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The Semiquinone-Iron Complex of Photosystem II: Structural Insights
from ESR and Theoretical Simulation; Evidence that the Native Ligand
to the Non-Heme Iron Is Carbonate
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ABSTRACT The semiquinone-iron complex of photosystem II was studied using electron spin resonance (ESR) spectroscopy
and density functional theory calculations. Two forms of the signal were investigated: 1), the native g ~ 1.9 form; and 2), the
g ~ 1.84 form, which is well known in purple bacterial reaction centers and occurs in photosystem II when treated with formate.
The g ~ 1.9 form shows low- and high-field edges at g ~ 3.5 and g< 0.8, respectively, and resembles the g ~ 1.84 form in terms of
shape and width. Both types of ESR signal were simulated using the theoretical approach used previously for the BRC complex,
a spin Hamiltonian formalism in which the semiquinone radical magnetically interacts (J ~ 1 cm�1) with the nearby high-spin
Fe2þ. The two forms of ESR signal differ mainly by an axis rotation of the exchange coupling tensor (J) relative to the zero-field
tensor (D) and a small increase in the zero-field parameter D (~6 cm�1). Density functional theory calculations were conducted on
model semiquinone-iron systems to identify the physical nature of these changes. The replacement of formate (or glutamate in
the bacterial reaction centers) by bicarbonate did not result in changes in the coupling environment. However, when carbonate
(CO3

2�) was used instead of bicarbonate, the exchange and zero-field tensors did show changes that matched those obtained
from the spectral simulations. This indicates that 1), the doubly charged carbonate ion is responsible for the g ~ 1.9 form of the
semiquinone-iron signal; and 2), carbonate, rather than bicarbonate, is the ligand to the iron.
INTRODUCTION

Photosystem II (PS II), a pigment-protein complex of plants,

algae, and cyanobacteria, is responsible for the oxidation of

water and reduction of plastoquinone in oxygenic photosyn-

thesis. The PS II core is composed of 10 membrane-spanning

helices provided by the D1 and D2 polypeptides. These bind

all redox active centers involved in charge separation and

water oxidation.

Photoexcitation of the primary electron donor P680, a chlo-

rophyll complex located near the lumenal membrane inter-

face, initiates the transfer of an electron to the neighboring

pheophytina (pheoD1). From there, the electron is rapidly

passed to the primary plastoquinone (QA) on the stromal

side (for a recent review, see Diner and Rappaport (1)). QA

is a tightly bound species that undergoes a one-electron reduc-

tion, forming a semiquinone (QA
�), as shown in Scheme 1 (2).

Electrons leave PS II via the secondary plastoquinone

acceptor (QB), the mobile electron acceptor of PS II. QA
�

reduces QB first to a semiquinone (QB
�) and then to a quinol

(QBH2) after a second photochemical turnover (2). This two-

electron gate mechanism was discovered in PS II (3,4) and

later in purple bacterial reaction centers (BRC) (5,6). The

secondary quinone (QB) and quinol (QBH2) bind weakly

(dissociation constants of ~1–2 mM (2,7)), in contrast to

the semiquinone (QB
�), which has a dissociation constant

(~0.5 mM) 2000 times less than that of the quinol. The rela-

tive stability of the bound semiquinone is thought to arise
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from coulombic interactions with the surrounding protein/

metal environment and H-bonding to residues in the QB

pocket. The mechanism of electron transfer through the

two quinones and the structure of their sites are similar in

PS II and BRC (2,8–10).

In the BRC, the electron transfer between QA
� and QB

(Scheme 1, KAB(1)) is limited by a conformational gating

process rather than by the driving force (11). The subsequent

electron transfer step from QA
� to QB

� (KAB(2)) appears to

be rate-limited by the uptake of a proton (12). After a second

protonation, the QBH2 exchanges with a quinone from the

pool in the membrane, completing the two-electron reaction

cycle (for reviews, see (2,12)).

In PS II, QA and QB are positioned on either side of a non-

heme iron center (Fe2þ), which is within ~7.5 Å of either

quinone (center to center). The Fe2þ adopts a near-octahedral

ligand geometry (9,10,13,14). Four coordination sites are

provided by histidine residues, two from D1 (H215 and

H272) and two from D2 (H214 and H268). An exogenous

bidentate bicarbonate fills the remaining two coordination

sites (15). In BRCs, a homologous quinone-iron complex

is present (8,16) with an almost identical geometry, a six-

coordinate Fe2þ center, with four histidine ligands (provided

by the L and M subunits, the bacterial D1/D2 analogs). The

remaining coordination site is, however, occupied by a gluta-

mate residue of the M subunit (M234 in Rhodobacter
sphaeroides) rather than the exchangeable bicarbonate. In

the BRC, the H subunit encloses the quinone-iron complex,

isolating it from the external environment (8,16). In PS II,

there is no corresponding H subunit.
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The role of the non-heme iron in BRC and PS II is not fully

understood. In BRCs, other divalent transition metal ions

(Mn2þ, Co2þ, Ni2þ, and Cu2þ), and even Zn2þ, can replace

the iron and show identical electron transfer rates, i.e.,

1/kAB ¼ ~150 ms�1 (17). Indeed, it has been found that

Mn2þ is naturally present in some strains (18). In a similar

way, metal-free BRCs have been shown to be functional,

with the observed rate of electron transfer between QA and

QB approximately half that of the native system (17). These

studies suggest that the Fe2þ center has a marginal role in elec-

tron transfer between QA and QB in BRCs.

In contrast to the BRC, electron transfer in PS II is more

strongly influenced by changes at the non-heme iron site.

The relative ‘‘openness’’ of the Fe2þ center in PS II allows

the exogenous bicarbonate ligand to be displaced by various

other small molecules including: formate, cyanide, nitric

oxide, etc. (see (2) and references therein). The electron

transfer rate between QA and QB is often significantly

reduced in these ligand-perturbed systems.

The ‘‘bicarbonate effect’’—an enhanced electron transfer

rate between QA and QB seen when the non-heme iron binds

bicarbonate—is a topic of substantial interest in PS II

research. Experiments show that electron transfer between

QA and QB slows after the second actinic flash in samples

where bicarbonate has been exchanged (formate-treated,

etc.) (19). As the second electron transfer step (Scheme 1)

requires protonation of the QB, it has been proposed that

bicarbonate facilitates this process. It is unclear whether

bicarbonate donates protons to QB (either directly or via

a protein side-chain network) or influences protonation

events by modifying the pKa environment of the QB protein

scaffold (see (20) and references therein).

The electron-spin resonance (ESR) spectrum of the

semiquinone (QA
� or QB

�) observed in BRCs appears as

a broad resonance with a turning point at g ~ 1.84 (21–27).

It has been simulated using the spin Hamiltonian formalism,

where the semiquinone, Q�, interacts magnetically with

an Fe2þ center (28). The ground manifold of the semi-

quinone-iron system is composed of five Kramer’s doublets.

The ESR spectrum (between 5 and 20 K) is dominated by

the two lowest-spin-allowed transitions; the transitions

within the two lowest doublets (with doublet separation

~3 K).

SCHEME 1 Acceptor-side electron transfer pathways in PS II and BRC:

the two-electron gate (2).
The ESR spectrum of the native QA
� semiquinone iron

signal observed in PS II is similar, but not identical, to that

seen in BRCs: a very broad resonance, with a turning point

at g ~ 1.9 (29,30). A broad positive feature has also been

identified at g ~ 1.7 and since it is only resolved at low

temperatures (<10 K), it has been assigned to the lowest

spin-allowed transition (30). Treatment of PS II with formate

suppresses the g ~ 1.9 signal. Instead, a g ~ 1.84 signal is

observed that has a line shape and width nearly identical to

those of the semiquinone iron signal observed in BRCs

(31). A similar, but weaker, signal at g ~ 1.84 is seen in

PS II in the absence of exogenous carboxylic acid ligands

under certain circumstance (e.g., (2,29,32).).

Here, we use the basic theoretical model established by

Butler et al. (28) to describe the semiquinone iron signal in

BRCs to model the corresponding signal in native PS II. A

specific simulation package was written to calculate the theo-

retical absorbance ESR spectra at different temperatures.

These results were compared to density functional theory

(DFT) calculations of model semiquinone-iron complexes.

New insights were obtained into the nature and role of the

exchangeable ligand to the non-heme iron in PS II.

MATERIAL AND METHODS

Sample preparation

PS II core complexes from spinach were made according to the method of

Smith et al. (33). The cores had an activity of ~2500–4000 mmol O2/mg

chl/h and were stored at 1–3 mg chl/mL in 400 mM sucrose, 20 mM NaCl,

20 mM MgCl2, and 0.3g/L dodecyl maltocide, pH 6.5, at �88�C until use.

EPR measurements

PS II core samples (1–2 mg/mL chl) were treated with either 5 mM sodium

formate or 5 mM sodium bicarbonate to generate either the g ~ 1.84 or the g

~ 1.9 form of the semiquinone iron signal, respectively. EPR sample loading

was performed under dim green illumination followed by >10 min dark

adaptation at 4�C before freezing to 200 K (CO2 (dry ice)/ethanol) and

subsequently 77 K (LN2). Samples were used immediately or within 24 h

of transfer to the quartz EPR tube. Samples at 4�C were pumped using

a rotary pump for 1–2 min. The EPR tube was then filled with Ar gas to

minimize O2 signals.

To generate the semiquinone iron signal, samples were illuminated with

a 125-W halogen lamp. The beam was focused to a 20-mm-diameter spot

directly onto the front grate of the EPR cavity after passing through a water

filter (path length 10cm) and an interference filter centered at 690 nm with

spectral width 10 nm.

ESR measurements were performed on a Bruker ESP300E spectrometer

with an Oxford ESR9 liquid helium flow cryostat using a gold-chromel ther-

mocouple directly below the sample position.

Spectral simulations were performed numerically from a Hamiltonian

(10 � 10 matrix) using Scilab-4.4.1, an open source vector-based linear

algebra package (www.scilab.org). A complete description of the EPR simu-

lations can be found in the Supporting Material.

DFT calculations were performed using Gaussian 03 (34). The B3LYP

hybrid density functional theory (35) was used, combined with the basis

set of Wachters (36), augmented with additional f functions (37) for the

iron, and the D95(d,p) basis set of Dunning (38) for all other atoms. The total

spin multiplicity of the system in the high and low spin configurations was 6

and 4, respectively. The zero-field parameters (D and E) were calculated
Biophysical Journal 97(7) 2024–2033
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using the ORCA package. The coupled-perturbed methodology was used for

the spin-orbit coupling component.

RESULTS

QA
�-Fe2þ resonance in PS II

Fig. 1 shows the derivative ESR semiquinone-iron signals

observed in our PS II core complex preparation. Character-

istic of these signals are turning points in the g ~ 1.8–1.9

region. As a consequence, semiquinone signals are identified

by the position of this spectral feature. In native BRC, the

turning point is at g ~ 1.84, whereas in PS II it is at g ~ 1.9.

The g ~ 1.9 signal was photoinduced by illumination with

visible light for ~10 min at cryogenic temperatures (5–20 K).

The Cytb559 was fully oxidized before illumination. The

oxidized electron donor (Dþ) for the system appears as

a narrow (10–15 G p-p), featureless radical centered at

g ~ 2.0 that is assigned to an admixture of chlorophyll

(chlþ) and carotenoid (carþ) radicals (39).

The g ~ 1.9 signal observed in this PS II core complex

preparation is similar to that seen from PS II membranes

(29,30) and cyanobacterial sources (40). Two pseudoderiva-

tive features were resolved at 5 K, at g ~ 1.9 and g ~ 1.7

(Fig. 1 B). At higher temperatures (15 K), the latter is lost,

whereas the former narrows (Fig. 1 C) (30).

When treated with formate, the PS II core complexes ex-

hibited a semiquinone-iron signal similar to that observed in

BRCs, as seen previously in PS II membranes (30,31)

(Fig. 1 A). Formate is believed to bind to the non-heme iron,

displacing the bicarbonate ligand (see Introduction (30,31)).

Absorption ESR spectra of the QA
�-Fe2þ

resonance in PS II

Fig. 2 displays the ESR absorption spectra of the semiqui-

none-iron seen in PS II at 5 and 15 K. The absorption spec-

trum of the g ~ 1.9 signal was generated by integration of

data presented in Fig. 1, B and C. It is experimentally diffi-

cult to resolve such a broad ESR signal, since the baseline

is inherently variable over large field ranges. To minimize

this problem, the g ~ 1.9 semiquinone-iron signal was gener-

ated by direct illumination of the sample in the cavity at 5 K,

This avoided movement of the sample. The difference

between a spectrum taken during (or after) the 5 K illumina-

tion and a spectrum taken immediately before illumination

effectively eliminated baseline features and yielded a well-

defined semiquinone-iron signal. This also canceled Cyt-

b559
OX signals, tyrosyl radical (YD

�
), etc. Even with these

measures, a baseline correction had to be subtracted to re-

move a signal offset. Consequently, there is a degree of

uncertainty in the position of the high-field edge of the signal

(Fig. 2, dashed curve).

A comparison of the absorbance spectra measured in PS II

and BRCs highlights the similarities of these signals. Butler

et al. (28) demonstrated that the g ~ 1.84 semiquinone-iron
Biophysical Journal 97(7) 2024–2033
signal extends to low field (g ~ 6). The same is true for

the g ~ 1.9 signal of PS II, with the signal extending to

g ~ 3.5. This spectrum is the first to show the low-field edge

of the g ~ 1.9 signal. Interestingly, although the absorbance

FIGURE 1 Derivative ESR spectra of the semiquinone-iron observed in

PS II. (A) g ~ 1.84 QA
�-Fe2þ signal (5 K) seen in formate-treated PS II

(similar to BRC (28)). (B) g ~ 1.9 QA
�-Fe2þ signal (5 K) seen in bicar-

bonate-treated PS II. (C) g ~ 1.9 QA
�-Fe2þ signal (15 K) seen in bicar-

bonate-treated PS II.
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spectrum of the g ~ 1.84 signal exhibits one maximum at

g ~ 1.84, the g ~ 1.9 spectrum has two local maxima at

g ~ 1.9 and g ~ 1.7 (Fig. 2).

The absorbance line shape of the g ~ 1.9 signal was

strongly temperature-dependent. The high-field component

of the spectrum (g < 1.9) was evident only at low tempera-

tures (5 K), whereas the low-field component remained virtu-

ally unchanged over the 5–20 K region. This behavior is

similar to that observed in BRCs (28).

Modeling and analysis: spin Hamiltonian
formalism

A description of the non-heme iron (S¼ 2) and semiquinone,

QA
� (S ¼ 1/2) system requires 10 basis vectors. These are

expressed in terms of three quantum numbers,

jS; m; si;

where S is the total spin of the ground iron manifold (S ¼ 2),

m is the iron magnetic sublevel (m ¼ �S, �S þ 1, ..,

S � 1, S) and s is the semiquinone sublevel (s ¼ �1/2, 1/2).

The spin Hamiltonian for the QA
�-Fe2þ system, including

zero field (D, E), Zeeman (gFe, gQ), and anisotropic exchange

(J) is

H ¼ D
��

S2
FeZ � 1=3SFeðSFe þ 1Þ þ ðE=DÞ

�
S2

FeX � S2
FeY

��

þ bH , gFe , SFe þ gQbH , S� SFe , J , SQ:

(1)

Subsequent calculations assume the zero-field, Zeeman-iron,

and exchange tensors to be colinear and gQ to be scalar as in

Butler et al. (28).

FIGURE 2 Absorption ESR spectra of the g ~ 1.9 semiquinone-iron signal

observed in PS II at 5 K (black trace) and 15 K (gray trace). Spectra scaled

to account for Curie temperature dependence (i.e., 15 K spectrum � 3).

The radical region around g¼ 2 (gray column) is dominated by light-induced

radicals (Dþ) and has been omitted for clarity.
Computational simulation of the semiquinone-iron
signals

The program used to simulate the system using the above

Hamiltonian (Eq. 1) is described in sections S1–S8 of the

Supporting Material. It outputs the ESR spectrum for transi-

tions within the three lowest doublets. It also reproduces the

g ~ 1.84 spectrum of Butler et al. (28). The g ~ 1.84 simulation

presented here was significantly improved by inclusion of

transitions involving the second excited doublet. It has the

effect of breaking the symmetry of the simulation in the g ~ 1.8

region (see Fig. 3 below). No further attempt was made to

improve the BRC spectral simulation. Nevertheless, it is

likely that an increase in the exchange coupling along the y
axis may improve the simulation of the low-field edge.

The iron-quinone sites of PS II and BRC are very similar

(8–10,13,14,16). The mean iron-quinone distance is nomi-

nally the same (8,13,14,16). The ligand field of the iron is

nearly identical (8,13,14,16). As a consequence, it is ex-

pected that the zero-field and exchange-coupling parameters

for the g ~ 1.9 semiquinone-iron signal are likely to be very

similar to those for the g ~ 1.8 signal. Within this framework,

a simulation of the g ~ 1.9 signal could be readily obtained.

The numerical simulation of the g ~ 1.9 signal (Fig. 2) is

shown in Fig. 3. The optimized parameters are given in Table

1 (together with those for the g ~ 1.84 simulation). The

model quantitatively fits the spectral data at two tempera-

tures. The simulation models well the low-field edge and

dominant turning points of the g ~ 1.9 spectrum. It deviates

on the high-field edge, overestimating the signal intensity in

this region. As this region is the most difficult to measure

experimentally due to baseline effects in the CW spectra,

this may reflect deficiencies in the data rather than the theo-

retical model. It is interesting that the g ~ 1.9 position

describes the intersection point of the ground and first (and

second) excited-state doublets. This explains in part the

unusual temperature dependence in this region, as observed

earlier (30,41).

The simulation parameters for the g ~ 1.9 and g ~ 1.84

signals differ in two respects: 1), the simulation of the g ~ 1.9

signal requires a significant increase in the magnitude of

the zero-field splitting of the iron (D) (by ~10 K (~6 cm�1)

relative to the g ~ 1.84 value); and 2), apparent rotation of

the exchange tensor relative to the fine-structure tensor

(see Fig. S2 and Fig. S3). The exchange coupling tensor,

J, for the g ~ 1.9 semiquinone-iron signal has its largest

component along Jx and smallest along Jz. The opposite is

observed for the BRC (see Butler et al. (28)). The largest

coupling component here is along Jz and the smallest along

Jx. This suggests that the two signals differ by a rotation of

the exchange tensor of ~90� relative to the fine-structure

tensor, within the tensor geometries implicitly assumed

in the simulation formalism (collinear tensors, see above).

In a more general sense, it is shown in Fig. S9 that a signifi-

cant reorientation of the exchange tensor relative to the
Biophysical Journal 97(7) 2024–2033
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FIGURE 3 Simulation of the semiquinone-iron using the spin Hamilto-

nian formalism: comparison of experimental and theoretical results. Param-

eter values are as in Table 1. (A) g ~ 1.84 (BRC þ o-phenanthroline, taken

from Butler et al. (28)). (B) g ~ 1.9 (PS II) at 5 K. (C) g ~ 1.9 (PS II) at 15 K.

Free radical region omitted in B and C. Black lines, total simulation; gray

lines, doublet transitions.
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fine-structure tensor (as compared to the g ~ 1.84 signal) is

required to resolve the characteristic two-maxima pattern

seen for the g ~ 1.9 signal. The increase in the zero-field split-

ting (D) alone does not significantly alter the spectral pattern

in the g ~ 1.7–2.0 region. It is also noted that the anisotropy of

the g-tensor of the iron had little influence on the line shape of

the simulations of either the g ~ 1.84 or g ~ 1.9 signals. The

line widths used for either simulation (g ~ 1.84 or g ~ 1.9)

were assumed to be isotropic. The simulations shown in

Fig. 3 are also consistent with the known orientation depen-

dence of the two semiquinone iron signals (42) (Fig. S10).

Modeling and analysis: density functional theory

DFT calculations on model semiquinone-iron complexes

were carried out on fragment geometries based on the respec-

tive crystal structures of PS II and BRC. Partial optimization

of the geometry of each complex was conducted. All atoms

were frozen except for hydrogen and the atoms of the fifth

(nonhistidine) ligand to the Fe2þ. The spin densities,

coupling tensors, and zero-field parameters presented were

calculated from these partially optimized geometries.

Five complexes were examined, which differed primarily

in the nonhistidine ligation to the Fe2þ center:

1. BRC (ubiquinone) with glutamate as the Fe2þ ligand

2. BRC (ubiquinone) with formate as the Fe2þ ligand

3. PS II (plastoquinone) with formate as the Fe2þ ligand

4. PS II (plastoquinone) with bicarbonate as the Fe2þ ligand

5. PS II (plastoquinone) with carbonate as the Fe2þ ligand

In these structures, the native glutamic acid side chain was

modeled by propanoic acid, whereas the quinones included

the isoprenoid side chain up to the C5 atom.

These complexes represent the semiquinone-iron systems

where either the g ~ 1.84 or g ~ 1.9 is expected to be

observed. The BRC þ glutamate and PS II þ formate should

exhibit a g ~ 1.84 signal, whereas the PS II þ carbonate/

bicarbonate would be expected to show a g ~ 1.9 signal.

The BRC þ formate complex is a hypothetical state (since

glutamate cannot be displaced experimentally) that is ex-

pected to show a g ~ 1.84 signal, similar to that from the

native glutamate ligand.

TABLE 1 Optimized parameter set for simulation of

semiquinone-iron signals

g ~ 1.84 (K, BRC) (28) g ~ 1.9 (K, PS II)*

Jx �0.13 �0.90

Jy �0.58 �0.50

Jz �0.58 �0.10

JISO* �0.43 �0.52

D 7.6 15.0

E/D 0.25 0.27

Width (FWHM) 160 (G) 600 (G)

Semiquinone-iron signals used are those shown in Fig. 3.

*gFe tensor values are as in Butler et al. (28).
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General remarks on the DFT calculation results

DFT calculations did not identify any large changes in the

electron density distribution or in the coupling between the

five model complexes described above. For all complexes,

the unpaired spin (S¼ 1/2) of the semiquinone was localized

on its conjugated ring. In a similar way, the spin density of

the Fe2þ was shown to be localized predominantly on the

metal center. Partial optimization of the quinone-iron geom-

etry showed that the coordination of the ligand (bicarbonate,

formate, glutamate, etc.) was bidentate. Previous experi-

mental results have demonstrated this to be the case for bicar-

bonate in PS II (15) and glutamate in BRC (43).

Exchange coupling

The exchange coupling for the system can be determined

using the equation (44)

J ¼ � EHS � ELS

SHSðSHS þ 1Þ � SLSðSLS þ 1Þ; (2)

where HS and LS refer to high-spin and low-spin configura-

tions, respectively. Computational estimates for the

exchange coupling between the semiquinone and the iron

(based on Gaussian03-derived total energies) were small in

all modeled systems. For the BRC models, J values of

�0.35 cm�1 (�0.5 K) were predicted, whereas for PS II

models, J values of �0.4 cm�1 (�0.6 K) for carbonate and

�0.7 cm�1 (�1 K) for bicarbonate and formate were found

(Table 2). These values were within the tolerance of the

computational methods employed (for systems of this size,

~100 atoms). Thus, computational estimates provide only

an upper limit of the extent of exchange coupling. Isotropic

exchange (J) couplings determined from ESR simulation

(Table 2) are all ~0.5 K in magnitude (0.35 cm�1).

Zero-field parameters

An attempt was made to calculate the zero-field spin-spin

(fine-structure) tensor using ORCA. However, this proved

challenging due to difficulties with wave-function conver-

gence for most models. The source of this problem was the

requirement that the semiquinone be antiferromagnetically
(low-spin) coupled to the iron. If, instead, the semiqui-

none-iron coupling was assumed to be ferromagnetic

(high-spin), no convergence problems were encountered.

Thus, as a starting point, we calculated the D and E param-

eters for all models assuming ferromagnetic coupling

(Table 2). By comparing these values with experimental

values for the BRC þ glutamate (45), it was observed that

the calculated DFT value for D was offset by �8.3 cm�1.

Corrected D values, which take into account this offset, are

also given in Table 2.

To ensure that subtraction of a fixed offset from our calcu-

lated D values was valid, we made further attempts to solve

the model complexes for which antiferromagnetic coupling

was assumed. This was achieved for one model system, PS

II þ carbonate. The DFT estimate of the D value for this

system was 10.5 cm�1. This value is offset 7.5 cm�1 from

the equivalent ferromagnetically coupled estimate. This

offset is approximately the same as that between the DFT-

calculated value for ferromagnetically coupled BRCþ gluta-

mate and the experimental result, i.e., 8.3 cm�1.

It is clear that the corrected D and E values obtained for all

model systems are very similar, except in the case of the

carbonate ligand system, where the D value increased by

~6 cm�1, i.e., from ~5.3 to 11.3 cm�1. This is approximately

the same difference in D as determined from the simulation

of g ~ 1.84 and g ~ 1.9 ESR signals, where the D value

increased by ~5 cm�1 (~7.5 K) upon moving from the g ~

1.84 and g ~ 1.9 ESR signals.

As an aside, it is worth noting that the DFT calculation for

the antiferromagnetically coupled PS II þ carbonate com-

plex reproduces exactly (within the limits for both the DFT

calculation and ESR simulation) the D value of 10.5 cm�1

(15 K) from the ESR simulation.

Hyperfine/zero-field tensor orientations

A description of the coupling environment for all five model

complexes could be made from examining the anisotropic

hyperfine tensor and zero-field tensor orientations of the

Fe2þ. The hyperfine tensors are shown in Table 2. The

largest tensor component is in the membrane plane, roughly

connecting the semiquinone to the iron. It is assigned to the y
TABLE 2 DFT estimates of the exchange coupling, hyperfine, and zero-field tensors of the semiquinone and the Fe2þ center

S2
HS S2

LS EHS (cm�1) ELS (cm�1) JISO (cm�1)

Fe2þ hyperfine (10�4 cm�1) Zero-field parameters

x y z D (cm�1) E/D

BRC þ glutamate* 8.75 3.78 �806599620 �806599622 �0.34 �9.1 14.4 �5.3 �3.0 (5.3) 0.22

BRC þ formate* 8.75 3.78 �780708648 �780708650 �0.37 �9.2 14.4 �5.2 �3.2 (5.5) 0.20

PS II þ formate* 8.75 3.78 �755589365 �755589369 �0.70 �9.5 14.1 �4.5 �3.1 (5.4) 0.24

PS II þ bicarbonate* 8.75 3.80 �755465371 �755465374 �0.70 �8.9 14.2 �5.3 �2.9 (5.2) 0.21

PS II þ carbonate* 8.75 3.78 �739070237 �739070240 �0.43 �5.1 13.0 �8.0 3.0 (11.3) 0.28

PS II þ carbonatey 8.75 3.78 �739070237 �739070240 �0.43 �5.1 13.0 �8.0 10.5 0.28

*High spin (ferromagnetic coupling) (HS).
yLow spin (antiferromagnetic coupling) (LS).

Numbers in parentheses (D values) are corrected assuming an offset of 8.3 cm�1.
Biophysical Journal 97(7) 2024–2033
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direction. Its exact position varies with different systems

(Fig. 4). The other two components align such that they

are perpendicular to a vector connecting the iron and quinone

centers.

The two complexes based on the BRC (glutamate/

formate) have a near-identical hyperfine tensor orientation.

Tensor components along the three principle axes are very

similar (within 3%). On shifting to the PS II system

(þ formate), the hyperfine tensor rotates ~30� in the yz plane.

Note that the hyperfine-tensor orientation (x, y, z principle

directions) need not be the same as the exchange/zero-field

tensor estimated from the EPR simulation.

There was surprisingly little change observed in either the

orientation or magnitude of the hyperfine tensor in the PS II

þ bicarbonate complex as compared with that in the PS II þ
formate complex. Tensor values seen along the three prin-

cipal axes show modest variation (within 15%) and still

nominally retain the same spatial orientation (within 10%).

A notable change in the Fe2þ hyperfine tensor could,

however, be induced by deprotonating the bicarbonate

ligand. Compared to the BRC, the hyperfine tensor principal

directions rotate as seen in PS II (þ formate or bicarbonate),

i.e., the hyperfine tensor rotates ~45� in the yz plane.

However, in addition, the tensor principal values now inter-

change along the x and z axes. This behavior is qualitatively

similar to the change in the exchange tensor orientation rela-

tive to the fine-structure tensor as inferred from the ESR

simulations discussed above (Fig. 4).

FIGURE 4 Orientation of the Fe2þ hyperfine tensor for the semiquinone-

iron geometry seen in BRC/ PS II. (A) Hyperfine tensors are color-coded

green for BRC þ glutamate; blue for BRC þ formate; orange for PS II þ
formate; red for PS II þ bicarbonate; and pink for PS II þ carbonate. (B)

A simple representation of the rotation of the hyperfine tensor in the various

ligand systems.
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The orientation of the zero-field tensor for the five

quinone-iron complexes follows a trend analogous to that

seen for the hyperfine tensor of the iron (Fig. 4). For both

BRC and PS II, where the fifth ligand is glutamate, formate,

or bicarbonate, the largest tensor component (in absolute

magnitude and assigned to Dz) is directed toward the QA
�.

For BRC (þ glutamate or formate), the Dy direction bisects

the fifth ligand, whereas Dx is directed toward the axial histi-

dine, defining a plane characterized by lower tensor values

(in absolute magnitude). As seen for the hyperfine tensor,

the orientation of the zero-field tensor does not dramatically

change between BRC and PS II. In PS II (þ formate or bicar-

bonate), the Dx/Dy plane still contains axial histidines and

the fifth ligand, but now Dx points to the axial histidine

and Dy is directed toward one of the binding oxygens, rather

than the carbon of the carboxyl group. In contrast, for PSII

(þ carbonate), Dz is now the smallest tensor component (in

absolute magnitude) and is rotated into the membrane plane,

pointing toward one of the axial histidines. The Dx/Dy plane

still contains the fifth ligand (CO3
2�), but it now also

contains the equatorial histidines with the Dx and Dy compo-

nents directed toward binding nitrogens of the histidines. As

with the analysis of the hyperfine tensor above, the apparent

interchange of the principal values of the zero-field tensor for

PS II (þ carbonate), as compared to all other model systems,

is qualitatively similar to the change inferred from the ESR

simulations discussed above. Here, it was shown that the

exchange tensor reorientates relative to the fine-structure

tensor for the g ~ 1.9 signal as compared to the g ~ 1.84 signal.

DISCUSSION

Comparison of DFT results to ESR spectrum
simulations

Although the ESR simulations of the g ~ 1.84 and g ~ 1.9

forms of the semiquinone-iron signal suggested that there

was no dramatic difference between them in overall coupling

within the complex, they did highlight interesting variations

in the exchange and zero-field tensor parameters. A rotation

of the relative orientations of the exchange and zero-field

tensors was observed, as well as an increase in the D value

(by up to 10 K). It is significant that when the computational

results were compared among model complexes in which the

g ~ 1.84 or g ~ 1.9 forms should be observed, viz. g ~ 1.84

(BRC þ glutamate and PS II þ formate (28,30,31)) or

g ~ 1.9 (PS II þ bicarbonate (28,30,31)), no analogous

changes were seen. The coupling environment (as inferred

from the hyperfine tensor of the iron and orientation of the

fine-structure tensor) is similar in all complexes as is the

zero-field splitting of the Fe2þ center. Only when the Fe

ligand was changed from bicarbonate to carbonate did the

hyperfine and zero-field tensors significantly change. This

effect is seen experimentally among the g ~ 1.84 and g ~ 1.9

systems in that the spectral simulations indicate that they
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differ by a rotation of the exchange coupling tensor (J) rela-

tive to the fine-structure tensor. In a similar way, the zero-

field parameter D increased by ~6 cm�1. This comparative

analysis of the semiquinone-iron complex suggests that the

native exogenous ligand in PS II is actually carbonate.

The binding pocket of the bicarbonate/carbonate ligand

contains residues that are hydrophobic, or potentially

positively charged. These include D1-Leu233, D1-Val219,

D2-Asn230, D2-Thr231, D2-Phe232, D2-Arg233, D2-Ala234,

D2-Pro237, and D2-Lys264 (13,14,46). Of these, the lysine

residue (D2-K264) most likely interacts directly with the

bicarbonate/carbonate ligand. The 3-amino group of the

lysine is within 4 Å of the oxygen of the carbonate (see

Fig. 5). The carbonate ligand could be stabilized by forming

a hydrogen bond/salt bridge to this residue. This residue has

not been previously assigned a role in carbonate/bicarbonate

electron transfer kinetics. However, it has been demonstrated

that mutation of this residue leads to a 40-fold drop in bicar-

bonate binding affinity (47).

pH dependence

Early pH-dependent measurements support the assignment

of CO3
2� as the native ligand of functionally intact PS II.

Rutherford and Zimmerman (29) noted that the g ~ 1.84

form of the semiquinone-iron signal could be generated in

a large fraction of Mn-depleted PS II centers without the

addition of formate, by lowering the pH (to ~6.0). In a similar

way, they found that the g ~ 1.9 semiquinone-iron signal was

best resolved at relatively high pH (~8.0).

At the lower pH, bicarbonate (HCO3
�) is the more likely

protonation state, whereas at higher pH, the equilibrium

progressively shifts to carbonate (CO3
2�). The DFT calcula-

FIGURE 5 The quinone-iron complex of PS II. Residues in the immediate

vicinity of the carbonate ligand to the non-heme iron (Loll et al. (14)).
tions presented above suggest that changing the ligand from

bicarbonate to carbonate significantly alters the inferred

exchange tensor orientation. This rotation is qualitatively

similar to the change that occurs on shifting between the g ~

1.84 and g ~ 1.9 forms as estimated from ESR simulations.

To be observed in the pH range in which PS II is generally

studied, this effect would require a large lowering of the

pKa,2 of the bicarbonate bound to the iron center.

HCO�3 þ HO� /
pKa;2

CO2�
3 þ H2O: (3)

In aqueous solution, pKa2 is ~10.33 (48), excluding any

significant CO3
2� concentration in solution over the pH

range used here (pH 6–8). However, the pKa,2 of the Fe2þ-

ligated species presumably would be lowered due to the

Lewis acidity of the metal ion. In a similar way, the effect

of the positively charged hydrophobic residue in close prox-

imity (K264) could alter the acid base properties of the bicar-

bonate/carbonate.

Mechanistic role of bicarbonate: protonation
of the reduced QB

Bicarbonate has been proposed to be involved in 1), the

protonation step(s) of the reduced QB; and 2), the stabiliza-

tion of the structure of the quinone-iron complex ((20) and

references therein).

Electron transfer between QA and QB dramatically slows

after the second actinic flash in PS II, when bicarbonate

has been exchanged (formate-treated, etc. (reviewed in

(19))). As the second electron-transfer step (see Introduction

and Scheme 1) requires protonation of the reduced forms of

QB, it has been proposed that bicarbonate somehow facili-

tates this process (20). The mechanism for this effect is as

yet unclear; however, the proposal that bicarbonate is the

proton donor for QB is consistent with its known acid/base

properties. The pKa of CO2 solvation is ~6.3.

CO2 þ H2O / H2CO3 /
pKa

HCO�3 þ Hþ : (4)

For fully functional PS II embedded in the thylakoid

membrane, the functional pH environment for quinone

reduction and proton uptake is ~7.8, the pH of the stroma.

The inhibitory action of formate (49,50) is then easily ratio-

nalized, as its pKa (~3.8) makes it fully deprotonated under

conditions of normal PS II operation.

This study requires a reappraisal of such explanations. As

the native ligand to the Fe2þ is a carbonate ion rather than

bicarbonate, the ligand cannot act as the terminal Hþ donor

to QB. The earlier suggestions for the role of bicarbonate in

protonation of QB involved bicarbonate picking up a proton

and passing it on to the reduced quinone (20). This involved

the carbonic acid/bicarbonate couple. In the context of the

results presented here, we suggest that carbonate could

play a similar role, except that the bicarbonate/carbonate

couple would be involved. In such a model, bicarbonate
Biophysical Journal 97(7) 2024–2033
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could form transiently during the QA
�-to-QB

� electron

transfer step.

An alternative explanation is that the function of carbonate

in protonation is indirect. It could modulate protonation reac-

tions by changing the pKa values of residues in the vicinity of

the QB site, consequently promoting proton transfer ((20)

and references therein). The influence of carbonate should

be most dramatic on residues that make up the coordination

sphere of the non-heme iron. The D1-H215 residue (Fig. 5) is

a candidate for such a bicarbonate/carbonate pKa modula-

tion, although the precise mechanism is as yet unclear. The

second NH group of its imidazole ring is within 3 Å of

one of the O atoms of quinone QB, allowing it to be a poten-

tial proton donor. The presence/absence of carbonate could

conceivably influence the acid/base properties of this

residue, facilitating proton transfer. This result is compatible

with a recent Fourier transform infrared study (51). Here, it

was shown that the binding of the exogenous carbonate

ligand was associated with the presence of the NH mode

of the D1-H215 residue.

SUPPORTING MATERIAL
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