Skip to main content
. 2009 Jun 11;284(33):22184–22194. doi: 10.1074/jbc.M109.015065

FIGURE 1.

FIGURE 1.

Secondary structure schematics of hFEN1 substrates. A, illustration of a general flap substrate created using a bimolecular approach whereby a template strand (T-strand), which partially folds into a hairpin, anneals with the duplex strand (d-strand). The T-strand hairpin creates the upstream dsDNA domain, whereas the d-strand base pairs with the T-strand to create the downstream dsDNA domain. The flap or any other structure is created by addition of nucleotides to the 5′-end of the d-strand. The interface between the upstream and downstream dsDNA domains may be viewed as a derivative of a two-way junction (74). Annealing of either the F(5), E, or G(15) d-strands with the T3F T-strand results in the formation of a (B) double flap substrate (Flap of 5-nt d-strand paired with a Template with a 3′-Flap, F(5)·T3F), C, exonuclease substrate with a 3′-extrahelical nucleotide (EXO d-strand paired with a Template with a 3′-Flap, E·T3F), and a D, fork-GEN substrate with a 3′-extrahelical nucleotide and a 15-nt ssDNA gap capped by a 23-nt hairpin structure (fork-Gap of 15-nt d-strand paired with a Template with a 3′-Flap, G(15)·T3F). E, annealing the F(5) d-strand with the T oligonucleotide creates a single flap (Flap of 5-nt d-strand paired with a Template, F(5)·T).