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Abstract
Background—TTN-encoded titin, CSRP3-encoded muscle LIM protein, and TCAP-encoded
telethonin are Z-disc proteins essential for the structural organization of the cardiac sarcomere and
the cardiomyocyte’s stretch sensor. All three genes have been established as cardiomyopathy-
associated genes for both dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM).
Here, we sought to characterize the frequency, spectrum, and phenotype associated with HCM-
associated mutations in these three genes in a large cohort of unrelated patients evaluated at a single
tertiary outpatient center.

Methods—DNA was obtained from 389 patients with HCM (215 male, left ventricular wall
thickness of 21.6 ± 6 mm) and analyzed for mutations involving all translated exons of CSRP3 and
TCAP and targeted HCM-associated exons (2, 3, 4, and 14) of TTN using polymerase chain reaction
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(PCR), denaturing high performance liquid chromatography (DHPLC), and direct DNA sequencing.
Clinical data were extracted from patient records and maintained independent of the genotype.

Results—Overall, 16 patients (4.1%) harbored a Z-disc mutation: 12 had a MLP mutation and 4
patients a TCAP mutation. No TTN mutations were detected. Seven patients were also found to have
a concomitant myofilament mutation. Seven patients with a MLP-mutation were found to harbor the
DCM-associated, functionally characterized W4R mutation. W4R-MLP was also noted in a single
white control subject. Patients with MLP/TCAP-associated HCM clinically mimicked myofilament-
HCM.

Conclusions—Approximately 4.1% of unrelated patients had HCM-associated MLP or TCAP
mutations. MLP/TCAP-HCM phenotypically mirrors myofilament-HCM and is more severe than
the subset of patients who still remain without a disease-causing mutation. The precise role of W4R-
MLP in the pathogenesis of either DCM or HCM warrants further investigation.
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Introduction
Affecting one in 500 persons, hypertrophic cardiomyopathy (HCM) is a disease associated
with remarkable genotypic and phenotypic heterogeneity [1,2]. Clinical outcomes range from
an entirely asymptomatic course with normal longevity to chronic progressive heart failure or
sudden cardiac death (SCD). Indeed, HCM is one of the leading causes of SCD in young
persons [1].

The most common genetically mediated form of HCM is myofilament-HCM with hundreds
of disease-associated mutations in eight genes encoding proteins critical to the sarcomere’s
thick—[β-myosin heavy chain (MYH7) [3], regulatory myosin light chain (MYL2), and
essential myosin light chain (MYL3)] [4], intermediate—[myosin binding protein C
(MYBPC3)] [5], and thin myofilament [cardiac troponin T (TNNT2), α-tropomyosin (TPM1)
[6], cardiac troponin I (TNNI3) [7], and actin (ACTC) [8,9]]. Myofilament-HCM accounts for
approximately 40–65% of HCM among cohorts of unrelated patients [10]. In general, patients
with myofilament-HCM have greater hypertrophy and present at a younger age than those who
remain without an established disease-causing mutation [11]. The two most common genotypes
of myofilament-HCM, MYBPC3- and MYH7-HCM, are phenotypically indistinguishable from
each other [12–20].

Besides perturbations involving the sarcomere’s myofilaments, the Z-disc, which comprises a
cadre of proteins involved in cardiomyocyte cytoarchitecture and mechano-sensor-signaling,
has emerged recently as host to several HCM-associated mutations extending the spectrum of
“sarcomeric”-HCM. To date, three genes encoding critical Z-disc proteins: TTN-encoded titin,
CSRP3-encoded muscle LIM protein (MLP), and the TCAP-encoded telethonin, have been
implicated in the pathogenesis of both dilated cardiomyopathy (DCM) and HCM [21–24].

As part of the cardiomyocyte stretch response machinery, TTN-encoded titin, which extends
throughout half of the sarcomere from the M-line to the Z-disc is the largest of the three
proteins; mapped on chromosome 2q31, TTN encodes for a giant 26,926 amino-acid protein
with a molecular weight of 2993 kD [25]. CSRP3-encoded MLP and TCAP-encoded telethonin
are mapped to chromosome 11p15.1 and 17q12, respectively, and contain 194 and 167 amino
acids, respectively [26,27]. Prior to this study, one HCM-associated mutation in TTN (R740L-
TTN) [28], three HCM-associated mutations in MLP (L44P-MLP, C58G-MLP, and S54R/
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E55G-MLP) [22], and two HCM-associated mutations in TCAP (T137I-TCAP and R153H-
TCAP) have been reported [21].

Having completed a comprehensive mutational analysis involving all translated exons of the
eight genes responsible for myofilament-HCM [14,15,29,30], we sought to determine the
frequency, spectrum, and phenotype associated with these three genes that encode essential Z-
disc proteins among a large cohort of unrelated patients diagnosed clinically with HCM.

Methods
Study population

Following a written informed consent for this IRB-approved research protocol, blood samples
were obtained from 389 unrelated patients with HCM (215 male, left ventricular wall thickness
of 21.6 ± 6 mm) evaluated at the Mayo Clinic’s HCM clinic between April 1997 and December
2001. Subsequently DNA was extracted from the blood samples using Purgene DNA extraction
kits (Gentra, Minneapolis, Minnesota).

HCM-associated mutational analysis of TTN, CSRP3, and TCAP
Using polymerase chain reaction (PCR) and denaturing high performance liquid
chromatography (DHPLC) (WAVE, Transgenomic, Omaha, Nebraska), the three genes
implicated in Z-disc-HCM: TTN-encoded titin, CSRP3-encoded muscle LIM protein, and
TCAP-encoded telethonin, were analyzed. Abnormal elution profiles were further
characterized by direct DNA sequencing (ABI Prism 377; Applied Biosystem, Foster City,
California).

For TTN, only a targeted analysis of the exons (2, 3, 4, and 14) hosting cardiomyopathy-
associated mutations was performed while a comprehensive open reading frame/splice-site
analysis was conducted for all translated exons of CSRP3 (5 exons) and TCAP (2 exons). A
topological schematic of both MLP and telethonin including key functional domains is depicted
in Fig. 1. Primers, annealing temperatures and optimized WAVE conditions are available upon
request. Four hundred reference alleles, derived from 100 white and 100 black healthy controls
(Coriell Cell Repositories), were also examined to determine whether an identified amino acid
variant was a common polymorphism. The non-synonymous mutations were annotated using
the single letter convention as in L44P whereby the wild type leucine (L) at residue 44 has
been replaced by proline (P).

Statistical analysis
Analysis of variance tests were used to assess differences between continuous variables;
contingency tables or z tests were used as appropriate to analyze nominal variables
independency of the different variables. Student’s t tests were performed to elucidate
differences between the different subgroups. A p value less than 0.05 was considered
statistically significant.

Results
Table 1 summarizes the phenotype of the entire HCM cohort including those with perturbations
involving either MLP or telethonin. The mean age at diagnosis for our total cohort was
approximately 41 ± 19 years with 216 patients (56%) having cardiac symptoms at presentation
and 60 (15%) having received an implantable cardioverter-defibrillator (ICD). The mean
maximum left ventricular wall thickness (LVWT) was 21.6±6 mm. Of the 389, 161 (41%)
were treated in part by a surgical myectomy, reflecting the surgical referral bias and subsequent
over-representation of obstructive HCM in this cohort. Approximately one-third had a family
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history of HCM whereas one-seventh was found to have a family history of sudden cardiac
death. Myofilament-HCM was demonstrated previously for 147 of the 389 subjects (38%)
[14,15,30].

Overall, 16 (4.1%) individuals with HCM hosted possible mutations in the genes underlying
Z-disc-HCM: TTN (0), CSRP3 (12), and TCAP (4). The clinical phenotypes of these patients
are described in Table 2. The average at diagnosis for MLP (CSRP3)- and TCAP-associated
HCM was 48.5 ± 17 and 38.8 ± 9 years, respectively, while the mean maximal left ventricular
wall thickness (MLVWT) was 20.1 ± 3 mm and 29.5 ± 12 mm, respectively. Three patients
(25%) with a MLP-mutation and one patient (25%) with a TCAP-mutation reported a family
history of HCM, while 2 and 1 patient (17 and 25%), respectively, had a family history of SCD.
A total of eight patients underwent a surgical myectomy due to refractory symptoms despite
optimal medical treatment.

HCM-associated MLP mutations
Fig. 2 depicts the mutations found in the CSRP3-encoded MLP; novel mutations are indicated
by an asterisk. Five CSRP3 variants were identified in 12 patients, including 4 missense
mutations and 1 frameshift mutation, involving residues highly conserved across species (data
not shown) and not seen in 400 reference alleles. Clinical phenotypes are described in Table
2. K42fs/165 and Q91L were detected in patients having no HCM-associated myofilament
mutations (cases 8 and 12). The previously published HCM-causing mutation (L44P, case 9)
localized to the LIM1 α-actinin binding domain, while the R64C and Y66C mutations (cases
10 and 11) localized to the six amino acid nuclear localization signal (NLS). These three
mutations (cases 9–11) were detected in patients also hosting HCM-associated myofilament
mutations.

The missense mutation, W4R-MLP, which localizes to telethonin’s binding domain, was noted
in seven patients (cases 1–7). Three of these patients (cases 5–7) also had a mutation involving
either the beta myosin heavy chain or myosin binding protein C. W4R was also observed in
one of the 400 reference alleles examined (a healthy Caucasian control).

HCM-associated TCAP mutations
Three different, novel TCAP mutations were identified in 4 patients with HCM (Table 2, cases
13–16). Two patients (cases 13 and 14) had an in-frame deletion involving glutamic acid at
position 13 (E13del). The R70W mutation was located in the reciprocal MLP-binding domain
of telethonin in a patient (case 15) with a MLVWT of 46 mm and a positive family history for
HCM. The titin-binding domain of telethonin was host to a missense mutation, P90L, for one
patient (case 16) who also had a missense mutation involving myosin binding protein C.

Genotype—phenotype relationships in MLP/TCAP-HCM
Compared to patients still lacking a mutation (genotype negative) and patients with
myofilament-HCM, patients with mutations involving either MLP or TCAP more closely
resembled the subset with myofilament-HCM (Fig. 3). The subset with MLP-HCM were,
however, more obstructive (80 ± 43 mmHg) than both myofilament-HCM (42.8±42mmHg;
p=0.01) and genotype negative-HCM (46.6±42mmHg; p=0.007). Despite the small sample
size, patients with TCAP-HCM had significantly greater MLVWT (29.5±12mm) compared
with either genotype negative-(20.6±6mm; p=0.006), myofilament-(23.0± 7.0mm; p=0.04), or
MLP-HCM (20.1±3mm; p=0.01) and a similar age at diagnosis as myofilament positive-HCM
(38.8±9 vs. 34.5±17 years old; p=0.6). When a subset analysis of patients with either Z-disc
only (n=9) mutations or Z-disc mutation plus a concomitant myofilament (n=7) mutation was
performed, the phenotypes of these two subgroups did not differ from each other on MLVWT
(23.9±9mm vs. 20.6±3mm; p=0.3), MLVOTO (67.4±49mmHg vs. 93.5±20mmHg; p=0.2) or
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age at diagnosis (46.3±6 yrs vs. 45.8±6.8 yrs; p=0.9), supporting the role of MLP/TCAP
mutations in pathogenesis of HCM.

Discussion
As critical components of the dynamic protein scaffolding between the sarcomere and
cytoskeleton at the Z-line, the titin-muscle LIM protein—telethonin complex is involved in
both cyto-architecture and mechano-signaling, thus serving as a potential link between
myofilament-HCM and Z-disc-HCM. Prior to this study, one HCM-associated mutation in titin
[28], four HCM-associated mutations in MLP [22,31] and two HCM-associated mutations in
telethonin have been reported [21]. In addition, consistent with the notion that HCM and DCM
are often allelic disorders, several DCM-associated mutation in these three Z-disc proteins have
been discovered as well [23,24,32–34]. Based upon our observations in this study, the genes
encoding Z-disc proteins currently implicated so far as only DCM-susceptibility genes
constitute rational candidate genes to explore in HCM.

This study represents the largest series of patients examined for the three known subtypes of
Z-disc-HCM whereby approximately 4% of unrelated patients harbored a mutation in either
MLP (CSRP3) or TCAP. We did not observe any mutations in the giant protein, titin, which
extends across half of the entire sarcomere. However, only those regions implicated previously
in either HCM or DCM were examined. Among the 12 patients with a non-synonymous, amino-
acid altering variant in the CSRP3-encoded MLP, a compelling case for disease-association
exists at the present time for five patients (cases 8–12). Besides the L44P-MLP, R64C-MLP,
and Y66C-MLP missense mutations, three patients (cases 9–11) also possessed a concomitant
myofilament mutation: G1041fs/5-MYBPC3, I1131T-MYBPC3, and R162Q-TNNI3
respectively. The L44P-MLP variant along with the K42fs/165-MLP frameshift mutation
localize to the LIM1-domain which is responsible for binding to α-actinin. In a yeast 2-hybrid
assay, Geier [22] recently showed a significantly impaired binding affinity for α-actinin due
to C58G-MLP.

The pathogenic mechanism for HCM in these patients hosting both MLP variants and
myofilament mutations may be due to synergistic heterozygosity (two-hit hypothesis) as we
have previously demonstrated in a patient hosting a known myosin binding protein C missense
mutation and a functionally compromised frataxin mutation [35]. Previously, we demonstrated
that among the 140 patients in our cohort previously established to have solely myofilament-
HCM, 10 patients (7%) hosted two myofilament mutations with one of the variants usually
involving myosin binding protein C [14]. Supporting the notion that both variants contributed
to the expressed phenotype, these patients with multiple myofilament-HCM were younger at
diagnosis and had greater hypertrophy than those having a single myofilament mutation.
Herein, proportionately more patients with putative Z-disc-HCM also had a myofilament
mutation raising the possibility that some of these variants may represent false positives. Future
studies of the families represented by these HCM cases may shed light on the relative
contributions of both the myofilament and the Z-disc mutation in the expressed phenotype.

The precise contribution of W4R-MLP (seen in seven patients, cases 1–7) in the pathogenesis
of HCM remains an enigma. Four of the seven patients with W4R-MLP in the present study
also have a published HCM-associated myofilament mutation. Initially, W4R was discovered
as a DCM-associated mutation and was reportedly absent in 640 normal reference alleles
[34]. Localizing to the telethonin-binding domain of MLP, it was not surprising to see in vitro
assays demonstrating markedly reduced interaction/localization with telethonin [34].
Transgenic mouse models of W4R-MLP yield mice with a rather pronounced cardiomyopathy
characterized by significant ventricular dilation and systolic dysfunction [36].

Bos et al. Page 5

Mol Genet Metab. Author manuscript; available in PMC 2009 October 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Recently, W4R-MLP was observed in 1 of 137 unrelated patients with HCM [31]. This variant
was found in a patient with predominant apical HCM in which no myofilament mutations were
identified. However, these investigators also observed W4R in 3 of 500 reference alleles (0.6%
allelic frequency). We have now observed W4R in 1/400 reference alleles. While clearly a
phenotype producing mutation in an overexpression transgenic mouse model, further studies
are necessary to elucidate the precise role of W4R-MLP in the pathogenesis of
cardiomyopathies in humans.

Finally, four patients (cases 13–16) hosted mutations in telethonin with one patient also having
a myofilament Q998R-MYBPC3 genotype (case 16). These patients had severe hypertrophy
(mean MLVWT=29.5 mm) whereas previously published TCAP probands had a mean
MLVWT of 20 mm. In particular, the patient in our study with R70W-TCAP (case 15) had
massive hypertrophy with a septal wall thickness of 46 mm. No other mutations in known
HCM genes have been found in this individual. R70W-TCAP localizes to the functional domain
essential for binding MLP.

Most of the HCM- and DCM-associated mutations reported in these three Z-disc proteins have
not been characterized functionally. It remains to be determined whether or not the various
mutations selectively perturb force generating (HCM-predisposing) or force transmitting
(DCM-predisposing) functions.

Conclusions
In this study, HCM-susceptibility mutations in CSRP3 and TCAP represent uncommon causes
of HCM, with a prevalence similar to troponin I- and actin-HCM. The combined clinical
phenotype of MLP/TCAP-HCM resembles that of myofilament-HCM. Co-segregation and
functional studies are now needed to dissect the relative contributions of the various Z-disc
mutations to the pathogenesis and phenotypic expression of HCM.
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Fig. 1.
Topological schematic of muscle LIM protein and telethonin. Shown are the important domains
of the protein. For MLP, the TCAP-binding domain, both LIM-domains and its nuclear
localization signal (NLS) are shown. For telethonin, the MLP -, titin-, and minK-binding
domains are shown. Amino-acid localization of the specific domains between parentheses.
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Fig. 2.
Schematic representation of mutations in muscle LIM protein and telethonin. Representation
of mutations found in our cohort of 389 patients with HCM. The L44P-MLP has been
previously published as a HCM-associated mutation. The W4R-MLP mutation has been
previously published and functionally characterized in patients with DCM. Novel mutations
are indicated with an asterisk.
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Fig. 3.
Degree of hypertrophy (A), degree of left ventricular outflow tract obstruction (B), and age at
diagnosis (C) for genotyped subjects. Genotyped patients with hypertrophic cardiomyopathy
are grouped on the X-axis as hosting as hosting no putative mutation (genotype negative),
hosting a myofilament mutation (myofilament-HCM), a MLP-mutation or a TCAP-mutation.
Unless otherwise noted, all pair wise comparisons are not statistically significant. *p < 0.05
compared to all other groups.
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