was checked using trace plots,
and the  values, as outlined in section 2.3. After removing the beginning of the chain for
burn-in, the trace-plots, and  indicated convergence for each of the 30 analyses.

Probe sets deemed to have a mRNA expression effect based on either: the 95% credible
interval not containing zero for log(EC50) (γ3), or slope (γ4) parameters in HNLM; or p-
value ≤ 0.05 from a standard analysis based on GI50 summary are shown in Table 1. As
Table 1 illustrates, the two probe sets found to be significant at the 0.05 level using the
summary measure GI50 were also detected with the HNLM. In addition, the HNLM
detected two probe sets with an impact on log(EC50), and another two probe sets with an
effect on the slope of the dose response curve that were not found using the standard
analysis. The two probes sets detected to have an effect on the slope using the hierarchical
model did not have significant p-values from the analyses based on GI50, as expected, since
the phenotype GI50 does not reflect the slope. Therefore, by using all the cytotoxicity data
collected on the cell lines in one hierarchical nonlinear model, researchers are able to detect
expression probe sets that are missed with the analysis based on GI50.

Since all analyses used the same model and observed cytotoxicity data in which only the
covariate of mRNA expression varying from analysis to analysis, model checking was
completed for only one probe set (probe set 201801_s_at). Three chains with different
starting values were used, in which each chain is run for 35,000 iterations, removing the first
10,000 iterations for burn-in, and keeping every 5th iteration. Model checking was
completed as outlined in section 2.3 using replicate data simulated from the model. The
distributions of minimum, maximum, and median of the simulated replicate data are
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presented in Figure 3. The proportion of simulations with minimum, maximum, and median
more extreme than the observed minimum, maximum, and median is 0.05, 0.13 and 0.21,
respectively. Figure 4 displays the 2.5%-tile, and 97.5%-tile of the residuals comparing the
replicate and observed data for the last 1,000 simulations from each chain. In Figures 3 and
4 the vast majority of distributions are centered at 0, implying there is no large systematic
bias, or model inadequacy. However, there are five cell lines with two (out of eight) of their
residual distributions that do not contain zero, and one cell line with three distributions that
do not contain zero. On further investigation, the individually estimated dose-response
curves for these six cell lines were distinct from the dose-response curves for the majority of
the cell lines (e.g., dose relationship more linear than sigmoidal, large amount of variation in
cytotoxicity data). Therefore, overall, we feel the model fit is adequate.

3.2. Simulation Study
The 100 datasets simulated with an effect of expression on log(EC50), but not slope, were
analyzed with both the Bayesian hierarchical nonlinear model, and the standard method
based on GI50, the summary measure of the curve. For the HNLM defined in section 2.2.,
WinBUGS 1.4.3 [28,29] was utilized. Three chains with different starting values were run
for 30,000 iterations, removing the first 10,000 for burn-in, keeping every 5th iteration to
reduce serial correlation, and save on storage space. Of the 100 simulations, 95 of the 100
simulations detected the expression effect on the log(EC50) (i.e., the 95% credible interval
for γ3 did not contain 0). In only one out of the 100 simulations was there an effect on slope
(γ4) detected, note worthy is that a log(EC50) effect was also detected.

For each of the 100 simulated datasets, the posterior mean was estimated for key parameters
of interest. A summary of the posterior means across the 100 simulated datasets is presented
in Table 2. As the table illustrates, the average estimate of expression effect on log(EC50),
γ3, across the 100 simulations was 0.055, which coincides with the true value used in the
simulation of the data.

Analyses of the simulated datasets with an expression effect on log(EC50) were also
computed using the commonly used method based on GI50. For each of the simulated
datasets, GI50 was computed for each cell line, and then correlated with the simulated
expression variable. The mean p-value across the 100 analyses based on the GI50 summary
measure was 0.02, with a standard deviation of 0.055. Of the 100 simulated datasets, 89 out
of the 100 analyses based on GI50 produced a p-value less than 0.05. Of the analyses that
produced p-values greater than 0.05, the p-values ranged from 0.055 to 0.334. In
comparison, six out of eleven of these effects were detected with the HNLM using the entire
dose-response curve. Lastly, the five simulation datasets in which the HNLM was unable to
detect the simulated expression effect were also datasets with signals not detected by the
analyses based on GI50.

The simulation study designed to assess the power to detect a gene expression effect on the
slope of the dose response curve found that 95% of the simulated effects were detected with
the HNLM (i.e., 95% credible interval for γ4 did not contain 0). The average estimate for γ4
was 0.092, which is close to the truth of 0.10 used to simulate the data (Table 3).
Additionally, eight out of the 100 analyses also detected a gene expression effect for
log(EC50), of which, all eight detected an effect for slope. This is in part due to the
correlation between these two parameters. In a similar manner as completed for the
log(EC50) simulation study, analyses of the 100 datasets from the slope simulation study
were also completed using the summary measure GI50. For the analyses based on GI50,
only ten out of the 100 simulated expression effects on the slope were detected (i.e., p-value
< 0.05). Of the ten detected with the analysis of GI50, all expression effects were also
detected with the HNLM. Lastly, all effects not detected with the Bayesian model were also
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not detected with the analysis based on GI50. That is, all effects detected with the analysis
of GI50 were also detected with the HNLM, with the HNLM detecting an additional 85%
gene effects on the slope of the dose-response curve.

The analyses of the 100 null simulated datasets were completed in a similar manner as
completed for the datasets simulated with an expression effect on log(EC50), or slope. For
the analyses based on the HNLM, seven and three of the 100 simulated datasets had a 95%
credible interval for γ3 and γ 4 that did not contain 0, respectively. Of these significant
findings, two of the probe sets had a significant association for both γ3 and γ4. When
compared to the analyses based on the GI50, eight out of the 100 analyses resulted in a p-
value for a probe set effect less than 0.05, of which, five out of the eight probe sets were also
detected with the HNLM.

Since the same model, with the exception of the expression effect, was utilized to simulate
the datasets, diagnostics were conducted for only one of the datasets simulated with an
expression effect on log(EC50). If the model was determined to be adequate for one of the
simulated datasets, it was considered adequate for all simulated datasets. With the three
chains having different starting values, it was determined that the chain had converged to the
stationary distribution, as the three chains converging to the same point in the trace plots, as
well  for all parameters in the model (data not shown). Model checking was
completed as outlined in section 2.3.

4. DISCUSSION and CONCLUSIONS
This study presented a Bayesian hierarchical nonlinear model (HNLM) for the
pharmacogenomic analysis of drug dose-response cytotoxicity curves, and mRNA
expression data. The analysis of the pharmacogenomic study of gemcitabine, and simulation
study illustrated that an analysis of the dose-response curve (i.e., repeated measurements) is
more informative, and appears to be more powerful in detecting the effect of gene
expression on cytotoxicity than the analyses based on the commonly used GI50 summary
measure of the curve. Finally, analysis of the simulated null data showed similar false
positive rates between the analyses based on the HNLM, and analyses based on the GI50
summary measure. However, these conclusions are based on a relatively small simulation
study of 100 replicates. A larger simulation study involving over 1,000 replicates is needed
to definitively conclude the analysis of the entire dose response curve is more powerful than
an analysis based on a summary measure of the curve.

Due to the computational nature of the HNLM, it is currently impractical to run the HNLM
for all mRNA expression probe sets on a genome-wide Affymetrix expression array panel
(approximately 54,000 probe sets). Therefore, the analysis of genetic variation has been
focused within a biological pathway of interest. Future work is needed to develop adequate
statistical screening methods that can be quickly analyzed using standard statistical
methodology. One option would be to use a phenotype that captures various differences
between the dose response curves, for example, the area under the curve (AUC). For each
cell line, integration could be completed to determine the computed phenotype of AUC. This
computed phenotype would then be associated with genome-wide SNP and/or mRNA
expression data using standard statistical methods. Any SNP, or expression probe set found
to be moderately associated with AUC would then be analyzed using the HNLM to assess
which, if any, aspect of the curve is impacted by genetic variation.

In addition to the development of an adequate screening method, future research is needed to
extend the HNLM to incorporate SNPs, and haplotype effects, as well to jointly model the
effects of gene expression, and SNPs on various aspects of the dose-response curve. This
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HNLM can be extended to studies in which a class of drugs is the unit of interest, as
opposed to a single drug. For example, gemcitabine and the drug cytosine arabinoside
(AraC) are in the same class of drugs called cytidine analogues. The models can be extended
to answer questions dealing with which genes impact a class of drugs, and whether the
relationships between the gene and the cytotoxicity of the drugs are similar. These models
could provide insight for understanding how a set of drugs in the same drug class differ from
one another. Lastly, the HNLM can be easily modified to incorporate the use of different
nonlinear functions beyond the four parameter logistic, and biological information via
informative proper priors.

To summarize, investigating the impact of genetic variation on all aspects of the dose-
response cytotoxicity curve within a Bayesian hierarchical nonlinear model appears to be
more informative, and powerful at detecting the genetic effect on all aspects of the dose
response curve in comparison to the analyses based on the commonly used summary
measure GI50. In addition to the analysis of the entire dose-response curve being more
powerful, for many drugs, one may be interested in all aspects of the curve, particularly the
slope or bottom asymptote. For example, when studying the drug mycophenolic acid (MPA)
used in organ transplant [30,31], one may be interested in all aspects of the curve,
particularly the bottom asymptote, as the goal of the drug is to reduce rejection of the organ,
due to an immune system attack, but not to reduce the immune systems ability to fight off
infection if needed (i.e., wish to lower cytotoxicity to a point, but not too low). Findings
from these analyses will guide our understanding of the pharmacogenomic nature of drugs,
and lead to better understanding of the complex nature of the relationship between genetic
variation and drug response, with the ultimate goal of “individualized medicine” for
patients.
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Figure 1.
Dose-response curves for a subset of 4 cell lines. The different symbols and line types
represent data for 4 different cell lines. The symbols represent the observed proportion of
cells alive at the various doses of the drug gemcitabine and with the lines representing the
fitted dose-response curves.
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Figure 2.
Lag plots of cytotoxicity measurements for six randomly selected cell lines. The y-axis show
the measure of auto-correlation and the x-axis show the lag in time measurements. The
figures show positive autocorrelation for measurements within 2 lags of each other and
negative autocorrelation for measurements with 3 or more lags between them.
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Figure 3.
Histograms of discrepancy measures (minimum, maximum and median) utilized to assess
model fit. The solid vertical line represents the observed value in the cell line data. The
proportion of simulations with minimum, maximum and median more extreme than the
observed minimum, maximum and median is 0.05, 0.13 and 0.21, respectively.
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Figure 4.
Plot of the mean difference, with 2.5% and 97.5%-tiles, for difference in simulated replicate
data and observed data for the 194 cell lines at 8 drug doses. The red lines indicate situations
in which zero is not contained in the middle 95% of the residual distribution.
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Table 1

Probe sets with 95% credible intervals for γ3 or γ4 that do not contain 0 based on the HNLM or probe sets with
p value < 0.05 based on analysis of summary measure of curve (GI50).

Bayesian Hierarchical Nonlinear Model Analysis with GI50

Probe Interval forγ3, Log(EC50) Interval for γ4, Slope P-Value

201801_s_at (−0.251, −0.052) (−0.305, 0.047) 0.002

209155_s_at (0.028, 0.224) (−0.107, 0.224) 0.096

217870_s_at (−0.185, 0.022) (−0.397, −0.019) 0.269

223178_s_at (0.010, 0.199) (−0.014, 0.323) 0.081

223298_s_at (0.186, 0.356) (−0.009, 0.334) 1.6e-07

243100_at (−0.053, 0.136) (−0.236, −0.001) 0.726
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