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Abstract
Recent advances have revealed that modification of chromatin structure is an important determinant
of cell fate and function. DNA methylation and covalent modifications of histone tails contribute to
changes in chromatin architectures, either enhancing or repressing gene expression. Another
mechanism underlying the modification of chromatin structure relies on the activity of the SWI/SNF-
related ATP-dependent chromatin remodeling complexes that control the accessibility of DNA
sequences to transcription factors. There is increasing evidence that one particular family of ATP-
dependent chromatin remodeling complexes based on the alternative DNA-dependent ATPases,
Brg1 and Brm, plays essential roles during neural development. This remodeling complex has
dedicated functions at different stages of neural development that appear to arise by combinatorial
assembly of its subunits.

Introduction
Vertebrate genomes contain about 30 genes encoding ATP-dependent chromatin remodeling
enzymes that are often subunits of large polymorphic complexes resembling the yeast SWI/
SNF complex [1]. Recent studies have revealed that one family of complexes based on the
Brg1 and Brm ATPases (BAF complexes) has particularly critical dosage-dependent roles in
the development of the nervous system [2–4]. Exchanges of subunits within BAF complexes
accompany the transitions from pluripotent, to multipotent stem cells and finally to post mitotic
neurons, and appear to be critical for these transitions [5,6].

ATP-dependent chromatin remodeling and the development of the
invertebrate nervous system

As summarized in Table 1, screens for genes involved in neurogenesis or morphogenesis of
dendrites of neurons in invertebrate systems identified subunits of BAF complexes to be
important for various aspects of neural development. Recently, Parrish et al. performed an
RNAi screening to identify transcription factors that influenced the dendrite formation of class
I da neurons in the peripheral nervous system (PNS) in Drosophila embryos [7]. Close
examination of defects in dendrite morphogenesis identified brahma (a Brg1/Brm homolog)
and its associated factors, Bap55 and Bap60 (BAF53b and BAF60 in vertebrates, respectively)
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to display misrouting phenotypes when their functions were reduced [7]. RNAi against
Bap55 and Snr1 (BAF47) also resulted in reduced arborization and lateral branching
phenotypes, implying the role of BAF complex in dendritic formation of neurons. Additionally,
reducing the function of moira (BAF170) and SAYP (a likely homologue of BAF45a [1])
caused abnormal commissures and loss of neurons in the PNS [8]. In C. elegans, loss-of-
function of most of the components of BAF complex lead to embryonic lethality [9], which
makes the analysis of neural phenotypes in later developmental stages difficult. In addition,
RNAi-based screening for neuronal phenotypes in growing larval stages has been difficult
owing to the inefficiency of RNAi in neurons in C. elegans. Recently, a RNAi-hypersensitive
mutant was isolated, which allowed genome-wide RNAi-screening to identify genes important
for axon-guidance in C. elegans [10]. Screening genes in chromosomes I and III, Schmitz et
al. identified ZK1128.5 (tag-246, a BAF60 homolog) whose reduced function resulted in axon-
guidance defects. In a separate study, Sawa et al. conducted mutagenesis screening to identify
genes important for organogenesis of the phasmid socket that arises from the neurogenic
asymmetric division of precursor-like T blast cells in C. elegans. Loss-of-function mutations
in two genes, psa-1 and psa-4 (BAF155 and Brg1, respectively) lead to phasmid socket absent
(Psa) phenotype resulting from a failure of T cells to generate neural cells [11]. psa-1 and
psa-4 mutations genetically synergized to enhance the Psa phenotype, suggesting that they act
in the same complex, and RNAi against other subunits, R07E5.3 (a BAF47 homolog),
tag-246 and C18E3.2 (homologs of BAF60) all resulted in the Psa phenotype, further
supporting the role BAF complex in the neurogenic asymmetric divisions of T cells. Although
it remains unknown whether the involvement of BAF complex is evolutionarily conserved, it
is noteworthy that the expression of Emx2, a homeobox gene proposed to be involved in
asymmetric division during neurogenesis [12] and Foxg1, the winged helix/forkhead
transcription factor that controls the timing of neurogenesis [13], are regulated by Brg1 in
neural progenitors [3].

Genetics and biochemical features of BAF complexes in mammals
In mammals, the composition of BAF complexes is polymorphic with subunits encoded by
homologous gene families, members of which assume mutually exclusive occupancy in the
complex [14–16]. The core ATPase subunit is encoded by Brg1 and Brm in mammals.
Although genome wide mapping in neurons has not been done, studies in embryonic stem (ES)
cells indicate that there are about 10,000 BAF binding sites per genome and about half of these
occur near genes most commonly near the transcription start sites [5]. Whereas inactivation of
Brm did not lead to any obvious neural phenotype [17], Brg1 appears to be important for various
aspects in neural development. Mice deficient with Brg1 die in pre-or peri-implantation stage,
and heterozygous mutants display defects in neural tube formation when developed into later
embryonic stages [3,18]. Similarly, mice homozygous with the null mutation of BAF155 (Srg3
or mSWI3) die during peri-implantation stage, and heterozygous mutants develop also with
neural tube defects [19]. Srg3/BAF155 was proposed to protect BAF complexes from
proteasomal degradation and affect the nuclear localization of the complex [20], suggesting
the requirement of functional BAF complexes during neural tube development. Recent studies
suggest that the neural tube defect seen with Brg1 or BAF155 mutations may arise from
improper maintenance and differentiation of neural progenitors. Conditional inactivation of
Brg1 using Cre recombinase specifically expressed in neural progenitors leads to exencephaly
which typically results from neural tube defects in developing embryos [3]. Whereas Brg1
inactivation in Xenopus lead to expansion of neural progenitors [21], the role of Brg1 in higher
vertebrates appears to be the opposite. Brg1 inactivation interfered with self-renewal of neural
progenitors and eventual reduction in neural progenitor population [3,22]. The reduced
proliferation with Brg1 deletion is specific for neural progenitors, as the absence of Brg1 in
fibroblasts did not lead to defects in survival and proliferation [18]. The inferred specific
function of BAF complex in the self-renewal of neural progenitors suggests that the neural
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tube defect may be due to the failure of proper maintenance and differentiation of neural
progenitors. While this hypothesis remains to be examined more thoroughly, recent
identification of Vangl1 and Vangl2 that were associated with congenital abnormalities of
neural tube formation in humans [23], may provide another explanation for the association
between the reduced function of BAF complex and neural tube defects. Vangl1 is expressed
in developing neural tubes in mouse embryos, and mice with loss-of-function for Vangl1 and
Vangl2 displayed defects in neural tube closure [24]. Our recent data suggest that Brg1 occupies
the promoter of Vangl1 at least in ES cells [5]. This observation raises the possibility that Brg1
may control the expression of Vangl1 in neural cells and may explain the gene dosage-
dependence on Brg1 and Vangl1 in neural tube phenotypes. More detailed analysis remains
necessary to determine the possible functional relationship between BAF complex and Vangl1
expression.

Physical interactors with BAF complex
Numerous studies identified proteins that interact with BAF complexes, and in this review, we
focus on a number of the interacting proteins important for neural development. The variety
of interactions appears to arise from the different subunit compositions of the complexes such
that the chromatin remodeler is tailored to the needs of a specific cell type (Figure 1). Neural
restrictive silencing factor (NRSF or REST) is a zinc finger domain transcription factor that
binds to its target sites (RE1) and represses its target genes by recruiting its co-repressors
(CoREST, MeCP2 and Sin3A) [25–28]. NRSF/REST expression is restricted to non-neuronal
cells, and the reduced activity of NRSF/REST in neurons allows the expression of neuronal
genes [25–27]. BAF57, BAF170 and Brg1 were shown to form a larger complex with NRSF/
REST and its co-repressors [29]. Moreover, the repressor activity of NRSF/REST on its target
genes required a functional BAF complex; Brg1 was recruited to RE1 sites of NRSF/REST
target genes mediated by the interaction between the bromo domain of Brg1 and NRSF/REST.
Inhibiting Brg1 activity resulted in increased expression of NRSF/REST target genes, implying
a synergistic relationship between BAF complex and NRSF/REST in controlling the
expression of neuronal genes [29]. Similar results were shown in a separate study where
abnormal expression of neuronal genes is elevated in lung carcinoma cells when Brg1 was
inhibited, and suppressed by exogenous expression of Brg1 [30]. Brg1 also enhanced
deacetylation of histone H4 around the binding sites of RE-1, suggesting the mechanistic
relationship between BAF complex, NRSF/REST and the chromatin architecture to inhibit
NRSF/REST target genes [30]. Although these studies were performed using immortalized
and carcinoma cell lines and need further confirmation in animal models, they strongly suggest
an important role of BAF complex in controlling neuronal gene expression. Interestingly,
depletion of Brg1 in neural progenitors is associated with increased expression of several
neuronal genes including Calbindin1 and Down syndrome cell adhesion molecule (Dscam)
([3], unpublished data), also predicted to be targets of NRSF/REST [31]. Dscam was recently
shown to be important for neurite morphogenesis [32] and axon guidance [33]. Furthermore,
overexpression of human MeCP2 in neurons, the eye and wing veins lead to impaired motor
function, glassy external eye and extra vein phenotypes, respectively in Drosophila[34]. These
phenotypes were suppressed by the reduced function of Osa (BAF250 homolog in Drosophila),
supporting the role of BAF complex for NRSF/REST activity [34].

Geminin, a key regulator of cell cycle progression, was also found to physically interact with
Brg1 in HEK293 cell extracts, and the synergistic genetic interaction between Brg1 and
Geminin was suggested by the enhancement of phenotypes caused by Brg1 inhibition with
overexpressing Geminin in Drosophila [35]. Brg1 mediates the transactivation of neuronal
genes by basic Helix-loop-helix (bHLH) transcription factors Neurogenins and NeuroD [21].
Geminin was shown to interfere with the Brg1-mediated activation of neuronal genes by
competing with Brg1 to bind bHLH factors [35]. Morever, loss of Brg1 function or Geminin
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overexpression interfered with NeuroD-mediated neuronal differentiation of P19 cells [21,
35]. Overexpression of Geminin also enhanced Sox2 expression, which was abolished by
dominant negative form of Brm in chick embryos, indicating a role of BAF complexes in
regulating Sox2 [36]. As Sox2 is essential for the maintenance of neural progenitor cells [37],
the depletion of neural progenitor population seen with reduced Brg1 function [3] may be
related to the consequent dysregulation of Sox2 expression. In ES cells, Brg1 is part of an ES
cell-specific complex, esBAF, which binds to the Sox2 gene and is essential for Sox2
expression [5,6].

Activity dependent neuroprotective protein (ADNP), whose haplodeficiency also leads to
defects in neural tube formation in mice [38], was shown to interact with BAF complexes
[39]. Using anti-GFP antibody to purify proteins that interact with ADNP-GFP fusion protein
in HEK293 cell lines, Brg1, BAF250a and BAF170 were recovered as interactors with ADNP.
Similar results were separately shown where BAF complex purification using Brg1 antibody
recovered ADNP in P0 mouse brain extract ([3], unpublished data) and in ES cells [6].
Interestingly, inhibiting ADNP activity lead to reduced neurite numbers in P19 cell-derived
neurons [40], a phenotype similar to that seen when BAF complex activity is compromised in
hippocampal neurons [4].

BAF subunit switching during neural development
In mammals, the composition of BAF complexes is highly polymorphic due to multiple gene
families that encode the subunits. The resulting combinatorial assembly of BAF complexes
plays an essential role during neural development. Two subunits, BAF45a and BAF53a are
assembled into BAF complexes in neural progenitors (designated as npBAF complex). During
neuronal differentiation, the expression of BAF45a and BAF53a diminishes and their places
are replaced by homologous members, BAF45b and BAF53b (nBAF) specifically expressed
in post-mitotic neurons [3]. The npBAF complex is dedicated to maintain self-renewal capacity
of neural progenitors evidenced by the reduced proliferation of neural progenitors with BAF45a
or BAF53a inhibition and increased proliferation with BAF45a overexpression [3]. Expressing
BAF45b in progenitors did not have an effect on proliferation indicating that the progenitor-
specific function of npBAF was governed by the BAF subunits dedicated to neural progenitors
[3]. A recent report proposed that BAF60c (which is essential for heart morphogenesis [41])
is also an npBAF subunit [42]. BAF60c expression was enriched in neural progenitors and
absent in differentiated neurons in the developing brain and neural tubes of mouse embryos,
and overexpression of BAF60c enhanced proliferation of progenitors as with BAF45a and
BAF53a [42]. BAF60c enhances Notch signaling as BAF60c stabilizes the interaction between
activated Notch (NICD) and its DNA-binding partner, RBP-j [43]. The NICD-RBP-j-
dependent transcription for Nodal and Hes1 required functional Baf60c and Brg1 function
[43]. Notch signaling inhibits neuronal differentiation and maintains neural progenitors by
inducing expression of the basic Helix-loop-helix (bHLH) factors Hes1 and Hes5 that in turn
repress expression of proneural genes and Notch ligand genes [44–46]. Furthermore, inhibiting
RBP-j results in precocious differentiation of progenitors, thus sustained activation of Notch
signaling is critical for keeping the proliferative state of progenitors [47]. Microarray analysis
of genes affected by depletion of Brg1 in neural progenitors identified components of Notch
signaling pathway to be reduced [3], further suggesting the involvement of npBAF in
maintaining neural progenitors by enhancing Notch signaling pathway. The expression of
Rhomboid, a target of Notch signaling in Drosophila gut tissue [48], was decreased with
reduced function of Brg1 in progenitors [3]. Meanwhile, Jagged 1, one of the ligands for Notch
important for self-renewal of neural stem cells [49], was increased with reduced function of
npBAF. Jagged 1 is expressed in the subventricular zone of postnatal brain lining the ventricle
juxtaposed to Notch-expressing neural stem cells and colocalizes with the non-neuronal GFAP-
positive cells [49], suggesting that npBAF functions to minimize the expression of Jagged 1
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in neural progenitors. Interestingly, mutagenesis screening for modifying phenotypes caused
by overexpressing dominant-negative form of brahma maps to mutations of genes in Notch
signaling pathway in Drosophila [50].

As npBAF function is specialized in promoting self-renewal of neural stem cells, nBAF appears
to be dedicated to neuron-specific functions. Null mutation of BAF53b lead to defect in
activity-dependent dendritic outgrowth of neurons [4]. BAF53a overexpression did not rescue
this lethal phenotype indicating that combinatorial assembly of these complexes produces
specific biological functions. During the purification of endogenous nBAF complexes peptides
were found from CREST, which promotes activity-dependent dendritic formation: i) CREST
and Brg1 both control dendritic formation upon stimulation of neurons, ii) CREST and nBAF
complex physically interact, and iii) they synergistically target ephexin1 that promotes
dendritic formation. Ephexin1 expression is reduced by either reducing CREST or BAF53b
activity [4]. A recent study also found Brg1 to interact with CREST, and to repress the
activation of c-fos by Brg1-dependent recruitment of HDAC and Rb [51]. Upon stimulation
and Ca2+ influx, calcineurin-dependent dephosphorylation of Rb releases HDAC, allowing
acetylation of H4 histone subunit and the subsequent activation of target genes by CREST/
CREB-mediated recruitment of CBP, a transcriptional coactivator [51]. However, the
observation that loss-of-function of BAF53b leads to decreased expression of Ephexin1 [4],
another target of CREST, implies that the simplistic view of Brg1’s function as a general
repressor of activity-dependent program is likely to be more complicated. In addition, c-fos
transcription was not found to be changed in Brg- or BAF53b-mutant mice [3,4]. Future
directions should be geared towards elucidating how nBAF complexes can be both activators
and repressors. Interestingly, in C. elegans, loss-of-function mutations in lin-35 (a homolog of
Rb) genetically synergize with psa-1 (BAF155) to augment the defect in asymmetric division
of T cells [52], suggesting the conservation of the functional relationship between BAF
complexes and Rb.

Pluirpotent ES cells contain another specialized form of BAF complexes termed esBAF,
distinguished by the presence of a BAF155 homodimer (but not BAF170) and Brg1 (but not
Brm). esBAF complexes are an essential component of the core pluripotency transcriptional
circuit and appear to be tailored to interact with ES cell specific transcription factors such as
Oct4, Dppa2, Dppa4 and Sox2 thereby providing robustness and stability to an undifferentiated
state [5,6]. Thus, the three separate transitions from pluripotent stem cell, to neural stem cell
to post-mitotic neuron are accompanied by changes in subunit composition (figure 2). While
more studies are needed, the changes in subunit composition appear to be critical to each
transition. One possible meaning of these subunit exchanges could be that the complexes must
be tailored to interact with the ambient set of transcription factors at each stage of neural
determination and later neural function. Additional genetic and biochemical studies will be
essential to test this speculation.

Conclusion
ATP-dependent chromatin remodeling has generally been considered to play a permissive role
in development. However, recent evidence is suggesting a far more complex and programmatic
function in the development of the nervous system of both invertebrates and vertebrates. The
combinatorial assembly of the complexes makes genetic analysis complicated, yet current
evidence indicates that combinatorial assembly underlies refinement and specificity of their
functions.
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Figure 1.
A model of BAF complex activity in neural progenitors and post-mitotic neurons based on
previously identified interactors. Subunits of BAF complexes contain motifs known to bind to
histones, including bromo-, chromo- and PHD domains. npBAF likely activates Hes1 and Hes5
downstream of Notch signaling through BAF60c and in turn inhibit differentiation and promote
proliferation in progenitors. Through the interaction with NRSF/REST, npBAF would
facilitate the inhibition of neuronal genes (shown in red enclosure). It is not currently known
whether the subunit switching of BAF complex during differentiation would interfere with the
interaction with NRSF/REST. Neuron-specific nBAF complex has a specific function
dedicated to the neuronal function. BAF53b was shown to promote activity-dependent
dendritic outgrowth of neurons mediated by CREST (shown in blue enclosure). One of the
genes regulated by nBAF-CREST complex to promote the dendritic outgrowth is Ephexin1
[4].
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Figure 2.
Schematic diagrams depicting subunit compositions specific for ES cells (esBAF), neural
progenitors (npBAF) and post-mitotic neurons (nBAF). The arrows indicate the self-renewal
capacity of ES cells and neural progenitors.
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Table 1
Summary of components of BAF complex and the phenotypes associated with their reduced function in invertebrates.

Mammals Drosophila Neural phenotype
(Drosophila)

C. elegans Neural phenotype (C. elegans)

Brg1/Brm brahma Misrouting defect in dendrite
morphogenesis

psa-4 Psa phenotype (defect in symmetric division
T blast cells)

BAF45a/b/c/d SAYP Lack ventral commissures C28H8.9 N/A

BAF47 Snr1 Increased primary branch
extension; reduced lateral
branching defect in dendrites

R07E5.3 Psa phenotype

RNAi: 100% embryonic lethality → zygotic

RNAi: Psa phenotype

BAF53a/b Bap55 Reduced arborization,
misrouting defect in dendrite
formation

ZK616.4 N/A

BAF57 Dalao/Bap111 N/A Y71H2AM.17 N/A

BAF60a/b/c Bap60 Misrouting defect in
dendrites

tag-246 RNAi: Psa phenotype, axon-guidance defect

C18E3.2 RNAi: 50% embryonic lethality → escapers
have Psa phenotype

BAF155/SRG3 moira Abnormal commissures and
loss of neurons in the
peripheral nervous system

psa-1 Psa phenotype

BAF170 moira Same as above psa-1 Same as above

BAF180 Polybromo/
Bap180

N/A pbrm-1 N/A

BAF200 Bap170 N/A C08B11.3 N/A

BAF250a/b Osa N/A psa-10/let-
526

Psa phenotype (Uchida, M and Sawa, H,
personal communication)
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