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Summary: Voltage-gated calcium channels (VGCC) play
obligatory roles in diverse physiological functions. Pathologi-
cal conditions leading to changes in their biophysical properties
and expression levels may cause malfunctions of VGCC-me-
diated activities, resulting in disease states. It is believed that
changes in VGCC properties under pain-inducing conditions
may play a causal role in the development of chronic pain,
including nerve injury-induced pain or neuropathic pain. For
the past several decades, preclinical and clinical research in
developing VGCC blockers or modulators for chronic pain
management has been fruitful, leading to some U.S. Food and
Drug Administration-approved drugs currently available for
chronic pain management. However, their efficacy in pain re-

lief is limited in some patients, and their long-term use is
limited by their side-effect profiles. Certainly, there is room
for improvement in developing more subtype-specific
VGCC blockers or modulators for chronic pain conditions.
In this review, we summarized the most recent preclinical
and clinical studies related to chronic pain medications act-
ing on the VGCC. We also included clinical trials aiming to
expand the application of approved VGCC drugs to different
pain states derived from various pathological conditions, as
well as drug combination therapies trying to improve the
efficacies and side-effect profiles of current pain medica-
tions. Key Words: Chronic, neuropathic pain, voltage-gated
calcium channels, analgesics.

INTRODUCTION

A recent survey has indicated that at least 50 million
people in the United States suffer from chronic pain." It
is predicted that this number will increase dramatically
due to advances in health care that will continue to
prolong the lifespan of patients. In addition to adversely
affecting quality of life, inadequate management of
chronic pain also has profound social, economical, and
psychological consequences. Current pain medications,
both opioid and nonopioid, at best, cause partial pain
relief in some, but not all, patients. In addition, long-term
usage of these medications is often associated with in-
tolerable side effects, some of which can be life-threat-
ening. Therefore, there is an urgent need for safer and
more specific analgesic medications for chronic pain
management.

Even though different etiologies of chronic pain may
have similar clinical manifestations, chronic pain can
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derive from different pathological conditions that each
mediate chronic pain states by unique mechanisms.
Thus, directing our treatment toward a limited number of
targets by medications in our current toolbox could ren-
der partial pain relief in some patients only. Combina-
tional treatment is an option to improve efficacy and
reduce side effects. Unfortunately, most of the currently
available analgesic medications act through targets that
are not only important in pain processing, but also crit-
ical in mediating normal physiological functions, which
therefore lead to intolerable side effects, especially after
long-term usage. Individualized pain management based
on pain-inducing pathological conditions would have the
least interference with normal physiological functions,
and is therefore an ideal approach in chronic pain man-
agement.

Voltage-gated calcium channels (VGCC) or their sub-
units are considered one family of molecules with ther-
apeutic potentials in chronic pain management. The
VGCC are assembled through interactions of different
subunits,” namely al (Cayal), B (CayB) a8 (Caya,d)
and vy (Cay7y). So far, 10 channel-forming Caya sub-
units, encoded by distinct genes, have been identified.?
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These Ca,« subunits consist of four homologous trans-
membrane regions, and each is composed of six trans-
membrane domains linked by intracellular loops and
amino and carboxy termini. The diversified physiological
and pharmacological properties of VGCC are mainly
derived from the existence of these Cay « subunits. Four
Ca, 3 subunits have been identified so far. They all have
alternative splicing variants.® The Cay 3 subunits are en-
tirely intracellular, phosphorylated by multiple protein
kinases, including protein kinase C and cAMP-depen-
dent protein kinase, and they play a critical role in cell
surface expression and modulating the gating properties
of the Caya subunit.* Four distinctive Cay,a28 genes,
Ca,a,8,, Ca,a,0,, Ca,a,8;, and Ca,a,0, have been
identified.>°® Their products and splice variants have spe-
cific tissue distribution patterns.®™® The Cay 28 subunit
consists of two disulfide-linked peptides («, and ) that
are encoded by the same gene.'™'! It is highly glycosy-
lated and mainly extracellular, with a single transmem-
brane domain and five intracellular carboxyl terminal
amino acids.'*'* Data from in vitro studies have shown
that co-expression of Ca, a28 with other calcium channel
subunits increases and stabilizes current amplitude,l3’15'20
channel binding sites, and binding affinity for N-type
VGCC ligands.'®?' Three-dimensional structural analy-
sis of the L-type VGCC by electron cryo-microscopy has
indicated that the extracellular Ca,,c, subunit protrudes
from the membrane in close proximity to the channel
forming Caya subunit.>? Recent findings have indicated
that the Ca,,a26 subunit is also involved in cellular traf-
ficking of the calcium channel complex.?>** These find-
ings suggest that the Ca,,&28 subunit is likely involved in
VGCC assembly and stabilization, modulation of Cay«
subunit functions, and ligand binding. The Cayyl sub-
unit is a structural component for the skeletal muscle
L-type calcium channels.”> 2’ Whether other identified
Ca, 7y or Cay y-like subunits associate with other types of
VGCC remained to be confirmed.”®>* The functional
role of the Cayy subunit is not well understood.

Based on their physiological and pharmacological prop-
erties, VGCC can be subdivided into low voltage-activated
T-type (Ca,3.1, Ca,3.2, and Ca,3.3), and high voltage-
activated L- (Ca,l.1 through Ca,1.4), N-(Ca,2.2), P/Q-
(Ca,2.1), and R-(Ca,2.3) types, depending on the channel-
forming Caya subunits.>** All of these five subclasses of
calcium channels are found in the central and peripheral
nervous systems.’> Regulation of intracellular calcium
through activation of these VGCC plays obligatory roles
in: 1) neurotransmitter release, 2) membrane depolariza-
tion and hyperpolarization, 3) enzyme activation and
inactivation, and 4) gene regulation.>**° A large body
of data has clearly indicated that VGCC are implicated in
mediating various disease states,”®*! including pain pro-
cessing.*>**~*> This review focuses on recent preclinical
and clinical studies regarding VGCC as targets for chronic
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pain management, especially neuropathic pain manage-
ment. For more generalized reviews about the biophysical
properties, and plasticity of VGCC on other disease states,
the readers are referred to other recent reviews.***’

CALCIUM CHANNEL DRUGS FOR
PAIN MANAGEMENT

The diversities in biophysical properties and tissue-
specific expression of VGCC thus become an important
issue in drug specificity and safety in developing anal-
gesic drugs for pain management. Data from preclinical
studies have indicated that most neurons, including sen-
sory neurons*® and spinal dorsal horn neurons,* ! ex-
press multiple types of VGCC. Several types of VGCC
are considered potential targets for analgesics based on
their distribution, biophysical/pathological roles, and
plasticity under pain-inducing conditions.’> We aim
here to highlight both preclinical and clinical advances
in VGCC drug use, including combinational therapies,
in pain medicine. A summary of the current VGCC
medications that are commonly used for pain manage-
ment is available in Table 1. The U.S. Food and Drug
Administration (FDA)-approved indications for each
are noted. A summary of ongoing clinical trials, as
listed on clinicaltrials.gov, is available in Table 2,
which provides the reader with information regarding
studies using these common VGCC drugs to treat non-
FDA-approved pain etiologies and indications.

N-type VGCC blockers

N-type VGCC are highly expressed in dorsal root gan-
glion (DRG) cell bodies and at the presynaptic termi-
nals where afferent sensory fibers form synapses with
postsynaptic dorsal horn neurons,*’->*=>% implying an im-
portant role of these calcium channels in mediating nor-
mal sensory neuron excitability and neurotransmitter re-
lease. Changes in the biophysical properties and enhanced
expression of these VGCC under pain-inducing patho-
logical conditions would likely enhance synaptic vesicle
release of pain-inducing transmitters, such as glutamate,
substance P, and calcitonin gene-related peptide on stim-
ulation that could activate interneurons and projection
neurons, altering sensory excitability and leading to pain
sensations. In addition, N-type VGCC are unique in that
they are a target for descending activation of adrenergic
pathways by norepinephrine®® and for inhibition by opi-
oid pathways.”’® A role for N-type VGCC in neuro-
pathic pain is solidified by findings indicating that spi-
nally delivered N-type calcium channel antagonist can
block nerve injury-induced tactile allodynia,” and dorsal
horn neuronal responses.’® Evidently, blocking the N-
type VGCC at the levels of spinal cord and sensory
neurons results in inhibition of stimulus-evoked release
of pain-inducing peptides, such as substance P, calcito-
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Table 1. Summary of Current Calcium-Channel Drugs in Common Clinical Use for Pain Management

Drug FDA Indications

Adverse Reactions

Reference

Gabapentin  2002: Postherpetic neuralgia;
1994: epilepsy (partial
seizures), pediatric partial

Dizziness, somnolence, peripheral edema,
nausea, dyspepsia, increased appetite,
constipation

http://www.accessdata.fda.gov/
drugsatfda_docs/label/2009/
020235s5041,020882s028,

seizures

2004: Neuropathic pain
associated with diabetic
peripheral neuropathy;
postherpetic neuralgia;
adjunctive therapy for adult
patients with partial onset
seizures; fibromyalgia

2004: Management of severe
chronic pain in patients for
whom intrathecal therapy is
warranted, and who are
intolerant or refractory to other
treatment, such as systemic
analgesics, adjunctive
therapies, or IT morphine

Pregabalin

Ziconotide

Dizziness, somnolence, dry mouth,
edema, blurred vision, weight gain,
abnormal thinking (difficulty with
concentration/attention)

Vertigo, vision blurred, asthenia,
abnormal gait, pyrexia, rigors, sinusitis,
anorexia, muscle spasms, pain in limb,
amnesia, ataxia, dizziness, dysarthria,
dysgeusia, headache, memory
impairment, nausea, nystagmus,
somnolence, tremor, anxiety, confusion,
insomnia, urinary retention, pruritus,

021129s0271bl.pdf
http://www.accessdata.fda.gov/

drugsatfda_docs/label/2009/

021446s013s0141bl.pdf

http://www.accessdata.fda.gov/
drugsatfda_docs/label/2007/
021060s0031bl.pdf

increased sweating

FDA = U.S. Food and Drug Administration; IT = intrathecal.

nin gene-related peptide, and excitatory neurotransmit-
ter, glutamate.***°*~% Nerve or tissue injury-induced tac-
tile allodynia and thermal hyperalgesia, but not acute
pain states, are suppressed in mice lacking the N-type
calcium channel-forming Caya subunit.®*~® This im-
plies that the N-type VGCC are more directly involved in
chronic, rather than acute, nociception. This is consistent
with data from direct blockade of N-type VGCC by cone
snail peptides w-conotonix-GVIA and w-conotonix-
MVIIA (ziconotide or Prialt) that leads to inhibition of
neuropathic and inflammatory pain, but not acute pain, in
animal models.>* Interestingly, splicing variants of the
N-type VGCC have been identified in sensory neu-
rons.®®~®® With validation of their functional contribu-
tion to pain processing, these subtypes of N-type VGCC
could be potential targets for specific analgesic drugs.

Peptide N-type VGCC blockers

The FDA approval of ziconotide, or the synthetic ver-
sion of w-conotonix-MVIIA (also called SNX-111, or
Prialt (Elan Pharmaceuticals, Inc., San Diego, CA), for
the treatment of chronic severe pain refractory to other
current pain medications in December 2004 in the United
States and in Europe®® (Table 1) marked the first clinical
application of N-type VGCC peptide blockers in chronic
pain management. w-conotonix-MVIIA is a 25-amino
acid peptide isolated from the marine fish-hunting cone
snail, Conus magus.”® Due to the peptidergic nature of
this drug, it is only approved for intrathecal application.
Ziconotide can block N-type VGCC currents with high
potency, but in a reversible manner.”"’? Data from pre-
clinical studies have indicated that blocking N-type

VGCC by this toxin leads to diminished neurotransmitter
release in the spinal cord,”® and diminished postopera-
tive, inflammatory, and neuropathic pain states in animal
models.”*7#77® The analgesic effect of intrathecal zi-
conotide is more potent and longer lasting than intrathe-
cal morphine without tolerance or cross-tolerance to
morphine analgesia.”*’>

Clinical trials of intrathecal application of this peptide
drug result in significant pain relief for patients with
severe chronic pain (Table 2), including neuropathic pain
and pain secondary to cancer or AIDS. Several reviews
summarizing the details of some early clinical trials were
recently published.””~”® Briefly, the first randomized,
double-blind, placebo-controlled pilot study for pain re-
lief with intrathecal ziconotide was in patients undergo-
ing surgery.® Patients received either a placebo or one of
two intrathecal ziconotide doses (0.7 ug/h and 7.0 ug/h)
postoperatively during the following 48 h. The mean
daily morphine consumption from patient-controlled ad-
ministration in the 24- to 48-h period was significantly
lower in patients receiving ziconotide than in placebo-
controlled patients. Pain scores in both ziconotide groups
were lower than in the placebo group. Adverse events
were more frequent on the higher ziconotide dose. In an
open-label clinical study,®' 31 male patients with chronic
pain who had failed opioid management received con-
tinuous intrathecal ziconotide infusions. The average
pain reduction was 43% in 19 out of 24 patients who
completed the study. The concomitant use of opioids was
reduced by at least 50% in 15 patients. Two multicenter,
randomized, double-blind, placebo-controlled trials in
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Table 2. Summary of Clinical Trials by Pain Etiology*

PERRET AND LUO

Study Drug

Study Indication

Ziconotide, nimodipine, pregabalin

Pregabalin

Ziconotide, gabapentin, lamotrigine, pregabalin

Amlodopine, gabapentin, ziconotide, nifedipine,
pregabalin, eperisone

Verapamil

Pregabalin

Pregabalin

Lamotrigine, pregabalin

Gabapentin, pregabalin

Diltiazem

Gabapentin, pregabalin

Gabapentin, gabapentin XR, pregabalin, lamotrigine

Gabapentin
Gabapentin, gabapentin XR, lamotrigine, pregabalin
Gabapentin, pregabalin

Pregabalin
Pregabalin
Pregabalin
Pregabalin
Pregabalin
Gabapentin
Gabapentin
Lamotrigine

AIDS/HIV

Anxiety, preoperative

Cancer

Chronic pain syndromes (pelvic, chronic prostatitis, abdominal,
chronic pain secondary to trauma, chronic low back pain,
chronic pancreatitis, vulvodynia)

Cluster headache

Complex regional pain syndrome

Essential tremor

Facial pain (excluding postherpetic neuralgia)

Fibromyalgia

Hemorrhoidectomy

Multiple sclerosis

Peripheral neuropathy (chemotherapy, radiation, alcohol,
diabetic, vascular, idiopathic)

Phantom limb pain

Postherpetic neuralgia

Postoperative pain (sternotomy, thoracotomy, hip surgery, joint
replacement, cesarean section, tonsillectomy, keratectomy,
inguinal hernia repair, spinal fusion, knee arthroscopy,
scoliosis surgery, CABG, hysterectomy, cholecystectomy,
mastectomy, axillary node dissection, bunionectomy)

Post-traumatic pain

Radiculopathy

Spinal cord injury

Spinal stenosis

Stroke

Stump pain

Tinnitus

Trigeminal neuralgia

*Source: clinicaltrials.gov.

patients with chronic cancer or AIDS-associated pain
(“malignant pain”)®? or with nonmalignant pain®* were
conducted. In the “malignant,” chronic cancer/AIDS-re-
lated pain trial,¥? ziconotide improved the mean visual
analog scale of pain intensity (VASPI) scores by 53%. In
addition, 53% patients in the ziconotide group had pain
relief classified as moderate to complete compared with
18% patients in the placebo group. Five patients in the
ziconotide group had achieved “complete” pain relief. In
the “nonmalignant” pain trial,®* 240 patients were ran-
domized to ziconotide versus a placebo. Ziconotide re-
duced the mean VASPI scores by 31% (compared with
6% for the placebo group). In addition, more than 43% of
patients in the ziconotide group had moderate-to-com-
plete analgesia, compared with 17% in the placebo
group.

Several additional studies published in 2006 assessed
the ideal effective dose and tolerability of ziconotide. In
three well-designed trials with up to 21-day durations,*
titration of ziconotide resulted in significant improve-
ment in the VASPI scores for chronic malignant or non-
malignant pain compared with a placebo. The analgesic
effects of ziconotide remained for up to 12 months in
long-term, open-label trials. In addition, lower incidence

Neurotherapeutics, Vol. 6, No. 4, 2009

and severity of adverse effects were observed in patients
with low initial doses and gradual titration to achieve
analgesia. In a randomized, double-blind, placebo-con-
trolled study,® slower titration of intrathecal ziconotide
to a lower maximum dose was associated with a signif-
icant improvement in pain relief and was better tolerated
compared with faster titrations and higher maximum
mean dose reported in two earlier placebo-controlled
trials. It was suggested that administration of intrathecal
ziconotide at a low starting (maximum) dose of 0.5 ug/
day and a limitation of dose escalations to no more than
0.5 wg/day may limit adverse effects.®

A recent case report highlighted the use of ziconotide
in a patient with recalcitrant pain post-spinal cord injury,
with both at-level and below-the-neurological-level of
neuropathic pain syndromes. When intrathecal hydro-
morphone was used as a treatment modality, the patient’s
at-level, but not the below-level, pain was reduced. Con-
versely, when intrathecal ziconotide was administered,
analgesia was positive for the below-level, but only min-
imally for the at-level, pain. When combination therapy
with intrathecal hydromorphone and ziconotide was
used, analgesia was sufficient for both pain components.
This study implies that central pain due to spinal cord
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injury may be an indication for intrathecal ziconotide,
particularly in combination with intrathecal opioids.®’

The usage of this peptide drug is limited by the route
of administration and undesirable side effects, including
sedation, dizziness, nausea, emesis, somnolence, head-
ache, confusion, memory impairment, slurred speech,
nystagmus, double or blurry vision, urinary retention,
hypotension, elevated creatine kinase levels, and gait
abnormality.”®®%~ It is believed that the serious side
effects of ziconotide are derived from complete blockade
of the N-type VGCC that would affect the normal bio-
physical functions of widely distributed N-type VGCC.”!
However, it is argued that more convincing data are
needed to make definitive conclusions because similar ad-
verse effects are not detectable in N-type VGCC knockout
mice, which have no detectable evidence of developmental
compensation from other types of VGCC.* It is possible
that some of these adverse effects may be secondary to
effects at other receptors besides the N-type VGCC.
Most adverse events occur during the first week of treat-
ment. After 6 months of treatment, the incidence of
adverse events is noted to be 0 to 35% of that reported in
the first month of treatment.** Potential contamination of
intrathecal pump devices used to administer ziconotide
(or any other intrathecal agent) may increase the risk of
meningitis.”” The neurological side effects of ziconotide
dictate that the drug should be used with caution and
careful dose titration. Particular symptoms may correlate
with the rate of infusion.” Because addiction and toler-
ance are not detectable with the analgesic effects of
ziconotide,® but are often observed with the use of opi-
oid analgesics, intrathecal ziconotide could be an option
for replacing intrathecal morphine for chronic severe
pain relief. However, the combination of opioid with-
drawal symptoms and the cognitive/psychiatric adverse
effects of ziconotide could make the conversion chal-
lenging. Successful treatment with ziconotide mono-
therapy has been suggested to include physician and
psychological supports to decrease possible adverse psy-
chological and physiological complications.”>

Overall, although pain relief by ziconotide is accom-
panied with some adverse effects, use of this analgesic
has several benefits. Ziconotide is less mood-altering
than morphine for comparable analgesia and has the
advantage of lacking addiction, opioid-induced hyperal-
gesia, and other systematic effects commonly observed
with opioids.”® For these reasons, the Polyanalgesic Con-
sensus Conference of 2007 puts ziconotide in the first
line of intrathecal therapy management, along with mor-
phine and hydromorphone, in its recommended algo-
rithm for nociceptive, mixed, and neuropathic pain.”* As
summarized in a recent review, the evidence for short-
term improvement of malignancy-related pain or neuro-
pathic pain with intrathecal ziconotide is also strong.”’

Nevertheless, searching for safer analgesic peptide an-
tagonists against the N-type VGCC continues. It has
been reported that w-conotonix-GVIA, a 27-amino acid
peptide isolated from the cone snail, Conus geographus,
also exhibits analgesic properties in animal models.>* In
contrast to ziconotide, w-conotonix-GVIA is an irrevers-
ible inhibitor of N-type VGCC,”® which precludes its
clinical application due to potential severe side effects.
However, recent studies have indicated that binding of
this toxin peptide to the N-type VGCC can also modulate
(inhibit) N-type VGCC gating properties so that approx-
imately 50%, instead of a complete blockade, of the
calcium influx during an action potential is inhibited,”" in
addition to the primary pore blocking mechanism. This
would provide a means to normalize elevated (activated)
N-type VGCC activities in a disease condition, such as
chronic pain, but preserve the biophysical functions of
N-type VGCC in maintaining normal physiological func-
tions, and thus reduce adverse side effects. High-
throughput screening using a scintillation proximity as-
say has been used to search for small molecules that can
displace w-conotonix-GVIA binding to the N-type VGCC
in an attempt to find N-type VGCC modulators with high
affinity to the w-conotonix-GVIA binding sites on the
N-type VGCC.””

Another 27-amino acid peptide w-conotonix-CVID, also
called AM336, from the cone snail, Conus catus, is perhaps
the most selective of all N-type VGCC peptide blockers
with greater than 24 hours of analgesia observed in rats
from subnanomolar intrathecal doses.”****° Intrathe-
cal administration of this peptide drug into rat pain
models results in inhibition of spinal release of pain-
inducing peptides and potent dose-dependent anti-no-
ciception.”’98 In addition, AM336 showed a greater ratio
of analgesic efficacy to behavioral toxicity than zi-
conotide,”**® probably due to its greater selectivity for
N-type in comparison with P/Q type VGCC.”" This pep-
tide drug was assessed in a phase I clinical trial in on-
cology patients with severe pain'®® and its efficacy was
established in a small phase Ila clinical trial for patients
with severe cancer pain.40 Unfortunately, the side effects
were undesirable and dose limiting. The adverse effect
profile is surprising given the 10°-fold binding selectivity
of this peptide for N-type in comparison with P/Q-type
VGCC,”" and it may be secondary to supraspinal effects.

Small molecule N-type VGCC blockers

The potency of ziconotide in chronic pain relief, and
its association with an undesirable administration route
and an undesirable side-effect profile, has prompted a
race in searching for small molecules that would be
orally active and have an acceptable therapeutic window
for chronic pain management. Using a high-throughput
fluorescence-based in vitro assay to compare ICs, values
of blocking both N-type and L-type VGCC in a human
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neuroblastoma cell line for identifying specific N-type
VGCC blockers from its corporate compound library,
scientists in Ionix Pharmaceuticals Ltd. have developed a
series of new N-type VGCC blockers derived from struc-
tural modifications of “hit” structures.'®! After structural
and activity relationship analysis, compounds with up to
30-fold of N-type/L-type VGCC selectivity and up to 0.2
uM in ICy, values are identified. Unfortunately, analge-
sic efficacies in chronic pain models were not included in
the study. Further investigations for the analgesic effi-
cacy and toxicity in animal pain models may prove the
usefulness of these compounds for further development
as therapeutic agents for chronic pain management.

Indirect inhibitors of N-type channels

N-type VGCC can be modulated by morphine, an im-
portant analgesic. Binding of morphine to p-opioid re-
ceptors activates Gg, which translocates to the mem-
brane and binds to the N-type VGCC. A massive
G-protein-dependent inhibition of calcium currents re-
sults in an inhibition of neurotransmitter release,*>10?
and reduces the ability of the DRG sensory neurons to
propagate pain signals. This process is at least partially
responsible for morphine’s analgesic effect, but can also
contribute to tolerance development. Combination of zi-
conotide with u-opioids shows synergistic analgesia
when administered intrathecally.”*?*!%% This combina-
tion therapy may help to reduce opioid tolerance, a poor
side-effect profile, and the potential for opioid-induced
hyperalgesia, all of which limit the long-term usefulness
of w-opioid receptor agonists in pain medicine. Spinal
noradrenaline can reduce VGCC-mediated transmission
by presynaptic and postsynaptic inhibition, and by al-
adrenoceptor-mediated activation of inhibitory interneu-
rons.*” These may explain the effectiveness of a2-adren-
ergic agonists (such as clonidine) and nonselective small
molecule norepinephrine transporter (NET) inhibitors
(such as duloxetine) in pain relief. However, these med-
ications also have limiting side-effect profiles.'®* Highly
selective NET inhibitors, x-conopeptides, have been iso-
lated from the cone snail, Conus marmoreus.'® It was
demonstrated that the y-conopeptide NET-binding site
partially overlaps the tricyclic antidepressant NET-bind-
ing site.'* Based on studies in rat neuropathic pain mod-
els, the y-conopeptide compound MrIA (Xen2174) was
found to produce strong anti-allodynic effects without
significant side effects after intrathecal administration.'®’
A phase I/Ila clinical trial involving intrathecal evalua-
tion of Xen2174 in cancer patients with intractable pain
shows initial promising results.** This line of compounds
may represent an important option in the search to iden-
tify a potentially different therapeutic approach in target-
ing VGCC for chronic pain management.
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Peptide T-type VGCC blockers

Low-voltage T-type VGCC are found in DRG primary
afferent cell bodies and in free nerve endings. They
contribute to the initiation of the action potential in these
locations by lowering the required threshold for activa-
tion.'*® By promoting burst activity and synaptic excita-
tion, enhanced T-type VGCC activity favors the devel-
opment of pain.’"'% T-type VGCC density has been
increased in rat neuropathic pain models of diabetic neu-
ropathy and chronic constriction nerve injury.''*!"! The
facts that T-type VGCC knockout animals have hypo-
sensitivity to pain and that intrathecal injection with T-
type VGCC blockers or antisense oligonucleotides re-
sults in reduced excitability of the primary afferents and
therefore reduced nociceptive responses all attest to their
established role in the processing of pain, especially
neuropathic pain.’''*"''® However, the exact mecha-
nisms underlying the role of T-type VGCC in nocicep-
tion still remain elusive. Several regulatory mechanisms
of T-type VGCC in pain processing have been proposed.
These include redox modulation of T-type VGCC in rat
peripheral nociceptors,''® and the selective enhancement
of T-type VGCC in nociceptive DRG neurons by reduc-
ing agents, such as L-cysteine, synthetic, and endoge-
nous chelators of zinc.''” The latter is supported by the
findings that peripherally injected reducing agents pro-
duce thermal hyperalgesia in wild-type but not Cav3.2
knockout mice, indicating that T-type VGCC may have a
special role in peripheral sensitization."'® Currently,
ethosuximide is the only T-type VGCC blocker approved
for human use.'*’

L-type VGCC blockers

Evidence from recent clinical studies shows that L-
type VGCC blockers, such as topiramate, are efficacious
for neuropathic pain management, and leads to the sug-
gestion that this medication should be a third-line agent
for neuropathic pain treatment.'?! In one study, topira-
mate has been shown to cause statistically significant
reduction in pain intensity compared to a placebo, as
measured on a 100-mm visual analog scale, for up to 12
weeks in diabetic peripheral neuropathy patients.'*
However, three other randomized, double-blind, place-
bo-controlled trials with more than 1,200 diabetic neu-
ropathy patients failed to show statistically significant
reductions in pain intensity after 18 to 22 weeks of
treatment. In addition, these three studies also resulted in
topiramate drop out rates ranging from 16% to 31%
compared with 8% for a placebo. The most commonly
reported adverse events were fatigue, paresthesias, nau-
sea, somnolence, and diminished appetite.'*® Another
study evaluated the efficacy of topiramate for pain in
patients associated with chronic lumbar radiculopathy
and found modest pain relief in the topiramate-treated
group, but with a 24% drop out rate.'** At least one
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recent case report has suggested that topiramate may be
a useful pharmacologic modality for pain relief in pa-
tients with postherpetic neuralgia who have failed other
agents.'? Tt has been reported that topiramate has other
pharmacologic actions including blockage of voltage-
gated sodium channels in a dose-dependent manner,'®
potentiation of GABA inhibition, and AMPA receptor
blockade,'??>712*126 which may contribute to both its an-
algesic potential and its adverse side effects.

Other types of VGCC blockers

Contribution of other types of VGCC to pain process-
ing have been suggested in some preclinical studies.
Missense mutations in the Ca,2.1 P/Q-type calcium
channels lead to familial hemiplegic migraine, an inher-
ited form of migraine with aura and hemiparesis.'>’~'*°
In addition, R-type VGCC have been implicated in the
processing of neuropathic pain and other pain states.'°
However, few clinical researches evaluating the effica-
cies of specific blockers to these VGCC in pain relief are
available; thus, these are not covered in this review.

CALCIUM CHANNEL 261 LIGANDS FOR
PAIN MANAGEMENT

The unique features of the Ca,«,6 subunit and a large
body of recent findings have suggested that the Ca a0,
subunit may play an important role in neuropathic pain
development. Biochemical data have indicated a significant
Ca,a,0,, but not Ca,«,8,, subunit upregulation in the spi-
nal dorsal horn, and DRG after nerve injury®>'*'~'3 that
correlates with neuropathic pain development.'3!:!3%13¢
In addition, blocking axonal transport of injury-induced
DRG Ca,a,8, subunit to the central presynaptic termi-
nals diminishes tactile allodynia in nerve injured ani-
mals, suggesting that elevated DRG Ca,a,6, subunit
contributes to neuropathic allodynia, even though a
postsynaptic mechanism can not be completely ruled
out.?>?*13¢ Interestingly, the Ca,a,8, subunit (and the
Ca,a,98,, but not Ca,a,06, and Ca,,0,, subunits) is the
binding site for gabapentin,®”'*” which has anti-allo-
dynic/hyperalgesic properties in patients and animal
models with unknown mechanisms,'?!!3138-143 Be_
cause injury-induced Ca,a,8, expression correlates with
neuropathic pain development and maintenance, and var-
ious calcium channels are known to contribute to spinal
synaptic neurotransmission’>'**~'*° and DRG neuron
excitability,®®'*°~'5! injury-induced Ca,a,8, subunit up-
regulation may contribute to the initiation and mainte-
nance of neuropathic pain by altering the properties
and/or distribution of VGCC in the subpopulation of
DRG neurons and their central terminals, therefore mod-
ulating excitability and/or synaptic neuroplasticity in the
dorsal horn. This is supported by findings from preclin-
ical studies indicating that intrathecal antisense oligonu-

cleotides against the Ca,a,6, subunit can block nerve
injury-induced Ca, @, 8, upregulation and prevent the on-
set of allodynia'>* and reserve established allodynia.'*®

Both gabapentin and pregabalin are structural deriva-
tives of the inhibitory neurotransmitter GABA although
they do not bind to GABA,, GABA_, or benzodiazepine
receptors, or alter GABA regulation in animal brain
preparations.'>* Binding of gabapentin and pregabalin to
the Ca,a,6; subunit of VGCC results in a reduction in
the calcium-dependent release of multiple neurotransmit-
ters,'*!'>* leading to efficacy and tolerability for neuro-
pathic pain management.'*!

Gabapentin

Gabapentin is approved by the FDA for postherpetic
neuralgia, neuropathic pain, and partial seizures'>>~'%’
(Table 1). Several studies also suggest a clinical role for
restless leg syndrome,'*® general anxiety,'”® and general
neuropathic pain.'*! In common practice, gabapentin is
used as a first-line agent to treat neuropathic pain from
central origin (such as stroke or spinal cord injury) or
from peripheral origin (such as peripheral neuropathy or
radiculopathy). Despite its role and ubiquity, several
controlled trials demonstrate a low responder rate of
approximately 32%.'>

Gabapentin has inherent pharmacokinetic limitations;
the half-life of gabapentin is short, and therefore admin-
istration must be frequent. In addition, gabapentin is
absorbed actively via absorption pumps located in the
upper gastrointestinal tract. Therefore, conventional sus-
tained-release formulations, where drug release is pro-
longed and occurs throughout the gastrointestinal tract,
would simply decrease the bioavailability of the drug.'®
Therapeutic doses and responses vary among patients
and prediction of the ultimate desired doses is exceed-
ingly difficult. Furthermore, most gabapentin absorption
is nonlinear (i.e., as the dose is increased, the bioavail-
ability decreases).'®~162

The FDA has approved gabapentin at a dose of up to
1,800 mg/day. This drug is frequently used off-label for
the treatment of other neuropathic pain conditions, in-
cluding painful diabetic peripheral neuropathy and radic-
ulopathy, at higher doses up to 3,600 mg/day.'#!-163-1%4 1t
has been suggested that gabapentin may be effective for
the treatment of chronic pain of any etiology, including
musculoskeletal headache, cervical pain, neuropathic
pain, lumbar pain, or multiple pains, such as fibromyal-
gia'®1% (Table 2). Although gabapentin is well toler-
ated in studies, a statistically significant incidence of
sedation, lightheadedness, and dizziness is noted when
compared to control patients.'®®

Combinational treatment of gabapentin with other pain
medications for pain management has been tested in
numerous clinical trials. Combination treatment of gaba-
pentin and morphine in an animal model of neuropathic
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pain results in a significant increase in the inhibitory
effect of morphine on the dorsal horn neural response
to peripheral stimulation,'®” providing preclinical evi-
dences to support that combination therapies with gaba-
pentin may have clinical benefits in chronic pain man-
agement. A crossover study involving 57 patients with
neuropathic pain demonstrated improved clinical out-
comes when patients received a combination of mor-
phine and gabapentin versus monotherapy.'®® A larger
study with 338 patients demonstrated that co-administra-
tion of gabapentin and prolonged-release of oxycodone
has a clinically meaningful effect in patients with painful
(diabetic) neuropathy.'®’

Gabapentin extended-release

A gabapentin extended-release (ER) has been devel-
oped. Gabapentin ER was constructed using polymer-
based AcuForm technology (Depomed, Inc., Menlo
Park, CA). When taken with a meal, the tablet is retained
in the stomach for up to 8 h and the drug is gradually
released over 10 h to the small intestine, its optimal site
of absorption.'®*'”? This prolonged release was designed
to provide similar or improved systemic exposure as
compared with the immediate release formulation.

In an exploratory study, the daily exposure provided
by less frequent gabapentin extended-release dosing
(once- and twice-daily) was found not to be statistically
different from that provided by gabapentin immediate-
release, administered more frequently (three times a day
[TID]). Gabapentin ER once-daily dosing was found to
produce higher maximum plasma concentrations com-
pared with the TID gabapentin immediate-release regi-
men and twice-daily gabapentin ER dosing was found to
result in less fluctuation in plasma concentrations.'”!

A recent randomized, double-blinded, placebo-con-
trolled study evaluated gastric-retentive gabapentin in
158 individuals who had chronic pain from post-herpetic
neuralgia for at least 3 months. Patients were given 1,800
mg gabapentin ER once daily in the afternoon or 600 mg
in the morning with 1,200 mg in the afternoon (twice-
daily dosing) or placebo. Efficacy outcomes included
changes from baseline on the pain intensity numeric
rating scale (average daily pain) and average daily sleep
interference score. The authors found statistically signif-
icant reductions in pain scores at all time points and as
early as week 1 post-treatment in the gabapentin ER
twice-daily group compared with the placebo group. But
there was no significant reduction in pain scores in the
once-daily gabapentin ER group compared with the pla-
cebo control, although a trend was noted. It was con-
cluded that although ideal, once-daily gabapentin ER
dosing may result in plasma levels that fall below the
therapeutic range before the end of the 24-hour dosing
period. Overall, the proportion of responders with at least
a 50% reduction in pain score in the gabapentin ER
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twice-daily group (28.8%) was comparable with that re-
ported in the immediate-release gabapentin studies
(32.2%)"°° and in the pregabalin studies (150 mg/day,
three times a day [26%], or 300 mg/day three times a day
[28%]1).'7* The incidence of adverse events was not sta-
tistically different between the placebo group and either
of the gabapentin ER groups (once- or twice-daily), and
it did not appear to be dose-dependent.'”?

XP13512: Gabapentin enacarbil

A novel pro-drug of gabapentin, XP13512/GSK
1838262 ((*)-1-([(a-isobutanoyloxyethoxy)carbonyl]-
aminomethyl)-1-cyclohexane acetic acid) was recently
developed. This drug has enhanced absorption in the
large intestine, allowing an extended-release formula-
tion.!”* Four clinical studies (two immediate-release [IR]
formulation studies and two extended-release [XR] for-
mulation studies) have evaluated the bioavailability of
the drug. In the first IR study, XP13512 was adminis-
tered to healthy adults. Five groups of 10 subjects were
randomized to receive the pro-drug or placebo in a dou-
ble-blind fashion with five ascending pro-drug/placebo
doses (200, 400, 800, 1,200, and 1,400 mg). Maximum
blood gabapentin concentrations were noted at 2.5 h
postadministration. Bioavailability was consistently high
(>67%) across all doses. In the second IR study, twice
daily dosing (350 mg—2,100 mg) was given. Steady state
concentrations of XP13512 were found proportional to
the oral dose range. In addition, the bioavailability
of gabapentin from XP13512 was consistently high
(>72%) across the dose range. Blood concentrations of
the intact pro-drug after oral dosing were low. In the first
XR study, plasma exposure to gabapentin was higher
post-XR treatment than after an equimolar dose of oral
gabapentin. The time to maximum concentration (T-
max) of gabapentin was substantially greater in the sub-
jects given XP13512 than in subjects given oral gabap-
entin. In another XR study, plasma gabapentin was
proportional to the XP13512 dose over the range studied
(300 mg—1200 mg); bioavailability was increased in the
presence of food. Sustained delivery was noted at all
dose levels. Overall, both IR and XR formulations of
XP13512 were well tolerated without serious adverse
events. Minor adverse events reported included dizzi-
ness, headache, and sedation. Minor event reporting was
similar for oral gabapentin, except for increased dizzi-
ness in the IR formulation of XP13512, perhaps due to
rapid absorption. The XR formulation, although with
higher peak gabapentin concentrations than oral gabap-
entin, actually had similar adverse events compared with
oral gabapentin.'™

Given its increased absorption and more predictable
gabapentin exposure, its reduced inter-patient variability,
and its reduced-dosing frequency, XP13512 may become
an important option in our toolbox of upcoming neuro-



CALCIUM CHANNEL DRUGS IN TREATING CHRONIC PAIN 687

pathic agents. This novel extended-release pro-drug
would be ideal for patients requiring prolonged clinical
exposure, such as patients with restless leg syndrome,
using a single daily dose. Use of the XR formulation may
dramatically improve treatment compliance.

GlaxoSmithKline announced results from a phase II
clinical trial of XP13512 for painful diabetic neurop-
athy in adults in April 2009 (Phase II Results for
GSK1838262 [XP13512] Reported for Neuropathic Pain
Associated with Diabetic Peripheral Neuropathy; Medi-
cal News Today; article date, 4/29/2009; http://www.
medicalnewstoday.com/articles/148026.php). There were
421 patients who were enrolled in a 14-week, double-
blind, placebo-controlled study and were randomized to
receive either 1,200 mg/day, 2,400 mg/day, or 3,600
mg/day of XP13512 in divided doses twice-daily; 300
mg/day pregabalin as an active control in divided doses
three times daily, or a placebo. The primary endpoint
was a change from baseline on the Pain Intensity-Nu-
merical Rating Scale (PI-NRS). Both the pregabalin ac-
tive control and XP13512 failed to show a statistically
significant benefit when compared with a placebo. These
results may be due to an unusually high placebo re-
sponse. Therefore, efficacy conclusions are difficult to
draw. XP13512, at all doses, was well tolerated in the
study. Dizziness and somnolence were the most common
reported adverse events.

The efficacy of XP13512 was also recently tested in a
randomized, double-blind, placebo-controlled study in a
population of patients with moderate-to-severe primary
restless leg syndrome.'”> There were 222 patients who
were randomized to 1,200 mg/day of XP13512 once-
daily or a placebo, and 192 patients completed the study.
At week 12, there was a greater improvement in inter-
national restless leg syndrome scores. Significant treat-
ment effects were noted as early as 1 week, the earliest
time point measured, in the treatment group. More pa-
tients treated with XP13512 (76%) were responders
compared with placebo (39%) (p < 0.0001). The medi-
cation was generally well tolerated; mild-to-moderate
side effects, including somnolence and dizziness were
reported.'”

Pregabalin

Pregabalin, S-enantiomer of racemic 3-isobutyl GABA,
is a second-generation anticonvulsant and structurally
similar to gabapentin. The binding affinity of pregabalin
for the Ca, ,0, subunit, however, is 6 times greater than
that of gabapentin, which makes pregabalin more clini-
cally effective at lower doses.'’® Pregabalin is approved
in the United States and Europe for the treatment of
neuropathic pain associated with diabetic peripheral neu-
ropathy and postherpetic neuralgia, and epilepsy as an
add-on agent'’’"'8" (Table 1). In addition, pregabalin

was approved by the FDA in 2007 as the first drug for the
treatment of fibromyalgia'®' (Table 1).

Pregabalin is well tolerated, has predictable absorption
across the gastrointestinal tract, and has minimal drug-
drug interactions.'®* Clinical trials have been conducted
to examine the efficacy of pregabalin in other chronic
pain conditions (Table 2). At least seven published pro-
spective, randomized clinical trials have documented its
efficacy in postherpetic neuralgia and painful diabetic
peripheral neuropathy with improvements in pain inten-
sity scores, decreased sleep interference, and secondary
outcome improvements.'®* The effects of pregabalin on
patients with fibromyalgia are a current focus. These
were first published in 2005'® in an 8-week multicenter
efficacy and safety clinical trial. Pain intensity, sleep,
fatigue, and quality of life were measured outcomes.
Pregabalin (at 450 mg/day) significantly reduced pain
intensity on a 0 to 10 point scale as compared with a
placebo (p = 0.001). Pregabalin (at doses of 300 mg/day
and 450 mg/day) was reported to statistically improve
sleep, fatigue, and global measures of change. At 450
mg/day, pregabalin also improved other secondary out-
comes associated with health-related quality of life as
measured in the Short Form-36 (SF-36) Health Survey.
Adverse events were mostly mild, and the most fre-
quently reported adverse events were dizziness and som-
nolence, although weight gain and peripheral edema
were also reported.'®?

Pregabalin was also studied in combination therapy for
pain management. It was used in a combinational treat-
ment of fibromyalgia'®* in an open-label, 12-week study
in 19 female patients already receiving therapy with
quetiapine (76 mg/day). At the dose range from 75 mg/
day to 300 mg/day, depending on the patient’s tolerabil-
ity, pregabalin was found to statistically improve the
physical component of the SF-12 Health Survey, as well
as the pain and tiredness in the awakening subscales of
the fibromyalgia impact questionnaire. Six of 19 patients
withdrew from the study, including 3 of them due to side
effects.'®*

A multicenter study involving more than 700 patients
evaluated the efficacy and safety of pregabalin in patients
with fibromyalgia.'®> Patients were given 300, 450, or
600 mg/day in twice-daily dosing schedules for 13
weeks. All patients treated with pregabalin had statisti-
cally improved pain scores and patient global impression
of change scores as compared with placebo treatments.
Statistically significant improvements in secondary out-
comes measuring sleep were also reported. Side effects
were mild to moderate and the most frequently reported
side effects were dizziness, somnolence, headache, infec-
tion, and weight gain. This efficacy and safety was similarly
documented in another recently published trial.'"®® A recent
long-term multicenter double-blind, placebo-controlled ran-
domized discontinuation trial (FREEDOM) in the fibro-
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myalgia population demonstrated the durability (mainte-
nance of response with pregabalin treatment relative to
placebo) of pregabalin for this indication.'®” In this trial,
individually-determined optimal pregabalin doses were
determined with the hypothesis that the therapeutic re-
sponse would persist longer. The trial included a 6-week,
open-label pregabalin-treatment phase followed by a 26-
week, double-blinded treatment with pregabalin or a pla-
cebo. Patients treated with pregabalin had significantly
delayed time to loss of therapeutic response, defined as
<30% reduction in pain from open-label baseline, versus
patients receiving a placebo (p < 0.0001). Half of the
placebo group had loss of therapeutic response by day
19, but half of the pregabalin group retained therapeutic
effect and had not lost response by the end of the trial. At
the end of the 26-week, double-blind treatment phase,
61% of the placebo patients met loss of therapeutic re-
sponse criteria versus 32% of pregabalin-treated patients.
One contemporary commentary proposes a fibromyalgia
treatment strategy combining pregabalin with memantine
in the clinical trial.'®® The latter is proposed as an agent
that may slow down the loss of cephalic gray matter
commonly observed as a comorbidity in chronic pain
states.'89~194
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