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Introduction
The duocarmycins (1 and 2)1 belong to a small family of natural products (Figure 1) that also
include yatakemycin (3)2 and CC-1065 (4).3 Their exceptionally potent cytotoxic activity is
derived from their ability to bind and alkylate DNA in AT-rich regions of the minor groove.
4-8 This family of natural products incorporates a remarkable set of molecular features
integrated into compact structures capable of simultaneously expressing multiple functions.9

Much like their predecessors distamycin and netropsin, the overall curvature and shape of the
molecules leads to their preferential binding in the narrower, deeper, AT-rich minor groove
where stabilizing van der Waals contacts are maximized (shape-selective recognition).8-11 The
alkylation subunit vinylogous amide conveys a remarkable stability to a cross-conjugated and
otherwise reactive cyclopropane. We have suggested that the disruption of this vinylogous
amide conjugation by way of a DNA minor groove binding-induced conformational change
brings the cyclopropane into conjugation with the cyclohexadienone activating it for
nucleophilic attack, and provides the catalysis for the DNA alkylation reaction (shape-
dependent catalysis, Figure 2).8,12,13 Significantly, these compounds are relatively unreactive
until they reach their biological target, where they are selectively activated for DNA alkylation
(target-based activation).14 Unique to this class, this activation occurs without a chemical
change or reaction of the molecule, rather it occurs simply through a binding-induced
conformational change in the compound. Studies that define the key relationships between
structure and reactivity and quantitate the magnitude of these effects are detailed herein.

Just as important as their unique method of activation is a parabolic relationship between
intrinsic reactivity and biological potency that has emerged from studying the natural products
and numerous synthetic analogues (Figure 3).15 Presumably this reflects the requirement for
sufficient stability for the compounds to reach their biological target balanced against the need
for sufficient reactivity to efficiently alkylate DNA once they do. Establishment of this
parabolic relationship defined what this optimal balance of reactivity and stability is for this
class of natural products and key studies designed to define this parabolic relationship and
exploit its use are also reviewed herein. Combined, these studies highlight remarkable
fundamental relationships between structure, reactivity, and biological potency embodied in
this class of natural products.
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Importance and Role of the Vinylogous Amide: Structure versus Reactivity
and Reaction Regioselectivity

The synthesis, reactivity comparison, and correlation with X-ray structures of a key series of
alkylation subunit analogues established the magnitude and role of the vinylogous amide
stabilization, revealed the stereoelectronic alignment of the reacting cyclopropane that dictates
the regioselectivity of ensuing nucleophilic additions, and defined their dominant role in
controlling the chemical reactivity and regioselectivity for this class of natural products.
Moreover, their side-by-side comparison provides a depiction of the structural changes and
reactivity effects that accompany a DNA binding-induced conformational change in 1-4 and
indicates that they are of a magnitude to account for catalysis of the DNA alkylation reaction.

Thus, X-ray crystallographic studies of a structurally related and progressive series of 1,2,9,9a-
tetrahydrocyclopropa[c]benz[e]indol-4-one (CBI)a analogues afforded information regarding
the extent of vinylogous amide conjugation (c bond length), the disposition of the attached acyl
groups (χ1 dihedral angle), the orbital alignment of the cyclopropane bonds, and their intimate
relationship with both the stability of the molecule and the regioselective addition of
nucleophiles to the cyclopropane. This series examined the effects of increasing the C-ring size
from a 5-membered ring (CBI) as found in the natural products to a 6- and 7-membered ring
system (2,3,10,10a-tetrahydro-1H-cyclopropa[d]benz[f]quinol-5-one (CBQ)16 and
1,2,3,4,11,11a-hexahydrocyclopropa[c]naphtho[2,1-b]azepin-6-one (CNA),17 respectively),
Figure 4.

The reactivity increases as measured by solvolysis across the series are remarkable (>104)
despite the subtle structural changes; CBQ16 and especially CNA17 exhibit substantial
reactivity at pH 7 whereas both CBI and 8 are stable at this pH, Figure 4. Beautifully reflecting
this remarkable increase in reactivity, the c bond lengths smoothly increase across this series
(1.390, 1.415, and 1.428 Å) reflecting the progressive loss in vinylogous amide conjugation
(Figure 5). Tracking with this increase in reactivity and loss of vinylogous amide stabilization,
the χ1 dihedral angles progressively increase (21°, 34°, and 86°) across the series as well,
mimicking the structural and reactivity changes imposed by a DNA binding-induced
conformational change that increases the χ1 dihedral angle. Just as significant, the composite
bond lengths of the cyclopropane increase as one progresses across the series, reflecting their
weaker bond strengths, their increasing reactivity, and their increasing conjugation with the
activating cyclohexadienone system. Additionally and unique to this series, the cyclopropane
alignments with the cyclohexadienone π-system undergo remarkable changes as well, dictating
the regioselectivity of nucleophilic attack.

The X-ray crystal structure of N-CO2Me-CBI (>20:1 favoring ring-opening attack at C9 vs
ring-expansion attack at C9a) reveals a favorable overlap between the orbital of the
cyclopropane 8b-9 bond and the developing π-system of the phenol solvolysis product, whereas
the orbital of the 8b-9a bond is much less effectively aligned to become a part of the developing
aromatic π-system. The lengths of these two bonds reflect this variation in alignment, with that
of the cleaved and stereoelectronically aligned 8b-9 bond (1.544 Å) being longer and weaker
than the 8b-9a bond (1.521 Å). N-Boc-CBQ shows little preference for regioselective addition
(3:2 ring-opening attack at C10 vs ring-expansion attack at C10a) and contains a cyclopropane
that is nearly ideally conjugated and aligned with the π-system. Both cyclopropane bonds are
perfectly bisected by the cyclohexadienone π-system, suggesting that the slight preference for
addition to the least-substituted carbon is due to preferential cleavage of the longer and
inherently weaker 9b-10 bond (1.543 Å), in addition to a potential steric preference for SN2
addition to the least-substituted C10 carbon. Analysis of N-CO2Me-CNA reveals a situation
similar to, but reversed from that of N-CO2Me-CBI. The bond to the more-substituted carbon
(10b-11a) is now better aligned with the developing π-system of the product phenol, and it is
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now the longest (1.565 Å) and weakest of the cyclopropane bonds. These observations correlate
beautifully with the observed reaction regioselectivity of the CNA alkylation subunit (<1:20
ring-opening attack at C11 vs ring-expansion attack at C11a), which is completely reversed

aAbbreviations:

DSA  
duocarmycin SA

DA  
duocarmycin A

epi-DA  
epi-duocarmycin A

CBI  
1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one

CPI  
1,2,8,8a-tetrahydrocyclopropa[c]pyrrolo[3,2-e]indol-4-one

MeCPI  
7-methyl-1,2,8,8a-tetrahydrocyclopropa[c]pyrrolo[3,2-e]indol-4-one

CI  
1,2,7,7a-tetrahydrocyclopropa[1,2-c]indol-4-one

CNA  
1,2,3,4,11,11a-hexahydrocyclopropa[c]naphtho[2,1-b]azepin-6-one

CBQ  
2,3,10,10a-tetrahydro-1H-cyclopropa[d]benzo[f]quinol-5-one

iso-CBI  
1,2,9,9a-tetrahydrocyclopropa[c]benzo[f]indol-8-one

CMCFI  
6-carbomethoxy-1,2,8,8a-tetrahydrocyclopropa[c]furano[3,2-e]indol-4-one

CPyI  
methyl 1,2,9,9a-tetrahydrocyclopropa[c]pyrido[3,2-e]indol-4-one-7-carboxylate

MCBI  
7-methoxy-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one

CCBI  
7-cyano-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one

MCCBI  
5-methoxycarbonyl-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one

HMCBI  
5-hydroxymethyl-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one

CPzI  
7-methyl-1,2,8,8a-tetrahydrocyclopropa[c]pyrazolo[4,3-e]indol-4-one

CBIn  
1,2,9,9a-tetrahydro-1H-cyclopropa[c]benz[e]inden-4-one

iso-DSA  
6-methoxycarbonyl-1,2,8,8a-tetrahydrocyclopropa[c]pyrrolo[2,3-g]indol-4-one

MeCTI  
7-methyl-1,2,8,8a-tetrahydrocyclopropa[c]thieno[3,2-e]indol-4-one

iso-MeCTI  
6-methyl-1,2,8,8a-tetrahydrocyclopropa[c]thieno[2,3-e]indol-4-one

TMI  
5,6,7-trimethoxyindole-2-carboxylate
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from that observed with CBI. Notably, in all instances and contrary to an early
mischaracterization,18 the ring expansion cleavage of the cyclopropane proceeds with clean
inversion of stereochemistry at the reacting center indicative of a SN2, not SN1, nucleophilic
addition.19 Thus, in addition to providing insights into their reactivity, the studies highlight the
importance of the fused 5-membered C-ring, which serves to enforce a stereoelectronically-
controlled nucleophilic addition to the least substituted cyclopropane carbon.

Additional modifications to the structures have provided further insight into the importance of
the vinylogous amide and the linking amide (Figure 6).20 Removing the carbonyl of the linking
amide in CBI-TMI21 (9) afforded a compound 10 that failed to alkylate DNA even under
forcing conditions (37 °C, 14 days, 10-1 M agent vs 25 °C, 24 h, 10-6 M for 9), that was
biologically inactive displaying cytotoxic activity that was >105-fold less potent than 9, and
that exhibited little solvolysis requiring exposure to pH 1 to detect a measurable reactivity. In
addition to establishing the fundamental importance of the linking amide, the comparisons
highlight the truly remarkable stability provided to this unusual ring system by full vinylogous
amide conjugation that in turn is reduced (tuned) by N-acylation as found in the natural product
structures. Its disruption by a DNA binding-induced conformational change is no longer
possible with 10, accounting for its complete lack of DNA alkylation. The disparate behavior
of 9 versus 10 not only revealed that the linking amide plays an important role activating the
alkylation subunit for nucleophilic attack, but that it is critical to catalysis of the DNA alkylation
reaction.

Equally revealing was examination of 1,2,9,9a-tetrahydro-1H-cyclopropa[c]benz[e]inden-4-
one (CBIn, 11, Figure 7),22 which contains a carbocyclic skeleton lacking the nitrogen crucial
for stability of the alkylation subunit. Consistent with intuitive expectations, CBIn proved
sufficiently stable for characterization, but remarkably reactive toward nucleophilic addition.
CBIn is 3200× less stable than its CBI counterpart at pH 3 and greater than 103-104× more
reactive than CBI at pH 7, where CBI is stable. Solvolysis studies conducted over a pH range
of 2-12 revealed no acid concentration dependence between pH 4-12 indicating that the reaction
is uncatalyzed (versus acid-catalyzed) in this pH range, and suggesting that there is no basis
for invoking an acid-catalyzed activation18,23 of these compounds when bound to DNA (pH
7.4, 0.0001-0.00004% protonation of phosphate backbone).

Additional insights into the behavior of this class of natural products was recently reported
with the examination of 12, which lacks the characteristic vinylogous amide stabilization and
is incapable of activation by C4-carbonyl protonation (Figure 8). Preparation of 12 revealed
that spirocyclization can occur through deprotonation of the indole NH, rather than the
conventional phenol, but provides an intrinsically much more reactive compound.24 It also
exhibits a rate of solvolysis that is independent of pH. Although more reactive than its natural
product counterpart, 12 exhibits an identical DNA alkylation selectivity as duocarmycin SA
and a reduced, but significant level of biological activity (L1210 IC50 = 5 nM).

These observations reaffirm several key features shown to contribute to the DNA alkylation
selectivity of duocarmycin SA (DSA). First, the DNA alkylation selectivity is derived from
their intrinsic non-covalent binding selectivity within the minor groove of DNA,10,13,25 and
not from the source of alkylation catalysis, which differs between 1 and 12. Like 12, derivatives
that lack the C4-carbonyl,10,25 analogues in which the C4-carbonyl has been relocated,26 and
those that utilize an alternative mechanism of catalysis27 exhibit an indistinguishable DNA
alkylation selectivity, albeit proceeding at altered rates. Second, the comparable behavior of
1 and 12 indicates that the alkylation selectivity cannot originate from a sequence-dependent
DNA backbone phosphate protonation18,23,28 of the C4-carbonyl of 1, as this feature is not
present with 12.
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Although this alternative spirocyclization plays no present day role in the behavior of
duocarmycin SA, it is possible that it is related to an evolutionary origin of 1 and its related
natural products, Figure 9. Since it is reasonable to assume that the p-spirocyclization (through
displacement of an activated primary alcohol) occurs as the last step of the biosynthesis of
duocarmycin SA, it is tempting to suggest that such compounds first emerged without the
ability to undergo p-spirocyclization, closing to the cyclopropane with participation of the
indole NH as in 13 instead (Figure 9). Evolutionary pressures may have improved on this by
subsequent aryl hydroxylation to afford the present day phenol precursors where the resulting
increase in potency (10 pM vs 5 nM) would have provided the producing bacteria with a
beneficial growth advantage.

A provocative indication that there is perhaps merit to this proposal emerges from the
examination of the correlation between biological potency (cytotoxic activity, -log IC50) and
chemical stability (-log ksolv) where 13, like 12, would be projected to lie at an early stage of
Nature’s steps in the optimization of this class of DNA alkylating agents, Figure 10.

Fundamental Parabolic Relationship Between Reactivity and Biological
Activity

A wide variety of synthetic duocarmycin SA analogues have been prepared and studied.29 The
1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one (CBI) alkylation subunit has been the
most extensively examined, due to the relative ease of preparation and its impressive properties
compared to the natural products.30 Initial studies described the effects of C7-substitution,
which is para to the C4-carbonyl. The electronic effects of groups at this position were expected
to probe their impact on reactivity and to address the question of whether protonation of the
carbonyl was important for activation of these agents. Comparison of the parent unsubstituted
CBI subunit with two derivatives, 7-cyano-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-
one (CCBI, 14)31 and 7-methoxy-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-one
(MCBI, 15,32 Figure 11) established that the electronic nature of C7-subsituents did not have
a significant effect on the biological potency or intrinsic reactivity.

Despite the opposing electronic nature of the substitutents found in CCBI and MCBI, only a
2-fold difference in solvolysis reactivity between the N-Boc derivatives was observed. The
cytotoxic activity mirrors this trend, with N-Boc-CCBI being only 4-fold more potent than N-
Boc-MCBI, and the full length agents (TMI, indole2) were essentially indistinguishable from
each other. In fact, a Hammett analysis of the acid-catalyzed solvolysis of MCBI, CBI, and
CCBI revealed a very small ρ value (-0.30 at pH 3), indicative of little substituent effect on the
reactivity.

More interestingly, both substituents had a beneficial impact on the DNA alkylation properties
of the fully elaborated analogues. The DNA alkylation properties (rate, efficiency, and
selectivity) of such MCBI and CCBI derivatives were essentially indistinguishable, but both
alkylated DNA at rates and efficiencies that exceed the CBI derivatives. This suggested that it
is not the electronic nature of the substituent, but rather the simple presence of a C7-substituent
that serves to improve the DNA alkylation rate and efficiency. We have suggested that this is
the result of the substituent extending the rigid length of the agent and increasing the extent of
the DNA binding-induced conformational change when bound in the minor groove.33

Consistent with this interpretation, incorporation of an electron-withdrawing C5-substituent
(CO2Me, 16) subtly increased the intrinsic stability, but slowed the rate and efficiency of DNA
alkylation, whereas the corresponding C7-derivative (17) displayed an analogous subtle
decrease in reactivity, but displayed the increased rate and efficiency of DNA alkylation
observed with both 14 and 15.34
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In contrast to A-ring substituents, N2 substitutents have a huge impact on the properties of the
molecules by virtue of the direct impact on the vinylogous amide. In addition to those
highlighted in Figures 6 and 7, early studies enlisting a series of modified acyl derivatives of
CBI indicated that their impact on reactivity was extraordinarily large and linear in a Hammett
analysis (ρ = -3.0, r = 0.983) with the stronger electron-withdrawing substituents imparting the
greater stability, and that this increased stability directly correlated with a near linear and
equally large increase in cytotoxic potency (r = 0.979), Figure 12.35

Until recently, the relationship between chemical stability and biological potency was restricted
to the examination of such derivatives that possessed sufficient reactivity to alkylate DNA and
was interpreted to reflect the ability of the chemically more stable derivatives to more
effectively reach their biological target (DNA).36 However, as the number of such compounds
examined increased, the plot of such a correlation more closely resembled a parabolic
relationship, but one in which the derivatives lying on the “too stable” side of the relationship
were scarce. Consequently, in our efforts to define the full nature of this relationship, we began
examining CBI derivatives that might accurately reflect the behavior of less reactive
derivatives. A unique series of N-aryl CBI derivatives, in which the electronic properties of
the aryl p-substituent could be systematically varied to alter the reactivity, were found to be
remarkably stable relative to the typical N-acyl derivatives.15 This reactivity followed a well-
defined correlation with σp (ρ= 0.17) in which electron-withdrawing substituents enhance and
electron-donating substituents decrease the reactivity (solvolysis at pH 2, Figure 13).

X-ray structures of the full series of derivatives revealed that increasingly electron-withdrawing
p-substituents effectively increase the diagnostic c bond length, decrease the d bond length,
decrease the f bond length, and increase the χ1 dihedral angle, all of which indicate an effect
of diminishing the conjugation of the vinylogous amide (Figure 14), leading to increases in
reactivity. Conversely, the presence of electron-donating p-substituents had the opposite effect,
effectively increasing the conjugation of the vinylogous amide and further stabilizing the
alkylation subunit to nucleophilic attack. Most significantly, the correlation of reactivity with
cytotoxic activity is now reversed with the more reactive derivatives in this unusually stable
series exhibiting the more potent activity. Beautifully, this series served to complete the
parabolic relationship between intrinsic reactivity (stability) and cytotoxic activity providing
the data shown in the shaded box in Figure 14.

In addition to the impact of attached substituents, there are structural features embedded in the
skeletons of the natural products that also impact the reactivity of these compounds. It has been
suggested that an internal hydrogen bond between the pyrrole NH and the C4-carbonyl of
duocarmycin SA serves to activate the agent for nucleophilic attack.37 To probe this feature,
iso-duocarmycin SA (iso-DSA, 27) was prepared and evaluated. In addition to addressing this
question of H-bond activation, examination of this analogue would also serve to probe the
effects of incorporating a H-bond donor directed towards the floor of the minor groove, and
would determine whether a second vinylogous amide system would serve to further stabilize
or destabilize the alkylation subunit.38

Solvolysis studies revealed N-Boc-iso-DSA (26) to be slightly more reactive by a factor of two
than its parent N-Boc-DSA (8). As a result, the iso-duocarmycin SA series was predictably
less potent than the natural product, Figure 15. N-Boc-iso-DSA (26) was found to be 5-fold
less potent than its natural product counterpart, nicely reflecting the 2-fold difference observed
in the solvolytic reactivity and the same trend was observed for iso-duocarmycin SA (27).
When 26 was placed on the plot of reactivity versus potency and given the anomalously potent
activity of duocarmycin SA, its relative cytotoxic activity even more closely approached that
expected of a derivative exhibiting its relative reactivity (Figure 16).
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Thus, the enhanced reactivity of 26 versus 8 indicates that the putative internal H-bond of 8,
which has been removed in 26, does not contribute to the activation of the compound towards
nucleophilic addition. In addition, the incorporation of a second vinylogous amide in the
molecule does not further stabilize the reactive cyclopropane, which would lead to greater
potency and reduced solvolysis reactivity. In fact, the opposite appears to be true, suggesting
that the additional cross-conjugated and competing vinylogous amide destabilizes the
alkylation subunit.

Using the Parabolic Relationship: Rational Design of an Improved CC-1065
The parabolic relationship between reactivity and potency that emerged from these studies
provides the opportunity to rationally design analogues that would sit at or near the pinnacle
of the parabola, with a reactivity/potency relationship similar to that of duocarmycin SA. In
our efforts, a series of benzothiophene-based analogues were designed and evaluated.39

Intuitively, the replacement of the pyrrole NH of CC-1065 with the larger sulfur atom was
expected to release some of the ring strain inherent with the pyrrole, creating a ring system
closer in structure to that of CBI, and increasing the stability of the molecule. Additionally, the
increased electronegativity of sulfur versus the pyrrole nitrogen was expected to further
contribute to an increasingly stable alkylation subunit whose activity was expected to surpass
that of its parent compound CC-1065. These intuitive arguments were supported by
computational studies (AM1, MNDO) that predicted that the substitution of sulfur for NH in
the CPI structure would increase the stability of the alkylation subunit.

The synthesis and examination of 7-methyl-1,2,8,8a-tetrahydrocyclopropa[c]thieno[3,2-e]
indol-4-one (MeCTI, 30) and 6-methyl-1,2,8,8a-tetrahydrocyclopropa[c]thieno[2,3-e]indol-4-
one (iso-MeCTI, 31) confirmed these expectations.37 Solvolysis of N-Boc-MeCTI (30) and
N-Boc-iso-MeCTI (31) revealed two compounds whose stabilities (pH 3, t1/2 = 206 and 209
h, respectively) were substantially increased over that of their parent compound N-Boc-MeCPI
(29, t1/2 = 37 h). They also proved slightly more stable than N-Boc-DSA (8, t1/2 = 177 h) and
N-Boc-CBI (5, t1/2 = 133 h), making them among the most stable alkylation subunits explored
to date. Significantly, these compounds exhibited substantially increased biological potency
versus CC-1065 and its derivatives. The natural enantiomers of N-Boc-MeCTI (30, IC50 = 30
nM) and N-Boc-iso-MeCTI (31, IC50 = 25 nM) were 10-fold more potent than N-Boc-MeCPI
(29, IC50 = 330 nM) and 2-3-fold more potent than N-Boc-CBI (5, IC50 = 80 nM), beautifully
falling in line with expectations based on their relative solvolytic reactivities. This is illustrated
on the parabolic curve, where MeCTI and iso-MeCTI sit at or near the pinnacle of the
relationship, just below the anomalously potent DSA alkylation subunit (Figure 18).

MeCTI-PDE2 (28), the sulfur-based analogue of CC-1065 (4), displayed an identical DNA
alkylation selectivity relative to the parent compound, displaying the characteristic
enantiomeric differences. Significant in these comparisons is the observation that a single atom
change in the skeleton of the alkylation subunit structure of CC-1065 (NH→S) predictably
increased the stability of the natural product that in turn reliably led to a substantial increase
in its biological potency.

Conclusions
The small family of natural products that include the duocarmycins, yatakemycin, and CC-1065
incorporate a remarkable combination of molecular features integrated into their compact
structures controlling their DNA binding and ensuing alkylation reaction and their resulting
exceptionally potent biological activity. The systematic total synthesis of an extensive series
of analogues containing deep-seated structural changes have been utilized to define subtle
relationships between structure, reactivity, reaction regioselectivity and biological potency
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using fundamental chemical principles. Superimposed on a skeleton that selectively binds
DNA minor groove AT-rich sequences (shape-selective recognition), the compounds
incorporate a spirocyclopropylcyclohexadienone whose reactivity has been masked by a cross-
conjugated and remarkably stabilizing vinylogous amide, taming what would ordinarily be an
exceptionally reactive electrophile. We have suggested that disruption of this vinylogous amide
conjugation through a DNA binding-induced conformational change activates the
cyclopropane for a stereoelectronically-controlled nucleophilic attack serving as the catalysis
for the DNA alkylation reaction (shape-dependent catalysis). These studies highlight the
remarkable design Nature utilized to mask a reactive electrophile that is subsequently capable
of selective activation by a unique mechanism upon reaching its biological target (target-based
activation).

In addition to elucidating the mechanism of activation of these natural products, a detailed
understanding of the relationship between intrinsic reactivity and biological potency resulted
from studying analogues with deep-seated structural modifications. These studies defined a
fundamental parabolic relationship between chemical reactivity and biological potency
(cytotoxic activity) and identified the optimal balance between reactivity—stability, reflecting
a stability required to effectively reach their biological target in a biological milieu while
maintaining a sufficient reactivity to effectively alkylate DNA once they do. Remarkably, but
perhaps not surprisingly, duocarmycin SA and yatakemycin incorporate an alkylation subunit
that lies at the pinnacle of this relationship reflecting Nature’s exquisite optimization of their
DNA alkylation properties. Unique insights into Nature’s potential steps in this evolutionary
optimization were revealed with the discovery of an alternative, but less productive indole
N5H spirocyclization of duocarmycin SA lacking a C4-phenol. Finally, as a result of the
increased understanding of these compounds (reactivity vs potency), we described the rational
design of a synthetic alkylation subunit (CTI) incorporating a single skeletal atom change that
maintains the DNA alkylation properties of its parent natural product (CC-1065), but exhibited
a greater chemical stability and resulting increased biological potency. This remarkably stable
alkylation subunit analogue lies at the pinnacle of the parabolic relationship and constitutes
one of the most stable derivatives to be characterized to date.
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Figure 1.
Natural products and the DNA alkylation reaction.
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Figure 2.
Shape-dependent catalysis.
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Figure 3.
Parabolic relationship between reactivity and potency.
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Figure 4.
C-Ring analogues of CBI.
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Figure 5.
X-ray crystal structure data.
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Figure 6.
Importance of the linking amide.
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Figure 7.
CBI versus CBIn.
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Figure 8.
Alternate spirocyclization.

MacMillan and Boger Page 21

J Med Chem. Author manuscript; available in PMC 2010 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
Potential ancestral role of the alternative spirocyclization.
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Figure 10.
Plot of -log IC50 (L1210, cytotoxic activity) versus -log ksolv (pH 3) that includes the natural
products and a representative related compound illustrating the direct correlation between
stability and biological potency and highlighting Nature’s potential steps in the optimization
of this class of DNA alkylating agents.
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Figure 11.
A-Ring derivatives of CBI.
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Figure 12.
N2-Acyl derivatives of CBI.
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Figure 13.
Hammett plot of para substituted N-aryl-CBI derivatives.
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Figure 14.
Structural and reactivity effects of para substituted N-aryl-CBI derivatives.
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Figure 15.
N-Boc-iso-DSA and iso-duocarmycin SA.
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Figure 16.
Placement of N-Boc-iso-DSA on the parabolic curve.
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Figure 17.
Rationally designed analogues of CC-1065.
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Figure 18.
MeCTI and iso-MeCTI on the plot of reactivity versus potency.
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