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Power-Laws in Interferon-B mRNA Distribution in Virus-Infected Dendritic
Cells
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ABSTRACT Interferon-beta (IFNB1) mRNA shows very large cell-to-cell variability in primary human dendritic cells infected by
Newcastle disease virus, with copy numbers varying from a few to several thousands. Analysis of data from the direct measure-
ment of the expression of this gene in its natural chromatin environment in primary human cells shows that the distribution of
mRNA across cells follows a power law with an exponent close to �1, and thus encompasses a range of variation much
more extensive than a Gaussian. We also investigate the single cell levels of IFNB1 mRNA induced by infection with Texas influ-
enza A mutant viruses, which vary in their capacity to inhibit the signaling pathways responsible for activation of this gene. Here
as well we observe power-law behavior for the distribution of IFNB1 mRNA, albeit over a truncated range of values, with expo-
nents similar to the one for cells infected by Newcastle disease virus. We propose a model of stochastic enhanceosome and
preinitiation complex formation that incorporates transcriptional pulsing. Analytical and numerical results show good agreement
with the observed power laws, and thus support the existence of transcriptional pulsing of an unmodified, intact gene regulated by
a natural stimulus.
doi: 10.1016/j.bpj.2009.05.067
INTRODUCTION

Dendritic cells (DCs) play a significant role in the (nonspe-

cific) innate immune response to viral infection leading to

the development of (antigen-specific) adaptive immunity.

A crucial step in the early DC response to viral infection

is the induction of interferon beta (IFNB1), a secreted cyto-

kine that initiates a complex cellular response leading to

widespread viral resistance (1). Specific and precise control

of the IFNB1 gene expression is accomplished through

the coordinated assembly of an enhanceosome containing

several transcription factors. The enhanceosome assembly

facilitates (2,3) the recruitment of coactivators and chro-

matin-remodeling proteins to the transcription complex.

All these processes occur stochastically and lead to consider-

able cell-to-cell variability (4,5) of IFNB1 induction, which

we have highlighted recently (4) for primary human den-

dritic cells infected by Newcastle disease virus (NDV).

IFNB1 mRNA production is very noisy, with individual

cellular responses ranging between ten and several thousand

copy numbers. NDV, being an avian virus, lacks functional

antagonists in human cells and thus allows the cell to display

the full spectrum of immune response. By measuring the

differential expression of two alleles, exploiting a readout

polymorphism, we also established that intrinsic noise plays

a major role in IFNB1 mRNA cell-to-cell variability (4).

Experimental results were explained at a semiquantitative

level in a model where the intrinsic nature of cellular vari-

ability was attributed to the stochastic assembly of a multi-

component enhanceosome complex.
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In this work we present new single cell data on cell-to-cell

IFNB1 variability in NDV infected human dendritic cells. We

also show data of IFNB1 variability for mutant Texas influ-

enza A viruses, whose potency is altered from the wild-type

through manipulation of the viral nonstructural protein 1

(NS1) coding region (6,7). The availability of the mutant

viruses provides the opportunity to study the typical and

crucial innate immune response, namely IFNB1 production,

as the degree of virulence is varied for viruses infecting

primary human DCs. Remarkably, for both NDV and Texas

influenza A mutant viruses, the IFNB1 mRNA distribution

across cells has a long tail. Thus the immune response is char-

acterized by a scale-invariant power law distribution over

three decades of IFNB1 mRNA copy number for NDV infec-

tion, and two decades for the mutant influenza viruses. More-

over, for NDV as well as mutant influenza virus infection, the

mRNA distribution p(m) is characterized by exponents

between�0.5 and�0.8. This power-law behavior is dramat-

ically different from the usually observed distributions,

Gaussian or Poisson, for gene expression, where the variance

across cells increases with the mean number (8–10).

We have developed a theoretical model that accounts for

the power-law behavior of IFNB1 production, in particular

the cumulative mRNA distribution P(m), and for its charac-

teristic exponent. This model is based on our earlier model of

stochastic enhanceosome formation (4), which, though it

gave a good account of allelic imbalance and the role of

monoallelic IFNB1 mRNA production (this latter was attrib-

uted recently to interchromosomal associations (5)), was

inadequate in describing the distribution of total mRNA

production. The new ingredient is transcriptional pulsing,

which leads to power-law behavior for the appropriate

choice of reaction rate constants. Although evidence for
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transcriptional pulsing has been reported in yeast (11,12) and

for engineered genes (13), the applicability of these findings

to the physiological expression of an unaltered mammalian

gene in its native chromatin environment and in untrans-

formed primary cells has not been established. Our model

of IFNB1 transcription combines the stochasticity of enhan-

ceosome assembly (4) with that of transcriptional bursts

that leads to power-law mRNA distributions in quantitative

agreement with experimental data. For DCs infected with

mutant viruses, we include in our model reduced activation

of the transcription factors and delayed response as observed

in other experiments with the mutant influenza viruses (14).

In summary, we present striking experimental results for the

distribution of IFNB1 mRNA across different cells and

a detailed model that describes the behavior, thus providing

insights into the stochastic dynamics of the antiviral response

of dendritic cells.

MATERIALS AND METHODS

Differentiation of dendritic cells (DCs)

All human research protocols for this work have been reviewed and

approved by the Internal Review Board of the Mount Sinai School of Medi-

cine. Monocyte-derived conventional DCs were obtained from human blood

donors using a standard protocol. Briefly, human monocytes from buffy

coats were isolated by Ficoll density gradient centrifugation (Histopaque,

Sigma Aldrich, St. Louis, MO) and CD14þ monocytes were immunomag-

netically purified by using a MACS CD14 isolation kit (Miltenyi Biotech,

Singapore). CD14þ Monocytes (0.7 � 106 cells/mL) were later differenti-

ated into immature DCs after 5–6 day incubation in DC growth media

(RPMI Medium 1640, Gibco, Billings, MT; 10% fetal calf serum, HyClone,

Thermo Fisher Scientific, Logan, UT; 2 mM of L-glutamine, 100 units/mL

penicillin, 100 mg/mL streptomycin, Pen/Strep, Invitrogen, Carlsbad, CA;

500 U/mL hGM-CSF, PreProTech, Rocky Hill, NJ; and 1000 U/mL hIL-4,

PreProTech, at 37�C).

Virus preparation and viral infection

The recombinant Hitchner strain of Newcastle disease virus (rNDV/B1) was

prepared and aliquots of allantoic fluid were harvested as previously

described (15). The recombinant human influenza virus A/Texas/91 strain

with NS1 truncations D99 and D126 were kindly provided by Dr. Ana Fer-

nandez-Sesma. Titered NDV or A/Texas virus stocks were added directly

into pelleted DCs at a multiplicity of infection of 0.5. After incubation for

30 min at 37�C, fresh DC growth medium was added back to the infected

DCs (1 � 106 cells/mL). Virus free allantoic fluid was added to additional

tubes of cells to serve as a negative control.

Single cell polymerase-chain reaction (PCR)

As previously described in Hu et al. (4), single DCs were sorted directly into

384-well bar-coded PCR plates, and single-cell real-time RT-PCR was per-

formed. Specifically, a 5-mL aliquot of a 2� AccuRT master mix solution,

prepared as described in Hu et al. (4), was added to each well, which

contains a single DC and 5 mL lysis buffer. In control wells with no cells,

1 mL of genomic DNA of varying dilutions (103–40 copies/mL) was added

along with the 5-mL aliquot of 2� master mix. PCR results were analyzed

with the Lightcycler 480 (Roche, Basel, Switzerland) where the PCR cross

point (Cp) value for each amplification curve was determined by a secondary

derivative calculation. A few PCR dropouts (~1%) were observed by a

melting curve analysis and excluded from the data set.
Model

The model without transcriptional pulsing is described in detail in Hu et al.

(4). It was based on the key experimental result that the level of IFNB1 induc-

tion in different cells in response to NDV infection was broad and dominated

by intrinsic noise. Our modeling is focused on the power-law behavior due to

infection from NDV and the mutant flu viruses. Since there are many poten-

tially different sources of extrinsic noise, the robustness of the experimental

results (with different individuals giving rise to similar power laws) provides

the motivation for modeling only the intrinsic noise that arises from the

stochastic fluctuations in the assembly of the enhanceosome.

Enhanceosome formation from the activated components was described

as cooperative binding of components P1, P2, P3, and P4 to the IFNB1

promoter region. It is believed that the architectural protein HMGA1a binds

to the promoter region facilitating the recruitment of the other components.

Munshi et al. (18) suggest that NFkB (p65) is detected initially at the

promoter with IRF-1, ATF-2 is recruited later followed by the arrival of

IRF-3, and finally IRF-7 that is synthesized in response to virus infection

via the IFN autocrine loop. Although there is some evidence for two-phase

kinetics with feedback (16), we focus on modeling the substantial induction

of IFNB1 that is measured in the 9–12 h range after IRF-7 synthesis. We

model the enhanceosome with four proteins, P1–P4, that may be taken to

represent the architectural protein and the three transcription factors NFkB,

IRF, and ATF-2.

For each gene, the reactions of the model for sequential cooperative

binding of P1–P4 are

D þ P1 #
k1

k2

Ds1; (1)

Ds1 þ P2 #
k1

k2

Ds2; (2)

Ds2 þ P3 #
k1

k2

Ds3; (3)

Ds3 þ P4 #
k1

k2=4
Ds4; (4)

where for simplicity the rate constants are chosen equal in the first three reac-

tions. Ds4 denotes the completed enhanceosome. We have allowed for

a small rate for the last transcription factor allowing the enhanceosome to

fall apart in contrast to the earlier model from Hu et al. (4). This makes

the entire model, with reactions from Eqs. 5 and 6, equivalent to a pulsing

problem, which leads to power-law distributions with reasonable agreement

for the timescales on which mRNA induction occurs.

Once the enhanceosome is completed on either of two chromosomes,

there is a cascade of steps to assemble the preinitiation complex (17). The

steps include histone acetylation, recruitment of the CBP-Pol II holoenzyme

complex, SwI-SNF, and TATA-binding proteins. After this, the enhanceo-

some is in a transcribing state, where IFNB1 transcription takes place for

some random time, before switching back to the nontranscribing state.

This latter switching back-and-forth corresponds to transcriptional bursting

and distinguishes the present extended model from the original one. We

model the entire assembly of the preinitiation complex by a single step.

The transcribing state is Ds4*, from which mRNA m is produced such that

Ds4 #
f

b
Ds4�; (5)

Ds4�/
c

Ds4� þ m: (6)

For the rate constants, we chose k1 ¼ 1.132 � 10�7 s�1 in the Gillespie

simulations with the actual rate obtained by multiplying the copy number
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of the transcription factors. The others are given by k2 ¼ 0.002425 s�1,

f ¼ 1.5 � 10�4 s�1, and b ¼ 3 � 10�4 s�1. We used a copy number of

12,000 for all the transcription factors. A transcription rate of 20 per min

was used. The numbers for the assembly of the enhanceosome are approx-

imately the same as in the earlier article (4), and were chosen so that there

is rough agreement with experimental results on the time at which transcripts

are first measured. We have included a small rate (smaller by a factor of 4)

for the enhanceosome itself to break apart. We incorporated the fact that

IFNB1 mRNA is stable for 2 h and degrades abruptly thereafter (4). For

simplicity, we have used exponential degradation in the figures shown; we

have verified that the nature of the degradation does not affect our results.

The transcription and degradation rates determine the maximum number

of mRNA produced in any cell. The rate of transcription given the decay

rate that was measured experimentally was chosen to get agreement with

the maximum number of transcripts observed. The transcription factors

are assumed to be activated after 2 h. There is preliminary experimental

evidence for this timescale. We have verified that including a small basal

transcription rate from Ds (5% of the maximum rate) does not alter our

conclusions.

The sequence of steps in the model can be considered a simple pulsing

problem: the promoter is either in the transcribing state (Ds4*) or in nontran-

scribing states (Ds, Ds1, Ds2, Ds3, and Ds4). As shown in the Appendix, we

can make an approximate analytic equivalence and compute the rate

constants of an effective pulsing model from the full model; we have used

the results to guide our choice of the rate constants. The approximate

calculation for the values we have chosen yields an exponent of 0.83. We

simulated the model using stochastic simulations based on the Gillespie

algorithm (18) and obtained 0.76 to ~10% of the approximate analytic

estimate.

To simulate the model with the mutant virus which interferes with enhan-

ceosome formation we have been guided by experiment and exploration of

the space of rate constants in the model. Experimentally, it is known (19–21)

that NS1 inhibits retinoic acid-inducible gene I (RIG-I) activation by binding

to the dsRNA of the virus. This in turns prevents the activation of NFkB and

IRF3 proteins. We have modeled this by decreasing the number of activated

components and increasing the time it takes for them to be activated from 3 h

to 5 h. In addition, the slowing down prevents the key transcription factor

IRF-7 that is not constitutively expressed from being produced and acti-

vated. This makes the transcription rate slower since the structure of the

enhanceosome is not optimal. We model this by reducing the transcription

rate by a factor of 2. The results of the simulation are displayed in later

Fig. 6, which is similar to the data for TexasD126. For the mutant model,

the number of transcription factors is reduced to 10,000 for the least virulent

case with the activation time increased to between 4 and 5 h (14). The rate at

which the enhanceosome-preinitiation complex falls apart, b, is increased by

a factor of 5.

RESULTS

mRNA spectra for NDV infected cells

The experiments were performed with the ratio of infectious

particles to cells (the so-called multiplicity of infection at

0.5). The cells are primary human conventional dendritic

cells infected by NDV. The number of IFNB1 mRNA mole-

cules in single cells was measured in a PCR experiment (see

Materials and Methods). Measurements on cells from three

individuals were performed at 10 and 11 h after infection,

where IFNB1 production reaches a plateau (4). There is no

measurable response before 6 h as reported earlier and the

late response is overwhelming, making the measurements

most stable. In Fig. 1 we display the histogram of the

percentage count of DCs as a function of PCR cycle number
Biophysical Journal 97(7) 1984–1989
at 10 and 11 h after infection. The expression level across

cells varies widely by a factor of 1000. The distribution is

rather flat, far from Gaussian.

Since the data are recorded in cycle numbers, bin sizes

increase geometrically by factors of 2. Therefore, it is conve-

nient to represent the cumulative probability distribution. If

p(m) represents the probability of obtaining m copies of

IFNB1 mRNA, the cumulative probability P(m) is the prob-

ability of obtaining a value of copy number %m. Thus, if

p(m) has the power-law behavior p(m) ~ m�a, we expect

for P(m) the form ~m1–a, and a leveling off at large m at

the top range of possible mRNA copy numbers. We have

extracted P(m) from Fig. 1 and plotted it in Fig. 2 on a

log-log plot. The experimental points follow a straight line

over a significant range of almost three decades, revealing

the existence of power-law behavior. We have combined

the data at 10 and 11 h to improve the statistics. A straight

line numerical fit (log-log plot of Fig. 2) to the data yields

an exponent of a z 0.7, which is nearly the same as for DCs

collected from two other individuals (results not shown).

Similar results are obtained from a reanalysis of the data in

Hu et al. (4). There is thus a remarkable degree of univer-

sality in the early innate immune response across different

individuals.

A

B

FIGURE 1 Histogram of IFNB1 expression at 10 h (top, 149 cells) and

11 h (bottom, 96 cells) for one individual. The percentage number of cells

for each PCR cycle number value is displayed.
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mRNA spectra for mutant viruses

Mutant viruses are obtained from the Texas wild-type influ-

enza A virus by truncation of the NS1 viral protein coding

region. The NS1 protein is considered the main viral defense

against the infected cell’s immune response. It inhibits RIG-I

from sensing viral RNA and thus interferes with the activa-

tion of the enhanceosome components responsible for

IFNB1 induction (19–21). In the experiment, primary human

conventional DCs are infected with two variant strains of

Texas influenza A, namely TexasD126 and TexasD99, of

which the latter contains the longer NS1 fragment and is

therefore more virulent. In terms of pathogenicity, these

two TexasD strains interpolate between the Texas wild-

type and a virus such as NDV, which lacks the NS1 protein.

The cumulative distributions P(m) as a function of m are

shown in Figs. 3 and 4. The range of the distribution for

TexasD126 (see Fig. 3) compared to NDV infection (see

Fig. 2) decreases by approximately one decade, as a result

of diminished activation of enhanceosome components due

to the truncated NS1 protein blocking RIG-I. The range is

smaller by half a decade for the more virulent TexasD99

(see Fig. 4). What is remarkable, though, is that both mutant

virus distributions still follow a power law, as illustrated by

the straight lines drawn in Figs. 3 and 4. The slopes of the

straight lines are, respectively, close to 0.31 and 0.5, and

therefore, respectively, for the mRNA distribution itself

p(m) ~ m�0.69 and p(m) ~ m�0.5. The exponent for cells

infected by TexasD126 is practically the same as for cells

infected by the avian NDV.

Model with transcriptional pulsing

Our earlier model (4), though it was adequate for explaining

the observed allelic imbalance and the associated intrinsic

FIGURE 2 The data shown as function of cycle numbers in Fig. 1 are

replotted on a log-log plot for the cumulative probability distribution P(m)

of IFNB1 mRNAs. The 10 h (red squares) and 11 h (blue circles) data

have been merged to obtain improved statistics. The straight line of

slope 0.28 represents a numerical fit to the data points, which entails that

p(m) ~ m�0.72 for the probability distribution itself.
noise, was not so for describing the observed flatness of

the IFNB1 spectrum with respect to cycle number. The flat-

ness in cycle number leads to a power law for the distribution

of IFNB1 mRNA copy number. To reproduce this behavior

(see Fig. 2) the previous model needs to be extended to

include transcriptional bursting, which is known to lead to

power law behavior (see Materials and Methods). We asso-

ciate pulsing behavior with the formation of a preinitiation

complex (PIC) (22) that takes place with transcription factor

enhanceosome assembly. According to Munshi et al. (22), it

is the acetylation of the architectural protein HMGI(Y) that

controls a switch leading to enhanceosome formation and

breakup. Agalioti et al. (17) demonstrate that there is cascade

of enhanceosome-dependent recruitment events that culmi-

nate in transcription. This aspect of IFNB1 transcription

FIGURE 3 Log-log plot of the cumulative distribution P(m) of mRNAs

m for cells infected with the TexasD126 influenza strain. The blue circles

correspond to the experimental measurements of IFNB1 mRNA copy

number variation across cells. The straight line is a numerical fit to the

power-law region with a slope 0.31, which entails for the probability distri-

bution p(m) ~ m�0.69.

FIGURE 4 Log-log plot of the cumulative distribution P(m) of mRNAs

produced for cells infected by the TexasD99 strain. The blue circles corre-

spond to the experimental measurements of IFNB1 mRNA copy number

variation across cells. The power-law region of the distribution is numeri-

cally fitted by a straight line of slope 0.5, which entails that p(m) ~ m�0.5.
Biophysical Journal 97(7) 1984–1989
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was neglected in the original model. IFNB1 production takes

place whenever enhanceosome-PIC complex is complete,

but not when they are disassembled. We model this assembly

and disassembly of the enhanceosome-PIC complex as

a single step that occurs stochastically; a high level of tran-

scription occurs only when the complex is assembled leading

to induction in pulses, with the time in-between pulses and

their duration random variables.

The results of the model simulation using the Gillespie

algorithm (18) are displayed in Figs. 5 and 6, for cells,

respectively, infected by NDV and TexasD126 viruses.

The blue triangles in Fig. 5 and blue squares in Fig. 6 repre-

sent the results of the model. The straight lines are numerical

fits to the model results. The model reproduces the power-

law behavior of the experimental data (see Figs. 2 and 3)

for cells infected by both NDV and the mutant influenza

A virus. As the straight line numerical fits to the model

data show, the exponents characterizing the power-laws are

very similar to the experimental ones, thus confirming that

model results reproduce experimental results on power-law

behavior of the IFNB1 mRNA distributions.

DISCUSSION

We have presented data on single cell human DCs infected

by NDV and mutant Texas influenza A viruses, where

IFNB1 mRNA distributions exhibit power-law behavior

over several decades with exponents between �0.5 and

�0.8. Transcriptional pulsing can lead to such behavior

(13,23,24), where the exponent is larger than �1, and the

difference to �1 depends on the ratio of forward pulsing

rate and mRNA degradation rate. We have developed

a stochastic model of IFNB1 induction, an extension of

a previous one (4) for allelic imbalance: we incorporate the

formation of the preinitiation complex by a transcriptional

FIGURE 5 Results (blue triangles) from the model calculation with the

inclusion of a pulsing step for the preinitiation complex. The model data

are presented at 11 h on a log-log plot. The power-law region of the cumu-

lative distribution fits P(m) ~ m�0.24, leading to p(m) ~ m�0.76. This is to be

compared with the experimental result of Fig. 2, where p(m) ~ m�0.72.
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bursting step. Numerical simulations of the model along

with an analytic calculation of the effective forward pulsing

rate (see Appendix) lead to a quantitative fit of the data, thus

supporting the existence of transcriptional pulsing as an

essential aspect of IFNB1 induction in primary human

dendritic cells.

Our model results explain the large cell-to-cell variability

of IFNB1 mRNA that is experimentally observed. How does

this variability affect the innate immune response? It is

known that mRNA fluctuations could be washed out by

slow protein dynamics, such as a protein lifetime much

larger than its mRNA lifetime, as has been shown to

occur in a typical model of transcriptional bursting (13,23).

The key difference in the case of dendritic cells is that the

IFNB1 protein is a cytokine and the temporal profile of the

secreted protein determines the unfolding of the immune

response. Thus the cells that produce the most IFNB1

mRNA are the ones that are activated early after viral infec-

tion (4). These same cells produce many IFNB1 proteins and

secrete them into the environment, thus priming neighboring

cells through binding to their interferon receptors and

engaging the antiviral JAK/STAT pathway. The substantial

variability in the amount of produced IFNB1 mRNA might

be a way of allowing for an early response that is strong

in a limited number of cells thereby avoiding a cytokine

storm (25). The power-law IFNB1 mRNA distribution can

confer some robustness to the cytokine response since any

delay in IFNB1 induction due to viral antagonists will only

cut off the tail of the distribution, still leaving some cells

producing sufficient numbers of proteins to sustain the

response. Such appears to be the case for the mutant Texas

influenza A viruses, where the power-law behavior persists

over a reduced range due to viral antagonism.

FIGURE 6 Results (blue squares) from the model calculation for the

mutant virus TexasD126. The model data are presented at 11 h on a log-log

plot. The extent of power-law behavior of the mRNA IFNB1 distribution

is reduced as in the experiment (see Fig. 3). The best fit yields a power-law

given by a cumulative distribution P(m) ~ m0.26, leading to p(m) ~ m�0.74.

This is to be compared with the experimental result of Fig. 3, where

p(m) ~ m�0.69.



Power-Laws in IFNB1 mRNA Distribution 1989
APPENDIX: EFFECTIVE PARAMETERS FOR THE
COMPLETE MODEL

We consider a model with 6-state and more general rate constants. Let the

states of the model be denoted by j from j ¼ 0 to j ¼ 5 where the j ¼ 4

(denoted by Ds4 in the text) corresponds to the state with the enhanceosome

complete and j ¼ 5 (denoted by Ds4*) corresponds to the state with the pre-

initiation complex assembled and the one from which transcription of

IFNB1 occurs. Let fj and bj be the forward and backward rates from state

j to j þ 1 and j � 1, respectively. We also have b0 ¼ f5 ¼ 0 since the system

cannot go back from the initial state or forward from the final state. Since

state 6 is the only transcribing state, we can think of this as a simple pulsing

model with two states, a single initial state D that is not transcribing that

corresponds to the first five states and a single final state D* that corresponds

to the state 6 with effective rate constants:

D #
cf;eff

cb;eff

D�:

The effective cb, eff ¼ b6 is the rate at which the transcribing state returns

to a nontranscribing state. The effective cf, eff can be obtained by solving

a simple ordinary differential equation model that describes the system of

six states. If pj denotes the probability that the system is in state j,

we have

_pj ¼ bjþ 1pjþ 1 �
�
fj þ bj

�
pj þ fj�1pj�1:

From the steady-state solution, we can determine the steady-state probability

to be in the transcribing state (p5) to be
6. Talon, J., M. Salvatore, R. E. O’Neill, Y. Nakaya, H. Zheng, et al. 2000.
Influenza A and B viruses expressing altered NS1 proteins: a vaccine
approach. Proc. Natl. Acad. Sci. USA. 97:4309–4314.

7. Solorzano, A., R. J. Webby, K. M. Lager, B. H. Janke, A. Garcia-Sastre,
et al. 2005. Mutations in the NS1 protein of swine influenza virus
impair anti-interferon activity and confer attenuation in pigs. J. Virol.
79:7535–7543.

8. Bar-Even, A., J. Paulsson, N. Maheshri, M. Carmi, E. O’Shea, et al.
2006. Noise in protein expression scales with natural protein abun-
dance. Nat. Genet. 38:636–643.

9. Colman-Lerner, A., A. Gordon, E. Serra, T. Chin, O. Resnekov, et al.
2005. Regulated cell-to-cell variation in a cell-fate decision system.
Nature. 437:699–706.

10. Ruf, F., F. Hayot, M. J. Park, Y. Ge, G. Lin, et al. 2007. Noise propa-
gation and scaling in regulation of gonadotrope biosynthesis. Biophys.
J. 93:4474–4480.

11. Becskei, A., B. B. Kaufmann, and A. van Oudenaarden. 2005. Contri-
bution of low molecule number and chromosomal positioning to
stochastic gene expression. Nat. Genet. 37:937–944.

12. Raser, J. M., and E. K. O’Shea. 2004. Control of stochasticity in eukary-
otic gene expression. Science. 304:1811–1814.

13. Raj, A., C. S. Peskin, D. Tranchina, D. Y. Vargas, and S. Tyagi. 2006.
Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4:1707–1719.

14. Talon, J., C. M. Horvath, R. Polley, C. F. Basler, T. Muster, et al. 2000.
Activation of interferon regulatory factor 3 is inhibited by the influenza
A virus NS1 protein. J. Virol. 74:7989–7996.

15. Park, M. S., A. Garcia-Sastre, J. F. Cros, C. F. Basler, and P. Palese.
2003. Newcastle disease virus V protein is a determinant of host range
restriction. J. Virol. 77:9522–9532.
By equating this probability to the probability in the effective model, we

can obtain cf, eff. From the exact solution (13,23), we know that the power-

law decay exponent is determined by cf, eff/kd. In the model, we have used

f0 ¼ f1 ¼ f2 ¼ f3 ¼ k1, b1 ¼ b2 ¼ b3 ¼ k2, b4 ¼ k2/4, and f4 ¼ f and b5 ¼ b.

We have used this to guide our choice of the rate constants that make the

time dependence of the average values and the power-law decay exponent

in agreement with the experiments.
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