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Abstract A common difficulty in mapping quantitative

trait loci (QTLs) is that QTL effects may show environment

specificity and thus differ across environments. Further-

more, quantitative traits are likely to be influenced by

multiple QTLs or genes having different effect sizes. There

is currently a need for efficient mapping strategies to account

for both multiple QTLs and marker-by-environment inter-

actions. Thus, the objective of our study was to develop

a Bayesian multi-locus multi-environmental method of

QTL analysis. This strategy is compared to (1) Bayesian

multi-locus mapping, where each environment is analysed

separately, (2) Restricted Maximum Likelihood (REML)

single-locus method using a mixed hierarchical model, and

(3) REML forward selection applying a mixed hierarchical

model. For this study, we used data on multi-environmental

field trials of 301 BC2DH lines derived from a cross between

the spring barley elite cultivar Scarlett and the wild donor

ISR42-8 from Israel. The lines were genotyped by 98 SSR

markers and measured for the agronomic traits ‘‘ears per

m2,’’ ‘‘days until heading,’’ ‘‘plant height,’’ ‘‘thousand grain

weight,’’ and ‘‘grain yield’’. Additionally, a simulation study

was performed to verify the QTL results obtained in the

spring barley population. In general, the results of Bayesian

QTL mapping are in accordance with REML methods. In

this study, Bayesian multi-locus multi-environmental anal-

ysis is a valuable method that is particularly suitable if lines

are cultivated in multi-environmental field trials.

Introduction

Detecting favourable exotic quantitative trait loci (QTLs)

and introducing them into elite lines could greatly enhance

breeding success. Tanksley and Nelson (1996) proposed an

advanced backcross QTL analysis combining QTL dis-

covery and variety development in a single step. Using

advanced backcross populations derived from a cross of an

elite cultivar with an exotic donor, it is possible to identify

superior exotic QTLs, whereas the number of negative

alleles from the unadapted material is reduced.

In order to map QTLs, the plant material is genotyped

by DNA markers and measured on agronomic traits in

multi-environmental field trials. In the following statistical
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analysis, significant associations between DNA markers

and phenotypic traits are determined. As quantitative traits

are influenced by multiple genes having effects of different

magnitudes, it is of primary interest in QTL mapping to

select the appropriate model and to estimate the effects and

locations of the QTLs (Broman and Speed 2002; Sillanpää

and Corander 2002). A common difficulty in QTL mapping

is that QTLs may show environment specificity, i.e., QTL

effects may significantly differ across environments (Kang

and Gauch 1996).

Several authors have examined multi-environmental

data in composite interval mapping (Jansen et al. 1995),

where selection of background markers is performed in

several steps. Usually, uncorrelated residuals, i.e., no

genetic (background) correlation among environments, are

assumed in these models. Tinker and Mather (1995)

implemented composite interval mapping to multi-envi-

ronmental data using the least-squares estimation (Haley

and Knott 1992). They included a test for QTL-by-envi-

ronment interaction and used partial regression coefficients

from background markers to control genetic variance due

to non-target QTLs. Recently, Yandell et al. (2007) pre-

sented a software package called ‘‘R/qtlbim’’ providing

Bayesian interval mapping by accounting for gene-by-

environment interaction. Verbyla et al. (2003) computed a

multiplicative mixed model for QTL-by-environment

interaction of the factorial analysis type. The mixed-model

method and the least-squares estimation were used by

Piepho (2000). In this study, the genetic correlation among

environments was also taken into account. In order to

consider genetic correlations, Jiang et al. (1999) used a

multi-trait approach of Jiang and Zeng (1995) and regarded

expressions of the same trait in different environments as

different traits. Fixed effects were pre-corrected by SAS

software prior to the QTL analysis. Also, Boer et al. (2007)

proposed a modeling approach of genotype-by-environ-

ment interactions accounting for genetic correlations

between environments and error structure within environ-

ments of F5 maize testcross progenies. A multi-locus

analysis was applied by Crossa et al. (1999). In this study,

partial least-squares regression and factorial regression

models were used utilizing genetic markers and environ-

mental covariables for studying QTL-by-environment

interaction. Korol et al. (1998) presented an approach

where the dependence of a putative QTL effect on envi-

ronmental conditions is expressed as a function of envi-

ronmental mean value of the regarded trait. This strategy

allows for considering QTL-by-environment interactions

across a large number of environments.

Concerning the known literature, a multi-locus QTL

mapping approach that simultaneously considers model

selection in multi-environmental data has not been fully

developed. Since the magnitude of QTL effects can depend

on the specific environmental conditions, it is important to

account for these effects in the model.

The objective of our research was to compare different

approaches of multi-environmental QTL detection consid-

ering Bayesian and Restricted Maximum Likelihood

(REML) methods: (i) REML single-locus analysis using a

mixed hierarchical model, (ii) REML multi-locus analysis

by a forward selection approach applying a mixed hierar-

chical model, (iii) Bayesian multi-locus mapping analyzing

one environment at a time, and (iv) Bayesian multi-locus

mapping in all environments jointly.

For this purpose, we used field data for an advanced

backcross BC2DH population derived from a cross of the

malting barley cultivar Scarlett with the wild barley

accession ISR42-8 from Israel (von Korff et al. 2006). In

order to verify the results obtained with the real dataset,

additionally a simulation study was performed. First, in a

REML single-locus analysis, a mixed hierarchical model

was computed in the Mixed procedure of the software

package SAS 9.1 (SAS Institute 2004). Then, the same

statistical model was applied by using a forward selec-

tion approach where the most significant marker of the

current one-dimensional search round was always taken

as a fixed cofactor in the model of the next estimation

round. Furthermore, we applied a Bayesian multi-locus

approach that was extended to handle multi-environ-

mental data. In this approach, only marker points were

considered as putative QTLs. In all cases, it was possible

to account for QTL effects in multiple environments.

This was compared to a Bayesian model where separate

single-environmental analyses were executed for one

environment at a time. In all analyses, we assumed the

absence of genetic (background) correlation among

environments.

Materials and methods

Real dataset of a spring barley population

A population with 301 BC2DH lines originating from the

cross of the German spring barley variety Scarlett with the

Israeli wild barley accession ISR42-8 was developed. The

BC2DH population was genotyped by 98 SSR markers.

Phenotypic evaluation of the traits ‘‘ears per m2’’ (Ear),

‘‘days until heading’’ (Hea), ‘‘plant height’’ (Hei), ‘‘thou-

sand grain weight’’ (Tgw), and ‘‘grain yield’’ (Yld) was

carried out under field conditions in unreplicated experi-

ments at four different locations during the seasons 2003

and 2004. Data on the parental lines were collected but, as

we considered the BC2DH lines for QTL mapping, not

included in the analysis. A detailed description is given in

von Korff et al. (2004, 2006).
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Simulation study

In the computer simulation, the real marker data of 301

BC2DH lines were used by imposing known simulated

genetic effects influencing the quantitative phenotype. For

the genetic effects, marker main, marker interaction

(crossover and non-crossover), and markers having both, a

main and an interaction effect, were simulated. The posi-

tions and effect sizes of the simulated markers are pre-

sented in Table 5. As in the field dataset, a population of

301 DH lines was assumed being cultivated in six different

environments. Normally distributed phenotypic values of a

trait with a heritability of 0.59 were simulated. In the

simulation, residuals were assumed to be independent (no

correlation structure) with a standard deviation of 1.2 [N(0,

1.2)] and variance was considered to be the same for all

environments. Also, no additional environmental effects

were generated.

QTL mapping strategies

In our study, we compared different approaches of multi-

locus multi-environmental QTL detection in the real and in

the simulated dataset:

(1) REML single-locus analysis

The single-locus analysis was performed with SAS 9.1

software (SAS Institute 2004) using REML method of the

Mixed procedure. Then, the applied mixed hierarchical

model was as follows:

Yijkm ¼ lþMi þ Lj Mið Þ þ Ek þMi � Ek þ em ijkð Þ

With phenotypic observations Yijkm, general mean l, fixed

effect Mi of the ith marker, random effect Lj(Mi) of the jth

BC2DH line nested in the ith marker, random effect Ek of

the kth environment, random interaction effect Mi * Ek of

the ith marker with the kth environment, and residue em(ijk)

of Yijkm.

In this analysis, the random factor Lj(Mi) can be inter-

preted as a genetic background effect. The residuals were

assumed to be identically and independently normally

distributed. For each marker, a value of F-statistic, used to

test the marker effect, is computed considering the residual

mean of squares as an error term. The marker-by-envi-

ronment interactions are tested by the value of t-statistic.

Missing marker data are handled by omitting each

observation with a missing marker value from the dataset.

Thus, the amount of phenotypic information is reduced due

to missing marker data.

The relative performance of the homozygous exotic

genotype (RP[Hsp]) was calculated by RP Hsp½ � ¼ Hsp�Hv
Hv �

100, where Hsp represents the least square mean of the

homozygous exotic genotype and Hv the least square mean

of the elite genotype.

The computing time was about 1 min for one trait of

both, the spring barley population and the simulated dataset

on a Pentium IV 2.0 GHz processor.

(2) REML multi-locus analysis using a forward selection

approach

The same mixed hierarchical model as described above

was applied here for stepwise variable selection in SAS

Proc Mixed. The stepwise variable selection strategy is

described in Sillanpää and Corander (2002) and has been

applied for example in Kilpikari and Sillanpää (2003). The

first round of forward selection procedure corresponds to

the single-locus analysis. Next, the marker with the most

significant effect (based on the P value of hypothesis test

Type III F-statistic) is chosen as a fixed cofactor in the

model of the following estimation rounds. Using this

extended model, the marker effects are estimated again.

This procedure is repeated until no further significant

markers can be found. The computing time for this method

was about 20 min for one trait of the real and of the sim-

ulated dataset.

(3) Bayesian multi-locus analysis using multi-environ-

mental data

Additionally, we performed Bayesian multi-locus QTL

mapping using multi-environmental data.

The statistical model for phenotypic trait values Yjk was

as follows:

Yjk ¼ lþ
Xn

i¼1

Mij þ Ek þ
Xn

i¼1

Mijk þ ejk

where l is the overall sample mean of the phenotypes, Mij

is the effect of the ith marker genotype of the jth line, Ek is

the effect of the kth environment, Mijk is the effect of the ith

marker genotype of the jth line in the kth environment (i.e.

genotype-by-environment interaction), and, n is the num-

ber of markers.

Residuals are assumed to be independently and identi-

cally normally distributed as ejk*N(0, r0
2), where

r0
2 = residual variance common to all environments.

In the Bayesian setting, we parametrized the statistical

model so that for each marker one genotype effect was

assigned a value of zero; thus, for each marker we only

needed to estimate one main effect Mij. Similarly, in each

environment for each marker, one environment-specific

genotype effect was assigned a value of zero, resulting in

one estimable coefficient Mijk at each environment. By

denoting the genotype (A or B) of line j at marker i with

Xij, the effects can be written as Mij ¼ bi1 Xij ¼ B
� �

and Mijk ¼ bik1 Xij ¼ B
� �

. The parameters bi and bik are
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interpreted as the difference of the main genotype effects

and the differences of environment-specific genotype

effects. Note, however, that unlike REML, this model is

still oversaturated. The prior densities of the unknown

marker effect differences in a K-environment model,

h = (b1,…, bn, b11,…, bnk), were specified following Xu

(2003); Hoti and Sillanpää (2006), where each effect hr,

r = 1,…, (K ? 1)n, in the statistical model is assigned a

zero mean normal distribution with its own variance

parameter rr
2 combined with Jeffreys’ scale invariant prior

p r2
r

� �
/ 1

r2
r
. The prior of the overall mean was p(l) � 1,

and the priors of the environmental effects were

p E r2
E

��� �
¼
Q
k

p Ek r2
E

��� �
, where pðEk r2

E

�� Þ is a normal dis-

tribution with zero mean and a common variance r2
E. The

variance of the environmental effects and the variance of

the residual term were assigned improper uniform priors,

p r2
E

� �
a 1 and p r2

0

� �
a 1; respectively.

In order to obtain Markov Chain Monte Carlo (MCMC)

samples of the joint posterior distribution of marker effects,

Gibbs sampling (Geman and Geman 1984) and Metropolis-

Hastings algorithms (Hastings 1970) were used. Here, we

give the fully conditional posterior distributions of the

environmental effects Ek and the effect variance rE
2. The

sampling distributions/updating steps of the remaining

parameters and handling of missing data are described in

Hoti and Sillanpää (2006). The fully conditional posterior

distribution of the environmental effect Ek is a normal

distribution with mean
PN

j¼1

ej;k N þ r2
0

r2
E

� ��1

and variance

r2
0 N þ r2

0

r2
E

� ��1

, where N is the total number of lines. For the

effect variance r2
E, the fully conditional posterior distri-

bution is the scaled inverted chi-squared distribution with

the degree of freedom parameter K and the scale

parameter
PK

k¼1

PN

j¼1

e2
j;k.

The Bayesian analysis was implemented using Matlab 7

(2007). The missing values were randomly assigned initial

values from their empirical distributions. The MCMC

algorithm was run for 400,000 rounds in the field dataset

and 50,000 rounds in the simulated dataset. In order to

reduce autocorrelation, only every 10th round was stored.

In all cases, in the field data the first 380,000 MCMC-

rounds (simulated data: 20,000 rounds) were considered to

be ‘‘burn-in’’ rounds and were thus not considered in the

final results. Computing time was about 33 h for one trait

of the real dataset and about 20 min for the simulated

dataset.

In the QTL analysis, we obtained estimates of marker

main (Mij) and interaction (Mijk) effects. For each MCMC-

sample, the sum of main and corresponding environment

interaction effect was calculated. Then, to interpret the

results at each marker locus the median of the posterior

distribution of marker effect over all MCMC-rounds was

computed. If this median was non-zero in all environments,

this marker had a main effect on the specific trait value.

Otherwise, if the median was non-zero in some environ-

ments only, it was interpreted as a specific kind of a

marker-by-environment interaction effect.

(4) Bayesian multi-locus analysis using single-environ-

mental data

In order to determine whether multi-environmental QTL

testing improves the results, we also conducted the same

Bayesian multi-locus mapping as described above, but used

data of each environment separately. Thus, the statistical

model was reduced to:

Yj ¼ lþ
Xn

i¼1

Mij þ ej:

In this analysis, computing time of the main analysis was

about 9 h for one trait of the real dataset and about 15 min

for the simulated dataset.

Analogous to the multi-environmental Bayesian QTL

analysis, the posterior median of the marker effects over all

MCMC-rounds was computed. In both single- and multi-

environmental Bayesian analysis, model selection and

parameter estimation were based on adaptive shrinkage

(Xu 2003; Hoti and Sillanpää 2006). Note that this

approach is closely related to the so-called genome-wide

selection (Meuwissen et al. 2001). In the genome-wide

selection approach, breeding values are predicted based on

molecular markers covering the whole genome. This

strategy is in contrast to the use of genetic similarities,

which are calculated based on the molecular marker data,

in the prediction of breeding values (Bauer et al. 2006,

2008).

Convergence of the MCMC—chain

The convergence assessment of the Bayesian mapping

strategies was performed by plotting the MCMC paths for

the markers with estimated non-zero effects as suggested

by Kass et al. (1998).

Significance threshold of estimated marker effects

In order to determine whether the detected QTL effects

were due to spurious effects, we estimated an experi-

mentwise critical value following Churchill and Doerge

(1994). In this estimation, the data are shuffled by com-

puting random permutations of the phenotypic observation

vector. The ith observation is assigned to the ith line whose

108 Theor Appl Genet (2009) 119:105–123

123



index is given by the ith element of the permutation. Thus,

the association between marker data and observations is

destroyed. The shuffled data were analysed for Bayesian

single-environmental and REML single-locus analysis.

Overall, 50 permutations were calculated. In order to

obtain the experimentwise critical value for a trait analysed

by Bayesian single-environmental mapping, first the maxi-

mum median of the marker effects of every QTL analysis

of permuted data is selected. In REML single-locus anal-

ysis, the maximum F value (for marker main effects) and

the maximum t value (for marker interaction effects) of all

permuted QTL analyses are chosen. In each mapping

strategy, these values are ordered. The experimentwise

critical value then corresponds to the 100(1 - a) percen-

tile, where a equals 0.05. In order to detect QTL effects in

the original data and to determine statistical significance,

the results of the QTL analysis can be compared to this

critical value.

The forward selection approach utilizes the significance

threshold obtained from REML single-locus analysis. As

computing time was demanding for a Bayesian multi-

environmental analysis, the calculation of a permutation

analysis was not possible. Therefore, following Hoti and

Sillanpää (2006) the MCMC-samples of all traits and

markers were standardized to a common scale by multi-

plying each MCMC-sample with r̂g

�
r̂p; where r̂g is the

empirical standard deviation of each marker and r̂p cor-

responds to the empirical standard deviation of phenotypic

data. In the field dataset, a marker was defined to be sig-

nificant if its standardized effect was greater than ?0.17 or

smaller than -0.17. In the simulated dataset, a significance

threshold of ±0.10 was chosen, thus, all markers having an

effect greater than -0.10 or smaller than ?0.10 are not

considered to be significant.

Putative QTLs

Following Pillen et al. (2003), for each QTL mapping

strategy linked significant markers that had a distance of

B20 cM were interpreted as a single putative QTL.

Bin marker map

A Bin marker class was assigned to all used SSR markers

following Kleinhofs and Graner (2001); Costa et al. (2001).

Additionally, for the markers HVM62, GBM1015,

HVM67, HVLTPPB, HVM36, and GBM1052, Bin classes

were also available from the high-density consensus map

recently published by Marcel et al. (2007). In the follow-

ing, Bin classes obtained from Marcel et al. (2007) are

given in italics.

Genetic variance explained by a marker

The genetic variance explained by a marker (R2) was

computed by:

R2 ¼ SQM

�
SQM þ SQLðMÞ
� �� �

� 100

with SQM = sum of squares of markers obtained from

hypothesis test Type I; SQL(M) = Type I sum of squares of

lines nested in markers.

In order to obtain SQM and SQL(M) we calculated the

following mixed model in SAS Proc Mixed:

Yijkm ¼ lþMi þ Lj Mið Þ þ Ek þ em ijkð Þ

where all parameters have been fixed factors.

Heritability

The heritability of the traits was obtained by REML vari-

ance component estimation using the Varcomp procedure

in the SAS software package:

Yjkm ¼ lþ Lj þ Ek þ ejkm:

Then the heritability follows from h2 ¼ Vg

VgþVe
, where

Vg = genetic variance of the BC2DH lines and Ve =

residual variance.

Results

Field data of a spring barley population

In general, similar QTLs were detected using REML

single-locus analysis, the REML forward selection

approach, Bayesian multi-locus multi-environmental

method considering all environments jointly in the anal-

ysis, and Bayesian multi-locus single-environmental map-

ping where each environment is analysed separately

(Table 1). Depending on the heritability of the trait, some

QTLs could be found to have a significant effect in all four

mapping strategies. For example, considering ‘‘plant

height,’’ a trait with a high heritability h2 of 0.76, three of

nine QTLs were detected with all analyses. In contrast,

regarding ‘‘ears per m2,’’ a trait with a low heritability of

0.21, only one of 11 QTLs could be found to be significant

with all approaches. In addition, only marker main effects

were detected using a REML mapping method, whereas

both marker main and interaction effects could be found by

using a Bayesian approach.

In the following, detailed results of the QTL analyses

will be described for every trait separately, where traits are

grouped according to their heritability (Table 1):

Theor Appl Genet (2009) 119:105–123 109

123



T
a

b
le

1
D

et
ec

te
d

Q
T

L
s

o
f

R
E

M
L

si
n

g
le

-l
o

cu
s

an
al

y
si

s
(I

),
R

E
M

L
fo

rw
ar

d
se

le
ct

io
n

(I
I)

,
B

ay
es

ia
n

si
n

g
le

-e
n

v
ir

o
n

m
en

ta
l

(I
II

),
an

d
B

ay
es

ia
n

m
u

lt
i-

en
v

ir
o

n
m

en
ta

l
(I

V
)

m
ap

p
in

g
fo

r
se

v
er

al

tr
ai

ts
in

th
e

sp
ri

n
g

b
ar

le
y

p
o

p
u

la
ti

o
n

Q
T

L
a

C
o
d

ed

m
ar

k
er

n
u

m
b

er
b

S
S

R
-m

ar
k

er
g

ro
u

p
C

h
r.

c
P

o
s.

d
B

in
e

R
2

(%
)f

R
P

(%
)g

Q
T

L
m

ap
p

in
g

st
ra

te
g

ie
s

Ih
II

i
II

Ij
IV

k

D
a

ys
u

n
ti

l
h

ea
d

in
g

(h
2
&

0
.7

7
)

Q
H

ea
.S

4
2

-1
H

.1
5

G
B

M
1

0
4

2
1

H
3

9
6

4
.4

2
.7

M
*

l
M

x
E

m

Q
H

ea
.S

4
2

-1
H

.2
1

4
G

B
M

1
0

6
1

1
H

1
1

5
1

3
0

.7
0

.9
M

m

Q
H

ea
.S

4
2

-1
H

.3
1

6
H

V
A

B
A

IP
1

H
1

4
4

1
3

4
.0

1
.8

M
x

E
M

x
E

Q
H

ea
.S

4
2

-2
H

.1
2

0
G

B
M

1
05

2
2

H
4

2
4

(4
)

2
1

.6
-

9
.0

M
*

M
*

M
M

x
E

Q
H

ea
.S

4
2

-2
H

.2
2

2
–

2
3

E
B

m
ac

6
8

4
,

G
M

S
3

2
H

8
0

-8
6

7
–

8
4

.9
,

5
.0

-
1

.9
,

-
2

.0
M

*
M

x
E

M
x

E

Q
H

ea
.S

4
2

-2
H

.3
2

9
E

B
m

ac
4
1

5
2

H
1

4
6

1
3

4
.2

-
3

.3
M

x
E

Q
H

ea
.S

4
2

-3
H

.1
3

1
–

3
2

H
V

L
T

P
P

B
,

E
B

m
ac

7
0

5
3

H
2

5
–

3
0

3
(3

)
4

.9
,

4
.5

-
4

.4
,

-
4

.3
M

*
M

x
E

Q
H

ea
.S

4
2

-3
H

.2
3

9
G

B
M

1
0

4
3

3
H

1
3

0
1

0
4

.3
-

1
.9

M
*

M
*

M
x

E

Q
H

ea
.S

4
2

-3
H

.3
4

0
–

4
1

H
V

1
3

G
E

II
I,

H
V

M
6

2
3

H
1

5
5

–
1

6
5

1
3

–
1
4

(1
5
)

7
.3

,
4

.6
-

2
.9

,
-

2
.2

M
*

M
*

M
x

E
M

Q
H

ea
.S

4
2

-4
H

.1
5

4
E

B
m

ac
7
0

1
4

H
1

3
0

1
0

0
.5

0
.7

M

Q
H

ea
.S

4
2

-4
H

.2
5

9
–

6
1

H
V

JA
S

IP
,

H
V

M
6

7
,

H
D

A
M

Y
B

4
H

1
8

0
–
1

9
0

1
2

–
1
3

(1
2
)

4
.3

,
4

.9
,

6
.1

1
.8

,
1

.9
,

2
.2

M
*

M
*

M
x

E

Q
H

ea
.S

4
2

-5
H

.1
6

5
B

m
ag

3
3

7
5

H
4

3
5

0
.3

-
0

.6
M

x
E

Q
H

ea
.S

4
2

-5
H

.2
6

8
M

G
B

3
3

8
5

H
8

5
8

0
.4

1
.0

M
x

E

Q
H

ea
.S

4
2

-6
H

.1
7

7
E

B
m

ac
6
2

4
6

H
1

0
7

7
4

.5
-

2
.1

M
*

Q
H

ea
.S

4
2

-7
H

.1
9

2
B

M
S

6
4

7
H

1
4

6
8

4
.1

-
2

.6
M

*
M

*

P
la

n
t

h
ei

g
h

t
(h

2
&

0
.7

6
)

Q
H

ei
.S

4
2

-2
H

.1
1

8
–

2
0

H
V

M
3

6,
G

B
M

1
0

3
5

,
G

B
M

1
05

2
2

H
1

7
–

4
2

2
–

4
(3

–
4)

6
.0

,
5

.3
,

3
.0

-
8

.9
,

-
8

.6
,

-
1

1
.5

M
*

M
*

M
x

E

Q
H

ei
.S

4
2

-2
H

.2
2

2
–

2
4

E
B

m
ac

6
8

4
,

G
M

S
3

,
H

V
T

U
B

2
H

8
0

–
9
2

7
–

8
1

3
.5

,
1

6
.3

,
9

.9
-

1
0

.8
,

-
1

2
.0

,
-

8
.9

M
*

M
*

M

Q
H

ei
.S

4
2

-3
H

.1
3

1
–

3
5

H
V

L
T

P
P

B
,

E
B

m
ac

7
0

5
,

H
V

IT
R

1
,

M
G

B
4
1
0
,

B
m

ag
6
0

3

3
H

2
5

–
7
0

3
–

6
(3

)
5

.4
,

5
.4

,
8

.2
,

6
.1

,
6

.8
1

6
.7

,
1

6
.7

,
2

4
.0

,
1

2
.9

M
*

M
*

M
x

E
M

x
E

Q
H

ei
.S

4
2

-3
H

.2
3

9
G

B
M

1
0

4
3

3
H

1
3

0
1

0
7

.6
8

.9
M

*
M

*
M

M
x

E

Q
H

ei
.S

4
2

-3
H

.3
4

0
–

4
3

H
V

1
3

G
E

II
I,

H
V

M
6

2
,

M
G

B
3

5
8
,

B
m

ac
2

9

3
H

1
5

5
–
1

9
0

1
3

–
1
6

(1
5
)

2
2

.0
,

1
6

.9
,

1
0

.5
,

3
.9

1
7

.9
,

1
5

.1
,

1
1

.7
,

7
.3

M
*

M
*

M
x

E
M

x
E

Q
H

ei
.S

4
2

-4
H

.1
5

3
–

5
6

T
A

C
M

D
,

E
B

m
ac

7
0

1
,

E
B

m
ac

6
3

5
,

E
B

m
ac

6
7

9

4
H

1
2

5
–
1

3
2

9
-1

0
4

.8
,

6
.3

,
4

.7
,

5
.1

-
7

.3
,

-
8

.4
,

-
7

.0
,

-
7

.3
M

*

Q
H

ei
.S

4
2

-4
H

.2
5

8
–

6
1

G
B

M
1

01
5
,

H
V

JA
S

IP
,

H
V

M
6

7
,

H
D

A
M

Y
B

4
H

1
7

0
–
1

9
0

1
2

–
1
3

(1
1

–
12

)
9

.2
,

1
4

.6
,

1
5

.2
,

5
.8

-
8

.8
,

-
1

1
.0

,
-

1
1

.0
,-

7
.1

M
*

M
*

M
x

E

Q
H

ei
.S

4
2

-5
H

.1
6

5
B

m
ag

3
3

7
5

H
4

3
5

6
.4

9
.6

M
*

Q
H

ei
.S

4
2

-7
H

.1
8

3
B

m
ag

7
7

H
2

7
2

4
.6

1
2

.7
M

*

G
ra

in
yi

el
d

(h
2
&

0
.7

0
)

Q
Y

ld
.S

4
2

-1
H

.1
6

M
G

B
3

2
5

1
H

5
2

6
5

.0
-

1
3

.0
M

*

Q
Y

ld
.S

4
2

-1
H

.2
8

–
1

1
H

V
M

2
0
,

B
m

ag
2
1

1
,

B
m

ag
1
4

9
,

B
m

ag
1
0

5

1
H

6
5

–
7
5

7
–

8
4

.9
,

4
.1

,
4

.8
,

7
.2

-
1

2
.9

,
-

1
1

.8
,

-
1

2
.8

,
-

1
8

.3
M

*
M

*
M

x
E

M

Q
Y

ld
.S

4
2

-1
H

.3
1

6
H

V
A

B
A

IP
1

H
1

4
4

1
3

5
.8

-
9

.3
M

x
E

M
x

E

110 Theor Appl Genet (2009) 119:105–123

123



T
a

b
le

1
co

n
ti

n
u

ed

Q
T

L
a

C
o
d

ed

m
ar

k
er

n
u

m
b

er
b

S
S

R
-m

ar
k

er
g

ro
u

p
C

h
r.

c
P

o
s.

d
B

in
e

R
2

(%
)f

R
P

(%
)g

Q
T

L
m

ap
p

in
g

st
ra

te
g

ie
s

Ih
II

i
II

Ij
IV

k

Q
Y

ld
.S

4
2

-2
H

.1
2

5
–

2
6

B
m

ag
3
8

1
,

B
m

ag
1
2

5
2

H
1

0
7

–
1

2
2

9
–

1
0

3
.0

,
4

.2
-

6
.5

,
-

8
.4

M
*

M
x

E

Q
Y

ld
.S

4
2

-3
H

.1
3

1
–

3
5

H
V

L
T

P
P

B
,

E
B

m
ac

7
0

5
,

H
V

IT
R

1
,

M
G

B
4
1
0
,

B
m

ag
6
0

3

3
H

2
5

-7
0

3
–

6
(3

)
1

3
.8

,
1

3
.9

,
1

3
.7

,
1

0
.7

,
1

2
.4

-
3

2
.6

,
-

3
2

.5
,

-
3

9
.8

,
-

2
2

.8
,

-
2

4
.7

M
*

M
*

M
x

E
M

x
E

Q
Y

ld
.S

4
2

-3
H

.2
3

9
G

B
M

1
0

4
3

3
H

1
3

0
1

0
2

.0
-

5
.3

M
*

M
x

E
M

x
E

Q
Y

ld
.S

4
2

-3
H

.3
4

0
–

4
1

H
V

1
3

G
E

II
I,

H
V

M
6

2
3

H
1

5
5

-1
6

5
1

3
–

1
4

(1
5
)

8
.2

,
6

.1
-

1
2

.8
,

-
1

0
.7

M
*

M
x

E
M

x
E

Q
Y

ld
.S

4
2

-3
H

.4
4

3
B

m
ac

2
9

3
H

1
9

0
1

6
0

.1
-

1
.1

M
x

E

Q
Y

ld
.S

4
2

-5
H

.1
6

5
B

m
ag

3
3

7
5

H
4

3
5

3
.6

-
9

.6
M

x
E

Q
Y

ld
.S

4
2

-5
H

.2
6

9
G

M
S

6
1

5
H

1
2

6
1

0
2

.6
-

1
2

.9
M

x
E

Q
Y

ld
.S

4
2

-7
H

.1
9

2
B

M
S

6
4

7
H

1
4

6
8

4
.2

-
1

1
.1

M
*

T
h

o
u

sa
nd

g
ra

in
w

ei
g

h
t

(h
2
&

0
.5

4
)

Q
T

g
w

.S
4

2
-1

H
.1

8
H

V
M

2
0

1
H

6
5

7
1

.5
-

2
.1

M
x

E

Q
T

g
w

.S
4

2
-1

H
.2

1
6

H
V

A
B

A
IP

1
H

1
4

4
1

3
0

.5
1

.0
M

x
E

Q
T

g
w

.S
4

2
-2

H
.1

2
3

G
M

S
3

2
H

8
6

8
1

.9
1

.9
M

*
M

x
E

M
x

E

Q
T

g
w

.S
4

2
-2

H
.2

2
5

–
2
6

B
m

ag
3
8

1
,

B
m

ag
1
2

5
2

H
1

0
7

–
1

2
2

9
–

1
0

0
.3

,
0

.5
0

.9
,

0
.9

M
x

E
M

x
E

Q
T

g
w

.S
4

2
-3

H
.1

3
8

H
V

M
6

0
3

H
1

1
0

9
(8

)
4

.5
3

.1
M

*

Q
T

g
w

.S
4

2
-3

H
.2

4
0

–
4
2

H
V

1
3

G
E

II
I,

H
V

M
6

2,
M

G
B

3
5

8
3

H
1

5
5

–
1

7
5

1
3

–
1
5

(1
5
)

3
.3

,
4

.3
,

6
.5

-
2

.8
,

-
3

.1
,

-
3

.8
M

*
M

*
M

x
E

Q
T

g
w

.S
4

2
-4

H
.1

5
3

–
5
6

T
A

C
M

D
,

E
B

m
ac

7
0

1
,

E
B

m
ac

6
3

5
,

E
B

m
ac

6
7

9

4
H

1
2

5
–
1

3
2

9
–

1
0

1
6

.6
,

1
6

.3
,

1
7

.1
,

1
6

.8
-

5
.6

,
-

5
.7

,
-

5
.5

,
-

5
.5

M
*

M
*

M
x

E
M

x
E

Q
T

g
w

.S
4

2
-4

H
.2

5
9

–
6
1

H
V

JA
S

IP
,

H
V

M
6

7
,

H
D

A
M

Y
B

4
H

1
8

0
–
1

9
0

1
2

–
1
3

(1
2
)

8
.8

,
8

.4
,

8
.7

-
3

.7
,

-
3

.6
,

-
3

.7
M

*
M

*
M

x
E

Q
T

g
w

.S
4

2
-6

H
.1

7
5

G
M

S
6

6
H

9
6

5
1

.4
-

1
.8

M
x

E

Q
T

g
w

.S
4

2
-6

H
.2

7
9

G
B

M
1

0
0

8
6

H
1

3
5

1
0

1
.6

1
.8

M
x

E

Q
T

g
w

.S
4

2
-7

H
.1

9
2

–
9
5

B
M

S
6
4

,
B

m
ag

1
2

0
,

M
G

B
3

1
7

,

E
B

m
ac

7
5

5

7
H

1
4

6
–
1

6
6

8
–

1
1

4
.6

,
4

.7
,

4
.4

,
4

.2
-

4
.2

,
-

4
.3

,
-

4
.6

,
-

3
.6

M
*

M
*

M
x

E

E
a

rs
p

er
m

2
(h

2
&

0
.2

1
)

Q
E

ar
.S

4
2
-1

H
.1

1
6

H
V

A
B

A
IP

1
H

1
4
4

1
3

6
.0

8
.4

M
*

Q
E

ar
.S

4
2
-2

H
.1

1
8

H
V

M
3

6
2

H
1

7
2

(3
)

5
.8

9
.5

M
*

Q
E

ar
.S

4
2
-2

H
.2

2
1
–
2
4

M
G

B
3
9
1
,

E
B

m
ac

6
8
4
,

G
M

S
3
,

H
V

T
U

B

2
H

6
7

–
9
2

6
–

8
6

.4
,

2
1

.5
,

2
4

.2
,

2
1

.2
1

1
.1

,
1

5
.3

,
1

6
.5

,
1

4
.7

M
*

M
x

E
M

x
E

Q
E

ar
.S

4
2
-3

H
.1

3
4
–
3
5

M
G

B
4
1
0
,

B
m

ag
6
0
3

3
H

6
5
–
7
0

5
–
6

6
.7

,
6
.5

-
1

3
.7

,
-

1
3

.8
M

*
M

*

Q
E

ar
.S

4
2
-3

H
.2

4
0
–
4
1

H
V

1
3
G

E
II

I,
H

V
M

6
2

3
H

1
5

5
–
1

6
5

1
3

–
1
4

(1
5
)

5
.2

,
4

.6
-

8
.8

,
-

7
.9

M
*

Q
E

ar
.S

4
2
-4

H
.1

4
5
–
4
6

H
V

O
L

E
,

H
V

B
2
3
D

4
H

2
1
–
2
5

3
5
.2

,
4
.5

-
9

.7
,

-
9

.3
M

*

Q
E

ar
.S

4
2
-4

H
.2

5
3
–
5
6

T
A

C
M

D
,

E
B

m
ac

7
0
1
,

E
B

m
ac

6
3

5
,

E
B

m
ac

6
7

9

4
H

1
2

5
–
1

3
2

9
–

1
0

1
0

.0
,

9
.6

,
9

.5
,

9
.1

1
1

.4
,

1
1

.3
,

1
0

.6
,

1
0

.6
M

*

Q
E

ar
.S

4
2
-4

H
.3

5
8
–
6
1

G
B

M
1

01
5
,

H
V

JA
S

IP
,

H
V

M
6

7
,

H
D

A
M

Y
B

4
H

1
7

0
–
1

9
0

1
2

–
1
3

(1
1

–
12

)
1

3
.6

,
2

3
.9

,
2

2
.7

,
9

.0
1

2
.0

,
1

6
.0

,
1

5
.4

,
9

.8
M

*
M

*
M

x
E

M
x

E

Q
E

ar
.S

4
2
-5

H
.1

6
2

M
G

B
3
8
4

5
H

0
2

6
.8

-
1

0
.8

M
*

M
*

Theor Appl Genet (2009) 119:105–123 111

123



T
a

b
le

1
co

n
ti

n
u

ed

Q
T

L
a

C
o
d

ed

m
ar

k
er

n
u

m
b

er
b

S
S

R
-m

ar
k

er
g

ro
u

p
C

h
r.

c
P

o
s.

d
B

in
e

R
2

(%
)f

R
P

(%
)g

Q
T

L
m

ap
p

in
g

st
ra

te
g

ie
s

Ih
II

i
II

Ij
IV

k

Q
E

ar
.S

4
2
-5

H
.2

6
5

B
m

ag
3
3
7

5
H

4
3

5
4
.6

-
8

.3
M

*

Q
E

ar
.S

4
2
-6

H
.1

7
9

G
B

M
1
0
0
8

6
H

1
3
5

1
0

5
.1

-
7

.6
M

*

a
N

am
es

o
f

th
e

Q
T

L
s

co
n

si
st

in
g

o
f

th
e

q
u

al
ifi

er
‘‘

Q
’’

,
th

e
tr

ai
t

ab
b

re
v

ia
ti

o
n

,
th

e
d

et
er

m
in

ed
p

o
p

u
la

ti
o

n
,
th

e
m

ap
p

ed
ch

ro
m

o
so

m
e

an
d

a
Q

T
L

n
u

m
b

er
to

d
is

ti
n

g
u

is
h

b
et

w
ee

n
Q

T
L

s
o

n
th

e
sa

m
e

ch
ro

m
o

so
m

e.

M
ar

k
er

s
w

it
h

a
d

is
ta

n
ce

B
2

0
cM

w
er

e
co

n
si

d
er

ed
to

b
e

a
si

n
g

le
Q

T
L

b
T

h
e

m
ar

k
er

s
w

er
e

co
d

ed
ac

co
rd

in
g

to
th

ei
r

ch
ro

m
o

so
m

al
lo

ca
ti

o
n

c
C

h
ro

m
o

so
m

al
lo

ca
ti

o
n

o
f

th
e

S
S

R
m

ar
k

er
s

d
P

o
si

ti
o
n

o
f

th
e

S
S

R
m

ar
k
er

s
o
n

th
e

ch
ro

m
o
so

m
e

in
ce

n
ti

M
o
rg

an
(c

M
)

(v
o
n

K
o
rf

f
et

al
.

2
0

0
4
).

If
se

v
er

al
m

ar
k

er
s

w
er

e
si

g
n

ifi
ca

n
t,

th
e

cM
ra

n
g

e
is

g
iv

en
e

B
in

m
ar

k
er

cl
as

s
fo

ll
o

w
in

g
K

le
in

h
o

fs
an

d
G

ra
n
er

(2
0

0
1
);

C
o

st
a

et
al

.
(2

0
0

1
).

In
th

e
ca

se
o

f
se

v
er

al
si

g
n

ifi
ca

n
t

m
ar

k
er

s,
th

e
B

in
cl

as
s

ra
n

g
e

is
d

is
p

la
y
ed

.
A

n
ad

d
it

io
n

al
n

u
m

b
er

in
b

ra
ck

et
s

g
iv

es
th

e
B

in

cl
as

s
fo

ll
o

w
in

g
M

ar
ce

l
et

al
.

(2
0

0
7
).

A
s

th
e

B
in

cl
as

s
o

f
M

ar
ce

l
et

al
.

(2
0

0
7
)

w
as

av
ai

la
b

le
o

n
ly

fo
r

so
m

e
m

ar
k

er
s,

in
th

e
ca

se
o

f
se

v
er

al
si

g
n

ifi
ca

n
t

m
ar

k
er

s
b

el
o
n

g
in

g
to

th
e

sa
m

e
Q

T
L

,
th

es
e

m
ar

k
er

s
ar

e

g
iv

en
in

it
al

ic
s

f
G

en
et

ic
v

ar
ia

n
ce

ex
p

la
in

ed
b

y
a

m
ar

k
er

ca
lc

u
la

te
d

u
si

n
g

R
E

M
L

m
et

h
o

d
in

S
A

S
P

ro
c

M
ix

ed
g

R
el

at
iv

e
p

er
fo

rm
an

ce
o

f
th

e
h

o
m

o
zy

g
o

u
s

ex
o

ti
c

g
en

o
ty

p
e

h
R

E
M

L
si

n
g

le
-l

o
cu

s
Q

T
L

m
ap

p
in

g
i

R
E

M
L

fo
rw

ar
d

se
le

ct
io

n
ap

p
ro

ac
h

j
B

ay
es

ia
n

m
u

lt
i-

lo
cu

s
si

n
g

le
-e

n
v

ir
o

n
m

en
ta

l
an

al
y

si
s

k
B

ay
es

ia
n

m
u

lt
i-

lo
cu

s
m

u
lt

i-
en

v
ir

o
n

m
en

ta
l

an
al

y
si

s
l

M
ar

k
er

m
ai

n
ef

fe
ct

o
b

ta
in

ed
fr

o
m

R
E

M
L

an
al

y
si

s
m

M
M

ar
k

er
m

ai
n

ef
fe

ct
,

M
xE

M
ar

k
er

in
te

ra
ct

io
n

ef
fe

ct
.

B
o
th

ef
fe

ct
s

ar
e

d
er

iv
ed

fr
o
m

B
ay

es
ia

n
an

al
y
si

s
an

d
h
av

e
to

b
e

in
te

rp
re

te
d

d
if

fe
re

n
tl

y
as

in
R

E
M

L
m

et
h
o
d
.

In
B

ay
es

ia
n

m
ap

p
in

g
th

e
m

o
d

el
w

as

o
v
er

sa
tu

ra
te

d
so

th
at

m
ar

k
er

m
ai

n
an

d
in

te
ra

ct
io

n
ef

fe
ct

s
ar

e
n
o
t

in
d
ep

en
d
en

tl
y

id
en

ti
fi

ab
le

112 Theor Appl Genet (2009) 119:105–123

123



‘‘Days until heading’’ (h2 & 0.77)

Overall, 15 QTLs distributed over all chromosomes

were found to be significant for the trait ‘‘days until

heading.’’ Two QTLs were significant for four analyses,

three QTLs for three analyses, four QTLs for two analyses,

and six QTLs were found in one analysis.

‘‘Plant height’’ (h2 & 0.76)

For ‘‘plant height,’’ nine QTLs on the chromosomes 2H,

3H, 4H, 5H, and 7H were detected. Three QTLs were

found in all four approaches, in three analyses, and with

only one strategy, respectively.

‘‘Grain yield’’ (h2 & 0.70)

Eleven QTLs for the trait ‘‘grain yield’’ were located on

the chromosomes 1H, 2H, 3H, 5H, and 7H. Two QTLs

were found with all QTL mapping strategies, two QTLs

were detected with three analyses, two QTLs with two

analyses, and five QTLs were found in only one mapping

strategy.

‘‘Thousand grain weight’’ (h2 & 0.54)

For the trait ‘‘thousand grain weight’’ the analyses

revealed 11 QTLs on all chromosomes with the exception

of 5H. One QTL was detected with all mapping approa-

ches, four QTLs with three analyses, one QTL with two

analyses, and five QTLs were found to be significant in

only one analysis.

‘‘Ears per m2’’ (h2 & 0.21)

For the trait ‘‘ears per m2,’’ overall, 11 QTLs could be

detected on all chromosomes except 7H. One QTL was

found to be significant in all four mapping strategies, one

QTL in three analyses, two QTLs in two analyses, and

seven QTLs were detected in only one approach.

In order to illustrate the QTL mapping strategies, the

results of all statistical analyses will be presented in more

detail for the trait ‘‘grain yield.’’ Considering REML sin-

gle-locus analysis, overall, 14 markers on chromosomes

1H, 2H, 3H, and 7H (Table 2) showed a F value greater

than the significance threshold (obtained from permutation

test). The P value of F test ranged between 0.001 and

0.017, and the estimated marker effects of the exotic allele

ranged between -11.46 and -2.46. If a REML forward

selection approach was performed, only four markers had a

value of F-statistic greater than the significance threshold.

These markers showed a P value of F test ranging from

0.001 to 0.009 and estimated effects from -7.35 to -3.35.

In Bayesian single-environmental mapping, overall, 14

markers showed a significant effect resulting in nine QTLs

(Fig. 1; Table 1). None of the markers showed a significant

effect in all six environments (Fig. 1). In contrast,

considering Bayesian multi-environmental analysis, only

five markers having a significant effect were mapped,

yielding five QTLs (Fig. 2; Table 1). In Bayesian multi-

environmental mapping markers flanking a significant QTL

on the same chromosome often showed negligible effects

(Fig. 2). For example, the marker 11 has estimated (stan-

dardized) effects between 0.22 and 0.33, and is hence

defined to be significant. The flanking markers with the

numbers 12–15 have small (standardized) effects ranging

from -0.05 to ?0.04.

Simulation study

In the computer simulation, based on the real molecular

marker data known genetic effects were assumed. Marker

main and interaction (non-crossover and crossover) effects

and combinations of both of them were simulated having

different effect sizes (Table 5).

In Bayesian single- and multi-environmental QTL

mapping, except for one marker with a main effect, all

other markers with true (simulated) effects were detected

regardless of the marker having an effect in all or in only

some environments (Table 5). The marker that was not

Table 2 Significant SSR markers with their chromosomal positions,

estimated effects of the exotic allele, F and P values from REML

single-locus analysis and the REML forward selection approach for

the trait ‘‘grain yield’’ of the spring barley population

SSR marker Chromosome Position

(cM)

Effect F value P value

REML single-locus analysis

MGB325 1H 52 -3.80 15.8 0.011

HVM20 1H 65 -3.78 15.5 0.011

Bmag211 1H 68 -3.45 12.2 0.017

Bmag149 1H 70 -3.74 14.5 0.013

Bmag105 1H 75 -5.36 19.7 0.007

Bmag125 2H 122 -2.46 12.8 0.016

HVLTPPB 3H 25 -9.54 39.3 0.002

EBmac705 3H 30 -9.48 40.4 0.001

HVITR1 3H 49 -11.46 28.7 0.003

MGB410 3H 65 -6.69 42.5 0.001

Bmag603 3H 70 -7.26 48.7 0.001

HV13GEIII 3H 155 -3.76 18.3 0.008

HVM62 3H 165 -3.15 14.4 0.013

BMS64 7H 146 -3.25 12.2 0.017

REML forward selection

Bmag603 3H 70 -7.26 48.75 0.001

HVLTPPB 3H 25 -7.35 23.46 0.005

Bmag105 1H 75 -5.34 24.84 0.004

GBM1043 3H 130 -3.35 17.39 0.009

Significance threshold obtained from permutation test: 12.14

(F value)
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found in Bayesian analyses (marker 79), has a true effect of

0.2 but estimated effect of 0 which could be due to the

small effect size. The false-positive marker 32 was sup-

ported by both Bayesian methods (in one or two environ-

ments) although the marker has a true effect of zero.

Considering REML single-locus analysis and the REML

forward selection approach, all markers with an interaction

effect (non-crossover or crossover) were not detected

(Table 6). Also, only two of the four markers having a

marker main effect were found. However, using REML
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Fig. 1 Locus-specific point-

estimates (posterior medians) of

effect sizes of Bayesian multi-

locus single-environmental

QTL mapping for the trait

‘‘grain yield’’ in the spring

barley population. The posterior

medians are displayed for all

environments separately. The

significance threshold was

obtained from permutation tests.

The markers were coded

according to their chromosomal

location
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single-locus mapping in several cases on the same chro-

mosome, a marker near to a marker with a true effect was

found to be significant although this marker has an effect of

zero in the simulation. In the forward selection approach, a

less number of false-positive markers were detected than in

REML single-locus analysis.

Discussion

In this study, a QTL mapping approach was developed that

accounts for both multiple marker loci and marker-by-

environment interactions simultaneously in the statistical

model. For comparison, a Bayesian multi-locus single-

environmental analysis, a REML single-locus approach,

and REML forward selection analysis were computed. In

order to determine which markers showed significant

effects, a permutation test was calculated for the REML

single-locus and Bayesian single-environmental analysis.

In general, this permutation test is used in frequentist

approaches and only rarely in Bayesian data analysis. In a

permutation test, multiple hypothetical datasets obtained

from shuffling the phenotypic observations that could have

given rise to the observations are considered. The objective

here is to determine how extreme our observed dataset is

(in the sense of producing the mapping signal). This means

we examine the strength of the mapping signal in the

observed dataset compared to the random mapping signals

in the shuffled datasets.

Using REML single-locus QTL mapping, each marker

locus was considered separately in the analysis. That means

that, as the lines were genotyped by 98 SSR markers, 98

analyses had to be performed. All markers with an F value

greater than the significance threshold were considered to

be significant. In the single-locus analysis, many significant

QTLs were detected in the real and in the simulated dataset

(Tables 2, 6). This could be due to the consideration of

only a single marker point at a time, which complicates the

detection of a marker with a significant effect at the exact

position on the chromosome. Hence, it can be observed that

in several cases not the marker with a non-zero simulated

effect itself (i.e., marker 22 in Table 6), but a marker with

an effect of zero located near to the true marker on the

same chromosome was found instead (i.e., marker 21). As

both markers are within an interval of 20 cM, in the field

dataset both markers were interpreted to belong to the same

QTL. Compared to the REML single-locus mapping, using

a REML forward selection approach, fewer markers were

found to be significant (Tables 2, 6). Thus, as expected, the

forward selection analysis seems to be more powerful for

QTL mapping. Since the markers with the most significant

effect in previous estimation rounds are included as fixed

cofactors in the statistical model of the next estimation

cycle, similar to composite interval mapping, the forward

selection approach accounts for multiple marker loci in the

analysis.

In Bayesian multi-locus analysis using multi-environ-

mental data of the spring barley population, several sig-

nificant QTLs were found (Table 1). However, some of

these QTLs showed only negligible effects (Fig. 2).

Remarkably, the observed small peaks were found around

larger ones in the same region on the chromosome. One

reason for detecting several candidates can be the

increased power, in particular for identifying markers

with low effects. Also, having multiple coefficients at

single marker in the model is likely to improve mixing
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properties of the MCMC sampler, especially in the case

of closely linked loci. Aside from this, we assumed an

independent residual structure. According to Piepho

(2000), omitting genetic (background) correlations among

observations of the same genotype measured in different

environments can cause spurious QTL signals. Account-

ing for this genetic correlation, however, was not possible

in our study, as phenotypic observations of the traits were

not replicated within each combination of line and envi-

ronment in the dataset leading to confounded polygenic

and residual variation and covariation. Nevertheless,

compared to Bayesian single-environmental mapping, a

Bayesian approach using multi-environmental data seems

to be more stringent (based on our subjective significance

criterion) (Table 1). This is in contrast to the simulation

study where both, Bayesian single- and multi-environ-

mental mapping yielded comparable results (Table 5).

Based on the experimenting with different significance

thresholds (around the true threshold value), it seems that

the results of Bayesian multi-environmental analysis are

not very sensitive to our choice of the threshold value

(results not shown). Considering the estimated marker

effects, the true marker effect was estimated more accu-

rately using a Bayesian mapping strategy than a REML

approach.

In a multi-locus analysis a potential complication is that

in the case of a strong correlation between markers it could

be difficult to determine which marker is significant. It can

be assumed that the higher the number of markers, the

stronger this correlation among markers could be. In the

present study, 98 SSR markers were used in total. Still, on

chromosome 6H there was a gap where no polymorphic

markers could be found. Thus, in this research a strong

correlation between markers is not probable, but this situ-

ation could arise in future studies where the lines are

genotyped by hundreds of markers. This problem could be

alleviated by collecting a large number of individuals.

Marker interaction effects were detected to a greater

extent in Bayesian QTL mapping; whereas, using the

REML method, all found marker effects were interpreted

as a main effect in the analysis (Tables 5, 6). In the REML

forward selection approach of the simulated dataset, all

markers having a combined main and interaction effect

were found to be a significant marker main effect

(Table 6). Markers with an effect in some environments

only were not found by REML methods. However, marker

main and interaction effects have to be interpreted in dif-

ferent ways using the REML and Bayesian methods. In

REML analysis, it is possible to interpret marker main and

interaction effects separately. In contrast, in Bayesian

implementation an oversaturated model was used, which

means that more parameters were actually estimated than

would be necessary. This oversaturated model was used

because all environments were treated equally in the prior

distribution during the model selection process. For each

MCMC iteration, the sum of main effect and corresponding

environmental effect was calculated. Thus, marker main

and interaction effects were not independently identifiable.

If the estimated effects in all environments were greater

than the significance threshold, this effect was interpreted

as a marker main effect; otherwise, there would be an

interaction effect. This fact should be considered when

comparing the QTL results from REML and Bayesian

methods (Table 1).

As Bayesian multi-environmental mapping was com-

putationally demanding, the calculation of a permutation

test was not possible, and therefore a significance threshold

was derived subjectively for this QTL analysis. This raises

the question of whether the threshold is comparable/real-

istic, or if it is still too low or too high. Additionally, for

Table 3 Occupancy probabilities P of marker effects being higher than the significance threshold in Bayesian multi-environmental mapping for

all traits in the spring barley population

Ears per m2 Days until heading Plant height Thousand grain weight Grain yield

QTL P QTL P QTL P QTL P QTL P

QEar.S42-2H.2 1 QHea.S42-1H.2 0.55 QHei.S42-3H.1 0.63-0.8 QTgw.S42-2H.1 0.91 QYld.S42-1H.2 0.83-1

QEar.S42-4H.3 0.53-1 QHea.S42-1H.3 1 QHei.S42-3H.2 0.89 QTgw.S42-2H.2 0.63 QYld.S42-1H.3 0.94-1

QHea.S42-2H.1 0.98-1 QHei.S42-3H.3 0.49-1 QTgw.S42-4H.1 0.99 QYld.S42-3H.1 0.66

QHea.S42-2H.2 0.91 QYld.S42-3H.2 1

QHea.S42-2H.3 0.52 QYld.S42-3H.3 0.98

QHea.S42-3H.3 1

QHea.S42-4H.1 0.63

QHea.S42-5H.1 1

For each QTL, the range of probabilities over all environments and significant markers is given
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Table 4 Detected QTLs by REML and Bayesian analyses in the spring barley population compared to QTL mapping studies using other barley

populations and different molecular markers

QTLa Chr.b Pos.c Bind Candidate

gene

Literature

Days until heading (h2 = 0.77)

QHea.S42-1H.1 1H 39 6 Thomas et al. (1995) (DH-lines)

QHea.S42-1H.2 1H 115 13

QHea.S42-1H.3 1H 144 13 Vrn-H3 Laurie et al. (1995) (DH-lines), Sameri and Komatsuda (2004) (RILs),

Sameri et al. (2006) (RILs; mapped in Bin class 14)

QHea.S42-2H.1 2H 42 4 (4) Ppd-H1 Laurie et al. (1995) (DH-lines), Sameri and Komatsuda (2004) (RILs), Li

et al. (2005) (BC3DH), Emebiri and Moody (2006) (DH-lines), Sameri

et al. (2006) (RILs)

QHea.S42-2H.2 2H 80–86 7–8 Pillen et al. (2003) (BC2F2)

QHea.S42-2H.3 2H 146 13 Pillen et al. (2003) (BC2F2)

QHea.S42-3H.1 3H 25–30 3 (3)

QHea.S42-3H.2 3H 130 10

QHea.S42-3H.3 3H 155–165 13–14 (15) Denso Barua et al. (1993) (NILs and DH-lines), Laurie et al. (1995) (DH-lines),

Thomas et al. (1995) (DH-lines), Tinker et al. (1996) (DH-lines)

QHea.S42-4H.1 4H 130 10

QHea.S42-4H.2 4H 180–190 12–13 (12) Vrn-H2 Laurie et al. (1995) (DH-lines), Pillen et al. (2003) (BC2F2)

QHea.S42-5H.1 5H 43 5 Thomas et al. (1995) (DH-lines), Pillen et al. (2003) (BC2F2)

QHea.S42-5H.2 5H 85 8 Pillen et al. (2003) (BC2F2)

QHea.S42-6H.1 6H 107 7

QHea.S42-7H.1 7H 146 8 eps7HS Pillen et al. (2003) (BC2F2), Emebiri and Moody (2006) (DH-lines)

Plant height (h2 = 0.76)

QHei.S42-2H.1 2H 17–42 2–4 (3–4) Ppd-H1 Laurie et al. (1994) (DH-lines)

QHei.S42-2H.2 2H 80–92 7–8 sdw3 Gottwald et al. (2004) (F4-progenies), Kraakman et al. (2006) (cultivars)

QHei.S42-3H.1 3H 25–70 3–6 (3) Sameri et al. (2006) (RILs)

QHei.S42-3H.2 3H 130 10 Yin et al. (1999) (RILs; mapped in Bin class 11)

QHei.S42-3H.3 3H 155–190 13–16 (15) Denso Thomas et al. (1995) (DH-lines), Bezant et al. (1996) (DH-lines)

QHei.S42-4H.1 4H 125-132 9–10

QHei.S42-4H.2 4H 170–190 12–13 (11–12)

QHei.S42-5H.1 5H 43 5

QHei.S42-7H.1 7H 27 2

Grain yield (h2 = 0.70)

QYld.S42-1H.1 1H 52 6 Li et al. (2005) (BC3DH; mapped in Bin class 8)

QYld.S42-1H.2 1H 65–75 7–8 Thomas et al. (1995) (DH-lines), Tinker et al. (1996) (DH-lines)

QYld.S42-1H.3 1H 144 13

QYld.S42-2H.1 2H 107–122 9–10 Yin et al. (1999) (RILs)

QYld.S42-3H.1 3H 25–70 3–6 (3) Thomas et al. (1995) (DH-lines), Pillen et al. (2003) (BC2F2), Kraakman

et al. (2004) (cultivars)

QYld.S42-3H.2 3H 130 10 Yin et al. (1999) (RILs)

QYld.S42-3H.3 3H 155–165 13–14 (15) Denso Thomas et al. (1995) (DH-lines), Tinker et al. (1996) (DH-lines), Li et al.

(2005) (BC3DH)

QYld.S42-3H.4 3H 190 16

QYld.S42-5H.1 5H 43 5 Pillen et al. (2003) (BC2F2)

QYld.S42-5H.2 5H 126 10 Kraakman et al. (2004) (cultivars; mapped in Bin class 12-13)

QYld.S42-7H.1 7H 146 8 Pillen et al. (2003) (BC2F2)

Thousand grain weight (h2 = 0.54)

QTgw.S42-1H.1 1H 65 7

QTgw.S42-1H.2 1H 144 13

QTgw.S42-2H.1 2H 86 8 Pillen et al. (2003) (BC2F2), Sameri and Komatsuda (2007) (RILs; mapped

in Bin class 10)

QTgw.S42-2H.2 2H 107–122 9–10 Li et al. (2005) (BC3DH; mapped in Bin class 15)
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each QTL locus, the probability of marker effects being

higher than the chosen significance threshold was com-

puted over all MCMC-rounds. If our significance threshold

was too low, leading to ‘‘significant’’ QTLs that in reality

are false-positives, then there would be a high number of

markers that showed an effect greater than the threshold in

each MCMC round. In this case, the probability of marker

effects being higher than the threshold would be equal to 1

for most of the QTLs. In contrast, if the significance

threshold was too high, then the markers would have

effects greater than the threshold only in some MCMC

rounds, so the probability would be much lower than 1. In

our study, some QTLs show probabilities of 1, but a

number of QTLs also show reduced probabilities in both,

real and simulated datasets (Tables 3, 5). Thus, it seems

that by applying the chosen significance threshold, the

occurrence of false-positive QTLs is minimized. Tests with

slightly different significance thresholds showed the chosen

threshold to be most appropriate in reducing the number of

false-positive QTLs. In the simulation study, with the

chosen significance threshold only one false-positive

marker with a true effect of zero was detected to be sig-

nificant, whereas another marker with a true effect of 0.2

was not found due to the small effect size.

Accounting for missing marker data in the analysis is

handled differently in REML and Bayesian mapping. In

REML analysis, each observation with a missing marker

value is omitted from the dataset. Thus, the amount of

phenotypic information is reduced due to missing marker

data. Considering the REML forward selection approach

where several markers are accounted for simultaneously as

cofactors in the statistical model, the number of phenotypic

observations omitted from the dataset is increased due to

the larger probability that missing marker data occur in one

or more of the markers. In contrast, in a Bayesian analysis,

missing markers are imputed according to their posterior

distribution (Hoti and Sillanpää 2006; Yu and Schaid

2007). There, the distance between the missing locus and

the flanking markers is calculated based on the recombi-

nation frequency and the missing marker is more fre-

quently assigned the genotypic value of the flanking

marker with the smallest distance.

Table 4 continued

QTLa Chr.b Pos.c Bind Candidate

gene

Literature

QTgw.S42-3H.1 3H 110 9 (8)

QTgw.S42-3H.2 3H 155–175 13–15 (15)

QTgw.S42-4H.1 4H 125–132 9–10

QTgw.S42-4H.2 4H 180–190 12–13 (12)

QTgw.S42-6H.1 6H 96 5

QTgw.S42-6H.2 6H 135 10

QTgw.S42-7H.1 7H 146–166 8–11 Pillen et al. (2003) (BC2F2)

Ears per m2 (h2 = 0.21)

QEar.S42-1H.1 1H 144 13

QEar.S42-2H.1 2H 17 2 (3)

QEar.S42-2H.2 2H 67–92 6–8

QEar.S42-3H.1 3H 65–70 5–6

QEar.S42-3H.2 3H 155–165 13–14 (15)

QEar.S42-4H.1 4H 21–25 3

QEar.S42-4H.2 4H 125–132 9–10

QEar.S42-4H.3 4H 170–190 12–13 (11–12)

QEar.S42-5H.1 5H 0 2

QEar.S42-5H.2 5H 43 5

QEar.S42-6H.1 6H 135 10

In brackets, the population used for QTL mapping is displayed (BC backcross, DH doubled haploid, NILs near-isogenic lines, RILs recombinant inbred

lines). A detailed description of the QTLs is given in the Supplementary Material
a Names of the QTLs consisting of the qualifier ‘‘Q’’, the trait abbreviation, the determined population, the mapped chromosome and a QTL number to

distinguish between QTLs on the same chromosome. Markers with a distance B20 cM were considered to be a single QTL
b Chromosomal location of the SSR markers
c Position of the SSR markers on the chromosome in centiMorgan (cM) (von Korff et al. 2004). If several markers were significant, the cM range is given
d Bin marker class following Kleinhofs and Graner (2001) and Costa et al. (2001). In the case of several significant markers, the Bin class range is

displayed. An additional number in brackets gives the Bin class following Marcel et al. (2007). As the Bin class of Marcel et al. (2007) was available only

for some markers, in the case of several significant markers belonging to the same QTL, these markers are given in italics
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Table 5 Results from Bayesian single- and multi-environmental QTL mapping of the simulated dataset

Marker Chr.a Pos.b Effect typec Env.d True effect Bayes singlee Bayes multif

Estimated effect Estimated effect (unstandardized) Occ. prob.g

16 1H 144 M 1 3.5 3.27 3.39 1

2 3.5 3.30 3.39 1

3 3.5 3.38 3.39 1

4 3.5 3.63 3.39 1

5 3.5 3.53 3.39 1

6 3.5 3.64 3.39 1

22 2H 80 M ? Ic 1 -2.1 -2.41 -1.98 1

2 -3.5 -3.45 -3.33 1

3 -2.1 -1.90 -1.98 1

4 -2.1 -2.11 -1.98 1

5 0.4 0 0.21 0.98

6 -2.1 -2.14 -1.98 1

31 3H 25 Ic 1 0 0 0.24 0

2 -3.3 -3.25 -2.85 1

3 2.8 2.94 0.24 0

4 1.7 2.16 2.12 0.90

5 -2.3 0 0.24 0

6 0 0 0.24 0

32 3H 30 – 1 0 0 -0.14 0

2 0 0 -0.14 0

3 0 0 2.04 0.99

4 0 0 -0.14 0

5 0 -1.71 -1.94 0.99

6 0 0 -0.14 0

40 3H 155 Inc 1 1.2 1.01 1.22 0.99

2 0 0 -0.06 0

3 0 0 -0.06 0

4 2.1 2.29 2.56 1

5 0 0 -0.06 0

6 0.8 0 0.77 0.59

45 4H 21 M 1 -1.3 -1.37 -1.08 0.50

2 -1.3 -0.96 -1.08 0.50

3 -1.3 -1.53 -1.09 0.50

4 -1.3 -1.77 -1.09 0.51

5 -1.3 -1.09 -1.08 0.49

6 -1.3 -1.38 -1.08 0.50

53 4H 125 Inc 1 0 0 0.16 0

2 -3.1 -3.21 -3.13 1

3 0 0 0.16 0

4 -2.2 -2.18 -2.13 1

5 0 0 0.16 0

6 -2.8 -2.77 -2.68 1
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Compared to QTL mapping studies using other barley

populations and different molecular markers, several QTLs

could be verified in our spring barley population (Table 4).

Except for the trait ‘‘ears per m2,’’ for all other traits sev-

eral QTLs detected in the spring barley population could be

mapped in the same region on the chromosome by other

authors. A detailed comparison of QTL positions detected

here and in other barley QTL mapping studies is given in

the Supplementary Material.

QTLs that were detected in three or four of our QTL

mapping strategies and are not yet described in the litera-

ture might be ‘‘new’’ QTLs. These are the QTLs QEar.S42-

4H.3 (‘‘ears per m2’’), QHea.S42-3H.2 (‘‘days until head-

ing’’), QHei.S42-4H.2 (‘‘plant height’’), and the QTLs

QTgw.S42-3H.2, QTgw.S42-4H.1, and QTgw.S42-4H.2

for the trait ‘‘thousand grain weight.’’ In general, the power

to detect a significant QTL with several statistical analyses

is higher with increasing heritability of the regarded trait.

In conclusion, Bayesian multi-locus multi-environmen-

tal QTL mapping seems to be a valuable strategy

accounting for both multiple loci and marker-by-environ-

ment interactions. This QTL analysis is suitable, especially

if the lines are cultivated in multi-environmental field

trials.

Table 5 continued

Marker Chr.a Pos.b Effect typec Env.d True effect Bayes singlee Bayes multif

Estimated effect Estimated effect (unstandardized) Occ. prob.g

65 5H 43 Ic 1 0.3 0 -0.21 0.06

2 0.9 0.92 0.98 0.86

3 -0.8 -0.06 -0.43 0.01

4 0 0 -0.42 0

5 -0.2 0 -0.43 0

6 -0.6 0 -0.42 0

75 6H 96 M 1 1.8 1.99 1.58 1

2 1.8 1.62 1.58 1

3 1.8 1.83 1.58 1

4 1.8 1.86 1.58 1

5 1.8 1.86 1.58 1

6 1.8 1.28 1.58 1

79 6H 135 M 1 0.2 0 0.08 0

2 0.2 0 0.08 0

3 0.2 0 0.08 0

4 0.2 0 0.08 0

5 0.2 0 0.08 0

6 0.2 0 0.07 0

92 7H 146 M ? Inc 1 2.5 2.45 2.06 1

2 2.5 2.50 2.06 1

3 0.6 0 0.84 0.02

4 1.2 1.24 2.06 1

5 2.5 2.32 2.06 1

6 2.5 2.71 2.06 1

Significant markers with chromosomal positions, effect type, environment, true and estimated effects and occupancy probabilities of marker

effects being higher than the significance threshold are shown
a Chromosomal location of the markers
b Position of the markers on the chromosome in centiMorgan (cM)
c Effect type of the marker: M = marker main effect; Ic = marker interaction effect (crossover); Inc = marker interaction effect (non-cross-

over); M ? Ic = marker main and interaction (crossover) effect; M ? Inc = marker main and interaction (non-crossover) effect
d In the computer simulation, the environment where the lines were cultivated
e Bayesian single-environmental QTL mapping
f Bayesian multi-environmental QTL mapping
g Occupancy probability of marker effects being higher than the significance threshold in Bayesian multi-environmental mapping
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In comparing REML and Bayesian QTL mapping

strategies, a Bayesian analysis can be computationally

demanding. In this study, REML analysis took about

20 min, whereas Bayesian analysis needed about 33 h for

the same trait in the spring barley population on a Pentium

IV 2.0 GHz processor. So, when performing Bayesian QTL

mapping, it is important to use efficiently programmed

MCMC estimation methods. On the other hand, in a

Bayesian framework all marker loci were considered

jointly in a single analysis which resulted in a valuable

method. Thus, the user has to decide if the gain of Bayesian

QTL mapping over other methods justifies the computional

burden.
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