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ABSTRACT Ischemia-induced shortening of the cardiac action potential and its heterogeneous recovery upon reperfusion are
thought to set the stage for reentrant arrhythmias and sudden cardiac death. We have recently reported that the collapse of mito-
chondrial membrane potential (DJm) through a mechanism triggered by reactive oxygen species (ROS), coupled to the opening
of sarcolemmal ATP-sensitive potassium (KATP) channels, contributes to electrical dysfunction during ischemia-reperfusion.
Here we present a computational model of excitation-contraction coupling linked to mitochondrial bioenergetics that incorporates
mitochondrial ROS-induced ROS release with coupling between the mitochondrial energy state and electrical excitability medi-
ated by the sarcolemmal KATP current (IK,ATP). Whole-cell model simulations demonstrate that increasing the fraction of oxygen
diverted from the respiratory chain to ROS production triggers limit-cycle oscillations of DJm, redox potential, and mitochondrial
respiration through the activation of a ROS-sensitive inner membrane anion channel. The periods of transient mitochondrial
uncoupling decrease the cytosolic ATP/ADP ratio and activate IK,ATP, consequently shortening the cellular action potential dura-
tion and ultimately suppressing electrical excitability. The model simulates emergent behavior observed in cardiomyocytes sub-
jected to metabolic stress and provides a new tool for examining how alterations in mitochondrial oxidative phosphorylation will
impact the electrophysiological, contractile, and Ca2þ handling properties of the cardiac cell. Moreover, the model is an important
step toward building multiscale models that will permit investigation of the role of spatiotemporal heterogeneity of mitochondrial
metabolism in the mechanisms of arrhythmogenesis and contractile dysfunction in cardiac muscle.
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INTRODUCTION

The regulation of cardiac function involves a variety of

intrinsic (e.g., muscle length, stimulation frequency, and

metabolic) and extrinsic (e.g., sympathetic and parasym-

pathic regulation, circulating hormone levels, regional

blood flow, workload) mechanisms that interact to match

cardiac output to the energy demands of the body. A healthy

heart can increase its workload significantly (four-to-six

times), and normal contractile function is supported by

continuously adjusting the rate of mitochondrial oxidative

phosphorylation to maintain a steady supply of ATP for

sarcomere shortening, Ca2þ cycling, and ion homeostasis

(1). However, under disease conditions, such as ischemia-

reperfusion, the exquisite regulation of metabolic and elec-

trophysiological processes may become dysfunctional, often

resulting in alterations in ionic balance and the abrupt loss of

cardiac function in the form of fatal cardiac arrhythmias and/

or contractile failure. Based on observations in isolated

perfused hearts (2), we have proposed that the failure of

the mitochondrial network to maintain DJm underlies reper-

fusion arrhythmias.

More than a decade ago, we observed spontaneous self-

sustaining oscillations of sarcolemmal adenosine triphos-

phate (ATP)-sensitive potassium current (IK,ATP) in cardiac

myocytes subjected to metabolic stress. These oscillations

were correlated with transient decreases in NADH fluores-
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cence and could be modulated by glucose (3). We pro-

posed that such changes in IK,ATP, by altering the cardiac

action potential and refractory period, might contribute to

an arrhythmogenic substrate during ischemia-reperfusion.

Cardiac sarcolemmal ATP-sensitive Kþ (KATP) channels

(4) are comprised of an inwardly rectifying Kþ channel,

Kir6.2, and a regulatory sulfonylurea receptor, SUR2a

(5,6). KATP channels are directly gated by intracellular

ATP and Magnesium adenosine diphosphate (MgADP)

and have low probability of opening under normal condi-

tions. However, when the cellular ATP/ADP ratio decreases,

open probability of these channels increases, setting mem-

brane potential close to the equilibrium potential for Kþ

(7). Because IK,ATP is a weak inward rectifier, the additional

outward current hastens repolarization and increases the

threshold for firing an action potential (AP), thus, KATP

channels directly couple the cell’s energy state to its electri-

cal activity.

We have previously demonstrated that metabolic stress in

the form of substrate deprivation or localized laser flash can

trigger cellwide oscillations or collapse of mitochondrial

membrane potential in isolated cardiomyocytes (3,8,9),

which can be interrupted or prevented either by employing

ROS scavengers or applying ligands of the mitochondrial

benzodiazepine receptor, which are known inhibitors of an

inner membrane anion channel (IMAC) (8). The coordinated

behavior of mitochondria in the cardiac cell in these experi-

ments led to the concept of mitochondrial criticality, in

which the level of oxidative stress on the mitochondrial
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network builds to critical threshold, when DJm either

collapses or oscillates between the energized and deener-

gized states in a synchronized manner throughout the whole

cell (8,10). The mechanism involves mitochondrial reactive

oxygen species (ROS) triggering the activation of IMAC

in a positive feedback loop causing energy dissipation and

the uncoupling of oxidative phosphorylation. Because the

mitochondrial F1FO ATPase is reversible, the uncoupled

mitochondria consume intracellular ATP stores, driving the

activation of the KATP channel (11) and consequently

producing significant changes in the action potential duration

(APD).

The underlying biological processes are highly nonlinear,

and depend upon subcellular compartmentation and

complex interactions between metabolic and electrophysio-

logical networks that cannot be easily understood without

a comprehensive model as a tool. Furthermore, it is techni-

cally very difficult to simultaneously measure metabolites,

ions, metabolic fluxes, and currents in experiments on

cardiomyocytes. Hence, this work was undertaken to study

these interactions in a mathematical model. Specifically,

a recently published integrated model of the cardiomyocyte

(12) was further developed by incorporating a ROS-

induced ROS release mechanism (RIRR) and sarcolemmal

KATP channels. The model (ECME-RIRR) integrates mito-

chondrial energetics, ROS-induced ROS release, cellular

electrophysiology, excitation-contraction coupling, and

myofilament activation. The dynamics of DJm, NADH,

ROS, and respiration rate in response to oxidative stress

are simulated, and the effects of these energetic changes

on cytosolic ATP/ADP ratio, KATP current, and APs are

investigated.
METHODS

Model development

Our model is based on our previous model of mitochondrial energetics and

excitation-contraction coupling (ECME) (12), which was modified to incor-

porate a mitochondrial ROS-dependent oscillator that we have described in

experimental (8,10) and modeling studies (13). In addition, the sarcolemmal

ATP-sensitive potassium current (IK,ATP) (14) was incorporated to examine

the relationship between mitochondrial energetic state and cellular electrical

activity. The general scheme of E-C coupling, mitochondrial energetics, and

ROS-induced ROS release (ECME-RIRR) is shown in Fig. 1. In the inte-

grated model, the metabolic, electrophysiological, and mechanical compo-

nents of the heart cell are linked through the high-energy phosphate pools,

i.e., ATP, ADP, and phosphocreatine, as well as through ions, including

Ca2þ and Naþ in the cytoplasm and mitochondrial matrix (Fig. 1).

The model development used a modular strategy, whereby the formula-

tion of each process, such as an ionic current or metabolic reaction rate,

was tested separately using MATLAB 7.0.1 (The MathWorks, Natick,

MA) to assure that it reproduces the best available experimental data within

the boundaries of the physiological parametric range. Once the behavior of

each module proved satisfactory, cellular subsystems were then joined and

tested before linkage with other model components. The general strategy

of model development emphasizes the interactions between the various

blocks in the model. The dynamics of each species/ion were described by

mass balance equations, and the assembled integrative model was coded

in Cþþ in the development environment of Microsoft Visual Studio (Micro-

soft, Redmond, WA).

Mitochondrial ROS-induced ROS release

Under normal conditions, ROS produced by the electron transport chain serve

as important signaling molecules that protect cells against injury (15–17).

However, under pathological conditions, such as during ischemia-reperfu-

sion, mitochondrial ROS can trigger a larger burst of ROS, or RIRR, a concept

previously put forward to explain mitochondrial permeability transition pore-

opening in response to laser illumination (18). This concept was also applied

to explain the activation of IMAC, a mitochondrial ion channel inhibited by
FIGURE 1 General scheme of the E-C coupling, mito-

chondrial energetics, and ROS-induced ROS release

(ECME-RIRR) model. The electrophysiological module

describes the major ion channels underlying the action

potential (e.g., ATP-sensitive potassium channel) and the

processes involved in Ca2þ handling (e.g., transport of

Ca2þ across the sarcolemma, SR), and the inner mitochon-

drial membrane channels (e.g., Ca2þ uniport). The mito-

chondrial module accounts for the major components of

mitochondrial energetics such as the TCA cycle and oxida-

tive phosphorylation. The RIRR module describes ROS

production (from the electron transport chain), transport

(through IMAC), and scavenging (e.g., by the superoxide

dismutase and glutathione peroxidase enzymes). The mito-

chondrial energetics and ROS are linked to cellular electri-

cal activity through the KATP current, which is activated

when the ADP/ATP increases.

Biophysical Journal 97(7) 1843–1852



ECME-RIRR Cardiomyocyte Model 1845
mitochondrial benzodiazepine receptor ligands, but not cyclosporin A (8).

IMAC activation leads to the rapid discharge of DJm in a synchronized

and oscillatory fashion that is closely coupled to changes in the electrophys-

iology of the cardiac cell. Inhibition of mitochondrial collapse through this

mechanism also prevented reperfusion arrhythmias after 30 min global

ischemia in guinea-pig (2) or rabbit (19) hearts.

To quantitatively simulate the effect of mitochondrial ROS-induced oscil-

lations on cellular electrophysiology and function, RIRR was incorporated

into the model by

1. Shunting a fraction of the electrons of the respiratory chain toward the

generation of O2$
�,

2. Adding a cytoplasmic ROS scavenging system, and

3. Adding a ROS-activated inner membrane anion channel, based on

our previous work, to develop an isolated mitochondrial oscillator

model (13).

Modeling the sarcolemmal KATP current

To quantitatively investigate the effect of mitochondrial energetics on

cellular electrophysiology and cellular APs, a KATP current model was incor-

porated into the integrated ECME-RIRR model. This comprehensive KATP

channel model has been described in detail by Ferrero et al. (14). Briefly, the

total current density through the KATP channels was described as

IK;ATP ¼ s � g0 � p0 � fATP � ðVm � EK;ATPÞ;
where s is the channel density, g0 is the unitary conductance, p0 is the

maximum channel open probability, fATP is the fraction of activated chan-

nels, Vm is the membrane potential, and EK,ATP is the reversal potential of

the channel. In the cardiomyocytes, fATP is strongly dependent upon the

levels of [ATP]i and free [ADP]i,

fATP ¼
1

1 þ
�
½ATP�i=Km

�H
;

with

Km ¼ 35:8 þ 17:9 � ½ADP�Km;KATP

i

and

H ¼ 1:3 þ 0:74 � eð�HKATP � ½ADP�iÞ;
where Km,KATP and HKATP are model parameters.

The dynamics of sarcolemmal membrane potential were modified from

the original ECME model by adding the KATP current:

dV

dt
¼

� 1

Cm

�
INa þ ICa þ ICa;K þ IK þ IK1

þ IKp þ INaCa

þ INaK þ IinsðCaÞ þ IpCa þ ICa;b þ INa;b þ IK;ATP

�
:

The rate expressions of other currents included in this equation (such as INa

and ICa) and metabolic reactions, as well as the mass or ion balance

equations, were the same as those described in the ECME model (12) and

are listed in the Supporting Material.

Simulation protocol

The complete model consists of 54 nonlinear ordinary differential equations

(ODEs), which were integrated numerically by CVODE, a stiff ODEs solver

in C developed by Cohen and Hindmarsh that uses variable coefficient

Adams and BDF methods (http://citeseer.ist.psu.edu/1230.html). The model

parameters were either obtained directly from the literature or determined by

minimizing the differences between model simulations and experimental
data. The parameters of the ECME model were same as in the original model

(12) (parameter sets are included in the Supporting Material). The parame-

ters of the RIRR model and KATP channel model were modified slightly

from those in the original models, as listed in Tables 1 and 2, respectively.

Before testing model responses to the external stimulation, the behavior of

the resting cardiomyocyte was simulated to obtain steady-state values,

which were used as initial conditions for all runs in a series of in silico exper-

iments. Subsequently, the model was run for ~400 s with pacing at various

frequencies of 0.25, 0.5, 1, and 2 Hz. Oxidative stress was induced by

increasing the fraction of ROS produced from the electron transport chain

as a byproduct of respiration (shunt). Simulation results were analyzed using

Microcal Origin 7.5 (Microcal Software, Northampton, MA). APD was

defined as the interval between the time of the maximum upstroke velocity

of the action potential, [dV/dt]max, and 90% repolarization.

RESULTS

Comparison of model-simulated KATP current
with experimental data

The model of the KATP channel developed by Ferrero et al.

(14) was tested separately before being incorporated into

the ECME-RIRR model. The results were in accord with

those obtained experimentally from isolated cardiomyocytes

(20) (Fig. 2 A). KATP current was inhibited by an increase

ATP and the ability of ATP to suppress KATP current was

TABLE 1 Parameters for ROS-induced-ROS-release model

af 1.0e4 Activation factor by cytoplasmic O2$
� .

Kcc 0.01 Activation constant of IMAC by O2$
� (mM).

G_L 0.035e-6 Leak conductance for IMAC (mM/ms/mV).

G_max 3.9085e-6 Integral conductance of IMAC at saturation

(mM/ms/mV).

Kappa 0.07 Steepness factor (/mV).

Em 4 Potential at half-saturation (mV).

k1_SOD 1.2e3 Second-order rate constant of conversion

between native oxidized and reduced SOD

(mM/ms).

k5_SOD 0.25e-3 First-order rate constant for conversion

between inactive and active oxidized SOD

(/mM/ms).

k3_SOD 24 Second-order rate constant of conversion

between native reduced SOD and its inactive

form (/mM/ms).

etSOD 1.43e-3 Intracellular concentration of SOD (mM).

kki 0.5 Inhibition constant for H2O2 (mM).

k1_CAT 17 Rate constant of CAT (/mM/ms).

etCAT 0.01 Intracellular CAT concentration (mM).

fr 0.05 Hydrogen peroxide inhibition factor for CAT.

EtGPX 0.01 Intracellular GPX concentration (mM).

Phi1 0.5e-2 Constant for GPX activity (mM ms).

Phi2 0.75 Constant for GPX activity (mM ms).

K1_GR 5.0e-3 Rate constant of GR (/ms).

etGR 0.01 Intracellular GR concentration (mM).

Km_GSSG 0.06 Michaelis constant for oxidized glutathione

of GR (mM).

Km_NADPH 0.015 Michaelis constant for NADH for GR (mM).

NADPH 1 Total NADH pool (mM).

GT 1 Total glutathione pool (mM).

shunt 0.02 Fraction of O2 to form superoxide.

j 0.1 Fraction of IMAC conductance.

SOD; superoxide dismutase, CAT; catalase, GPX; glutathione peroxidase,

GR; glutathione reductase.
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significantly reduced by increasing [ADP]i; that is, increasing

ADP concentration (e.g., from 0 to 300 mM) shifted the ATP

versus IK,ATP curve to the right. The KATP channel activity

was also affected by the extracellular potassium concentration

([K]o). As observed in experiments (21) and in our simula-

tions, increasing [K]o decreases the current, especially when

the membrane potential is depolarized (Fig. 2 B).

Oxidative stress-induced mitochondrial
oscillations

Our previous experimental studies showed that a highly

localized laser flash could induce cell-wide mitochondrial

oscillations in isolated cardiomyocytes, which involve depo-

larization of DJm and ROS generation, with concomitant

shortening of the cellular AP (8,10). To validate the inte-

grated ECME-RIRR model, we simulated the responses of

mitochondria to oxidative stress by increasing the ROS shunt

from 0.02 to 0.10. Oxidative stress triggered sustained oscil-

lations in [ROS]i, [ROS]m, DJm, and [NADH], associated

with bursts in the mitochondrial respiration rate (Fig. 3 C)

and ROS production rate (data not shown). In addition,

TABLE 2 Parameters for sarcolemmal KATP channel model

s 0.6 Channel density (channels/mm2).

g0 30.95 Channel unitary conductance.

p0 0.91 Maximum channel open probability.

EK-ATP �94.02 KATP channel reversal potential (mV).

HKATP �0.001 Hill coefficient constant.

Km,KATP 0.56 Km constant.

surf 104 Cell surface (mm2).
DJm depolarization occurred in concert with oxidation of

NADH (Fig. 3 B), with ROS concentration in both the cyto-

plasm and mitochondria peaking during the rapid uncoupling

of oxidative phosphorylation (Fig. 3 A). Finally, when DJm

depolarizes, there is a significant decrease in the rate of mito-

chondrial ATP production, which switches over to net ATP

consumption (Fig. 3 D), even while respiration rate increases

(Fig. 3 C), indicating that uncoupled mitochondria deplete

ATP and increase intracellular ADP/ATP ratio.

Shortening of APD during mitochondrial
depolarization

ROS triggered oscillations in DJm produced phasic changes

in cytosolic ATP concentration, sarcolemmal KATP current,

and APD (Fig. 4; for better visualization, an expanded

view of the depolarization phase is shown). It is apparent

that there is a moderate decrease in ATP concentration

(from 7.9 mM to 7.08 mM) when DJm is depolarized, but

a much larger relative increase in the ADP concentration,

given that ADP concentration is typically an order-of-magni-

tude lower than ATP, and the total adenine nucleotide pool is

constant (8 mM) in the model. The threefold increase in the

ADP/ATP ratio (from 0.018 to 0.056) was responsible for

the activation of the KATP channels and the rapid increase

in membrane current (Fig. 4 A, dotted line). These changes

were reversible—when DJm repolarized, the ADP/ATP

ratio recovered, and the KATP channels were inactivated.

The activation of KATP current during DJm depolarization,

as expected, caused significant shortening of the cardiac
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cell APD (from 170 ms to 43 ms, Fig. 4 B insets and Fig. 5

A). Further increases in KATP current resulted in more short-

ening of the ADP; an increase of KATP channel density from

0.6 to 1.2 channels/mm2 resulted in an IK,ATP increase from

2.11 to 3.82 nA and additional APD shortening from 43 to

23 ms. When the channel density was raised to 3.8 chan-

nels/mm2, the cell became electrically inexcitable (green
record, Fig. 5 A). The amplitude of the AP was also

partially suppressed when IK,ATP was very large (Fig. 5 A).

The action potential morphology was also affected by

parameters that influenced mitochondrial RIRR. Increasing

ROS production (shunt) over the range from 10% to 12%

resulted in a decrease of APD in both the duration (from

43 to 18 ms) and amplitude during DJm depolarization,

while decreasing the shunt to 7% had the opposite effect

(Fig. 5 B). ATP synthase activity (rhoF1) also influenced

the action potential, by determining the rate of ATP hydro-

lysis when the mitochondria depolarized. Increasing rhoF1

by 60% shortened the APD from 43 to 28 ms, and

decreasing rhoF1 by 60%, on the contrary, significantly

prolonged the APD and increased the AP amplitude

(Fig. 5 C).
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Effect of elevated energy demand on
mitochondrial oscillations and cellular
electrophysiology

A decreased energetic demand subsequent to the opening of

sarcolemmal KATP channels has been proposed to be cardio-

protective by reducing Ca2þ influx and contraction (22–24).

Model simulations showed that force was suppressed

when KATP current increased during DJm depolarization

(Fig. 6 A). To examine the effects of mitochondrial energy

state on cardiac function, the effects of external electrical

stimulation on cellular metabolic and electrophysiological

activities were simulated by changing the pacing frequency

from 0.25 to 0.5, 1.0, or 2 Hz. Increasing pacing frequency

significantly decreased the dynamic and steady-state cyto-

plasmic ATP concentrations, especially at 2 Hz (Fig. 6 B).

Faster pacing shortened the cycle length of DJm oscilla-

tion by abbreviating both the repolarization and depolariza-

tion phases, indicating faster mitochondrial oscillations (the

oscillation period was reduced from 103 to 76 s when the
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frequency was raised from 0.25 to 2 Hz). The increased stim-

ulation rates had minor effects on the amplitude of DJm, but

significantly increased the amplitude of KATP current,

especially at the low end of the frequency range (e.g., 0.25

or 0.5 Hz) (Fig. 7, A and B). However, when the pacing

frequency was higher (e.g., 1 or 2 Hz), the [ATP]i was lower,

even when DJm was polarized, resulting in activation of

KATP current (Fig. 7, C and D) and shortening of APD

(data not shown).

DISCUSSION

This work provides, for the first time to our knowledge,

a computational framework to examine the nonlinear emer-

gent properties of the cardiac cell under oxidative stress.

Under metabolic stressors such as ischemia-reperfusion or

antioxidant depletion, mitochondrial membrane potential

(DJm) has been shown to collapse abruptly, or to undergo

slow period oscillation (~0.01 Hz), both in isolated cardio-

myocytes (3,8,25) and intact hearts (26). The remarkable

interplay between the mitochondrial energy state and cellular

electrical excitability is demonstrated by the model, mani-

fested as synchronized oscillations in DJm, ROS, NADH,

and APD. The effect of changing stimulation frequency
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also revealed significant interactions between E-C coupling-

mediated changes in ATP utilization and energetics.

Coupling between depolarization of DJm, KATP

current activation, and action potential
morphology

KATP channels have a low open probability under physiolog-

ical conditions, but are rapidly activated during ischemia or

metabolic inhibition (4,22). The increased Kþ conductance

tends to lock the resting membrane potential close to the equi-

librium potential for Kþ (EK); for example, after 10 min of

ischemia, resting membrane potential is equal to EK (27).

KATP activation can occur even though total cellular ATP

has not been fully depleted because the open probability is

increased when cofactors like ADP, pH, and Mg2þ increase.

Mitochondrial uncoupling accelerates KATP current activa-

tion because the drop in DJm causes the ATP synthase to

run in reverse, thus consuming cytoplasmic ATP and

decreasing the phosphorylation potential. Tight coupling

between the mitochondrial energy state and the sarcolemmal

KATP current is facilitated by the high-energy phosphoryl

transfer reactions of the cytoplasm (11). The close correspon-

dence between APD and DJm has been demonstrated in our

previous work on myocytes exposed to local oxidative stress

(8) and the model produced results that were very similar to

the experimental observations. During the phase of mitochon-

drial depolarization, the AP shortened by almost 75% (Fig. 4)

and the intracellular Ca2þ transient amplitude (not shown)

and force production decreased (Fig. 6). The negative feed-

back on E-C coupling during DJm depolarization in the simu-

lation was primarily due to the action potential shortening,

which decreases Ca2þ entry and sarcoplasmic reticulum

Ca2þ loading on each beat. These results were in agreement

with our previous experimental observations showing a

decline in the Ca2þ transient amplitude during metabolic

oscillations triggered by substrate deprivation (3).

A feedforward effect of pacing frequency on the mitochon-

drial oscillator was also observed (Fig. 6 B and Fig. 7). Higher

frequency stimulation corresponded to a decreased period

for the mitochondrial oscillator. This effect was due to the

increased energy demand, which resulted in lower ATP levels

at higher frequencies and higher mitochondrial respiration

rates. The higher mitochondrial respiration rate also increased

ROS production since the ROS shunt was described as a frac-

tion of the total oxygen consumption. This model prediction

requires experimental testing in the future.

Comparison with previous integrated models

The major advance of the ECME-RIRR model is that it

explicitly accounts for mitochondrial energetics, cellular

ATPase reactions, high energy phosphate buffers (e.g., the

creatine kinase/phosphocreatine reaction), and the RIRR

mechanism, which permits examination of the sequence of

events that activate IK,ATP during oxidative stress. There

have been several previous attempts to model the interac-

tions between mitochondrial bioenergetics and other cellular

subsystems like Ca2þ cycling and plasmalemmal ion chan-

nels. To explain how glucose promotes bursting electrical

behavior linked to insulin release in pancreatic beta cells,

Keizer and Magnus (28) modeled mitochondrial ATP

production linked to glucose oxidation in a whole-cell model

that incorporated membrane ion channels and Ca2þ

handling. An increase in the ATP/ADP ratio induced by

glucose oxidation modulated the bursting and continuous

spiking electrical activity via inhibition of KATP channels,

which governed the resting membrane potential of the cell.

Ca2þ cycling was a key component of the feedback loop

regulating the burst durations, through a Ca2þ-activated

Kþ conductance. The effects of KATP channel activation

on the cardiac action potential were quantitatively investi-

gated using the OXSOFT (D. Noble, Oxford University,

UK) cardiac cell electrophysiological model by Nichols
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and Lederer (29) with corresponding experimental validation

(30). Similarly, the effects of KATP current activation on

simulated electrocardiograms using a whole cell model

was investigated by Gima and Rudy (31), who demonstrated

that KATP current activation underlies ST segment elevation

during ischemia. A model by Ch’en et al. (32), took into

account the biochemical changes in cytosolic ATP, pH and

Ca2þ that occur during ischemia-reperfusion. Michailova

and McCulloch (33) and Michailova et al. (34) further

explored the role of free Mg2þ, MgATP, and MgADP on

IK,ATP, ICa, and [Ca2þ]i in a canine cell model. Simulations

from Michailova et al. (34) showed that either increases in

free cytosolic Mg2þ (0.2–5 mM) with fixed Mg-nucleotide

concentrations, or decreases in the ATP/ADP ratio with fixed

total Mg2þ, could activate IK,ATP and systematically change

the APD, Ca2þ current, and the Ca2þ transients (35).

The previous modeling studies provide important informa-

tion about the interaction of multiple cytosolic factors in the

regulation of metabolically sensitive ion channels; however,

none of the cardiac cell models to date have incorporated

realistic mathematical representations of mitochondrial ener-

getics to drive the changes in ATP/ADP ratio, and the subse-

quent effects on integrated cell function. Moreover, the

nonlinear interactions of the mitochondria and the cell during

RIRR have never been examined in computational studies of

the cardiac cell before this work, to our knowledge.

Implications of mitochondrial network
depolarization for cardiac function

The teleological reason behind the activation of KATP chan-

nels during metabolic stress is not completely understood.

Certainly, at the level of an isolated single cardiomyocyte,

it can be viewed as a protective mechanism, i.e., decreasing

electrical excitability, shortening the AP, and reducing Ca2þ

cycling and contraction could reduce energy demand and

prevent cell death (35,36). In the setting of exercise training,

for example, it has been shown that KATP channel activation

contributes to enhanced peak performance, based on com-

parisons between normal and knockout mice having reduced

KATP channel proteins (37). This effect is not completely

understood, but could possibly be related to KATP current

shortening the duty cycle for resetting electrical and contrac-

tile activity at the high heart rates of the mouse. On the other

hand, under more severe metabolic stress, such as ischemia-

reperfusion, shutting down the function of myocytes in the

cardiac syncytium would not be particularly beneficial. In

this case, myocardial performance would be compromised

even though the external workload remained. Moreover,

local or regional changes in cardiomyocyte function could

contribute to electromechanical dys-synchrony, further exac-

erbating the problem.

Regarding the negative implications of KATP channel

opening, it has been reported that reperfusion arrhythmias

in large animals are inhibited by KATP channel blockers
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(38) and we have shown that they are also prevented by agents

that inhibit DJm depolarization and eliminate the associated

APD oscillations (2). Stabilization of DJm effectively

decreased the incidence of ventricular fibrillation even when

applied only upon reperfusion (2,19). Based on these findings,

we have proposed that the heterogeneous collapse of DJm in

clusters of cells in the myocardium during ischemia-reperfu-

sion create metabolic sinks that would impact electrical wave

propagation and introduce large gradients in the refractory

periods of neighboring regions of the heart, thus creating

a substrate for reentry. The altered electrical excitability

would be a consequence of the excitation-contraction-bioen-

ergetic coupling mechanisms described by the model. In

fact, in preliminary studies in which we have expanded the

ECME-RIRR single cell model to a two-dimensional mono-

domain model, we have observed significant effects of the

periodic mitochondrial depolarizations on wave propagation,

including complex reentrant activity (39), illustrating how the

model could be applied to testing possible arrhythmogenic

mechanisms in the future.

Model limitations and future directions

Although modeling of the heart began over 40 years ago, the

field is still a long way from achieving a truly comprehensive

computational model of the cardiac myocyte. Nevertheless,

there have been many achievements in developing electro-

physiological models (40–44), metabolic models (13,45–

48), and mechanoelectrical models (49–51)—only very

recently have models been developed to account for the inter-

action between electrophysiology, Ca2þ handling, and bioen-

ergetics. The ECME-RIRR model developed here expedites

this effort by integrating detailed descriptions of sarcolemmal

and mitochondrial ion transport pathways, Ca2þ handling,

and E-C coupling with mitochondrial energy metabolism

and the ROS-induced-ROS-release mechanism, permitting

us to begin to examine catastrophic events related to cellular

injury. However, as with all models, there are limitations

that suggest areas for further development in the future. These

areas for expansion include adding pathways for higher level

substrate oxidation (currently, acetyl CoA is the primary

substrate representing the nexus of glycolytic and fatty acid

pathways); a more detailed representation of factors known

to change during ischemia-reperfusion including blood

flow, oxygen uptake, and substrate transport (e.g., glucose

and oxygen), pH, and Naþ homeostasis; and more compre-

hensive antioxidant pathway representations.

Another challenging problem for further model develop-

ment is to take into account the important role of phospho-

transfer networks in connecting cell metabolism with

metabolite-sensitive channels, transporters, or sites of ATP

consumption. Creatine kinase and adenylate kinase circuits

take part in phosphotransfer networks that can rapidly

transmit local changes in the rates of ATP consumption or

synthesis across the cytoplasm to fine-tune the modulation
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of metabolically regulated targets while at the same time buff-

ering the global levels of ATP and ADP (52,53). Sarcolemmal

KATP channels are particularly sensitive to changes in ATP/

ADP microdomains, as evidenced by the observation that

they can be locally regulated by associated glycolytic

enzymes (54), but can also be activated by mitochondrial un-

coupling even when cells are internally dialyzed with high

levels of MgATP via patch pipette (8,11). Moreover, the

sensitivity of mitochondrial respiration to ADP varies de-

pending on the mode of delivery; for example, a more efficient

response is achieved when ADP is increased through the

mitochondrially bound creatine kinase reaction than when is

increased in the bulk myoplasm of the cardiac cell (55,56).

Together, such observations support the idea that sites regu-

lated by, or regulating, ATP level typically depend on local-

ized near-membrane kinetic disequilibria. Computational

descriptions of this aspect will require spatially distributed

models of the enzyme transfer networks and a detailed repre-

sentation of the cell architecture, which is beyond the scope of

this article. However, to approximate some of these features

without introducing partial differential equations, rapid mito-

chondrial responses to energy demand associated with E-C

coupling and rapid ion channel responses to changes in mito-

chondrial energization are represented in the ECME-RIRR

model by two nucleotide pools: the bulk cytosolic pool, which

is largely buffered by creatine kinase and does not permit

ADP to vary significantly; and a minimally buffered nucleo-

tide pool in which ADP concentration can fluctuate according

to the metabolic state. This was required to simulate IKATP

activation during mitochondrial DJm depolarization and

oscillation, in agreement with the available experimental data.

Finally, the next phase of model development will be to

expand the cell models to two- and three-dimensional tissue

models to investigate the effect of mitochondrial depolariza-

tion on cardiac electrophysiology and function at the tissue

or organ levels.

In summary, the integrated ECME-RIRR model was

capable of simulating the phenomenon of oxidative stress-

induced mitochondrial oscillations and their effects on whole

cardiomyocyte function, providing a new tool for examining

how alterations in mitochondrial energetic state will impact

the electrophysiology and electrical activities of the cardiac

cell. The results demonstrate the power of combining the

Ca2þ handling and electrophysiological and energy-

producing subsystems of the cell into an integrated model

to simulate the dynamics of metabolic and electrical

processes of the heart under pathological conditions.

SUPPORTING MATERIAL

Model and parameters are available at http://www.biophysj.org/biophysj/

supplemental/S0006-3495(09)01292-2.
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