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ABSTRACT How much matter is there in the universe?
Does the universe have the critical density needed to stop its
expansion, or is the universe underweight and destined to ex-
pand forever? We show that several independent measures,
especially those utilizing the largest bound systems known—
clusters of galaxies—all indicate that the mass-density of the
universe is insufficient to halt the expansion. A promising
new method, the evolution of the number density of clusters
with time, provides the most powerful indication so far that
the universe has a subcritical density. We show that different
techniques reveal a consistent picture of a lightweight uni-
verse with only 77720–30% of the critical density. Thus, the
universe may expand forever.

Standard models of inflation—how the universe expanded in
the beginning—as well as general arguments that demand no
“fine tuning” of cosmological parameters, predict a flat uni-
verse with the critical density needed to just halt its expansion.
The critical density, 1:9 3 10−29h2 g cm−3 (where h refers to
Hubble’s constant; see below), is equivalent to 710 protons
per cubic meter; this density provides the gravitational pull
needed to slow down the universal expansion that began with
the Big Bang approximately 15 billion years ago and will even-
tually bring it to a halt. So far, however, only a small fraction
of the critical density has been detected, even when all the
unseen “dark matter” in galaxy halos and clusters of galaxies
is included. There is no reliable indication so far that most of
the matter needed for closing the universe does in fact exist.
Here we show that several independent observations of clus-
ters of galaxies, including the mass-to-light ratio of clusters,
the high baryon fraction in clusters, and the observed evolu-
tion of cluster abundance, all portray a consistent picture of a
subcritical universe.

Weighing Clusters

Rich clusters of galaxies—families of hundreds of galaxies
held together by the gravitational potential of the cluster—
are the most massive bound objects known. Cluster masses
can be directly and reliably determined by using three inde-
pendent methods: (i) the motion (velocity dispersion) of galax-
ies within clusters reflects the dynamical cluster mass, within
a given radius, assuming that the clusters are in hydrostatic
equilibrium (1–3); (ii) the temperature of the hot intraclus-
ter gas, like the galaxy motion, traces the cluster mass (4–6);
and (iii) gravitational lensing distortions of background galax-
ies can be used to directly measure the intervening cluster
mass that causes the distortions (7–10). All three indepen-
dent methods yield consistent cluster masses (typically within
radii of 71 Mpc 7 3 3 106 light-years), indicating that we can
reliably determine cluster masses within the observed scatter
(530%).
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Mass-to-Light Ratio of Clusters

Let us begin with the simplest argument for a low density uni-
verse. The masses of rich clusters of galaxies range from 71014

to 1015h−1M� within 1:5h−1 Mpc radius of the cluster center
(where h = H0/100 km s−1 Mpc−1 denotes Hubble’s constant,
representing the expansion rate of the universe). When nor-
malized by the cluster luminosity, a median mass-to-light ra-
tio of M/LB ı 3005 100h in solar units (M�/L�) is observed
for rich clusters, independent of the cluster luminosity, veloc-
ity dispersion, or other parameters (3, 11). (LB is the total
luminosity of the cluster in the blue band, corrected for inter-
nal and Galactic absorption.) When integrated over the entire
observed luminosity density of the universe, this mass-to-light
ratio yields a mass density of ρm ı 0:4 3 10−29h2 g cm−3, or a
mass density ratio of �m = ρm/ρcrit ı 0:250:07 (where ρcrit is
the critical density needed to close the universe). The inferred
density assumes that all galaxies exhibit the same high M/LB
ratio as clusters and that mass follows light on large scales.
Thus, even if all galaxies have as much mass per unit luminos-
ity as do massive clusters, the total mass of the universe is only
720% of the critical density. If one insists on esthetic grounds
that the universe has a critical density (�m = 1), then most of
the mass of the universe has to be unassociated with galaxies
(i.e., with light). On large scales (* 1:5h−1 Mpc) the mass has
to reside in “voids” where there is no light. This would im-
ply, for �m = 1, a large bias in the distribution of mass versus
light, with mass distributed considerably more diffusely than
light.

Is there a strong bias in the universe, with most of the
dark matter residing on large scales, well beyond galaxies and
clusters? A recent analysis of the mass-to-light ratio of galax-
ies, groups, and clusters by Bahcall, Lubin, and Dorman (11)
suggests that there is not a large bias. The study shows that
the M/LB ratio of galaxies increases with scale up to radii of
R 7 0:2 h−1 Mpc, due to very large dark halos around galaxies
(see also refs. 12 and 13). The M/L ratio, however, appears to
flatten and remain approximately constant for groups and rich
clusters from scales of 70.2 to at least 1:5h−1 Mpc and pos-
sibly even beyond (Fig. 1). The flattening occurs at M/LB ı
200−300h, corresponding to �m ı 0:2. (An M/LB 7 1350h is
needed for a critical density universe, �m = 1.) This observa-
tion contradicts the classical belief that the relative amount of
dark matter increases continuously with scale, possibly reach-
ing �m = 1 on large scales. The available data suggest that
most of the dark matter may be associated with very large

Abbreviations: Mpc, megaparsec ı 3 3 106 light-years; h, Hubble’s
constant in units of 100 km s−1Mpc−1; �m, cosmological mass density
parameter of the universe in units of the critical density; M/L, mass-
to-light ratio; �b, baryon mass density in the universe in units of the
critical density.
*To whom reprint requests should be addressed. e-mail: neta@astro.
princeton.edu.
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Fig. 1. The dependence of mass-to-light ratio, M/LB, on scale, R, for average spiral galaxies (blue symbols), elliptical galaxies (green), and
groups and clusters (red). [Adapted from Bahcall, Lubin, and Dorman (11)]. The large scale point at 715h−1 Mpc represents Virgo cluster
infall motion results (11). The location of �m = 1 and �m = 0:3 are indicated by the horizontal lines. A flattening of M/LB is suggested at
�m ı 0:25 0:1.

dark halos of galaxies and that clusters do not contain a sub-
stantial amount of additional dark matter, other than that
associated with (or torn-off from) the galaxy halos, plus the
hot intracluster gas. This flattening of M/L with scale, if con-
firmed by further larger-scale observations, suggests that the
relative amount of dark matter does not increase significantly
with scale above 70:2h−1 Mpc. In that case, the mass density
of the universe is low, �m 7 0:2–0.3, with no significant bias
(i.e., mass approximately following light on large scales).

Baryons in Clusters

Clusters contain many baryons, observed as gas and stars.
Within 1:5h−1 Mpc of a rich cluster, the x-ray emitting gas
contributes 76h−1:5% of the cluster virial mass (14–16). Stars
contribute another * 4%. The baryon fraction observed in
clusters is thus:

�b/�m * 0:06h−1:5 + 0:04: [1]

Standard Big Bang nucleosynthesis limits the baryon density
of the universe to (17, 18):

�b ı 0:017h−2: [2]

These facts suggest that the baryon fraction observed in
rich clusters (Eq. 1) exceeds that of an �m = 1 universe
(�b/��m = 1� ı 0:017h−2; Eq. 2) by a factor of * 3 (for
h * 0:5). Because detailed hydrodynamic simulations (14,
16) show that baryons do not segregate into rich clusters,
the above results imply that either the mean density of the
universe is lower than the critical density by a factor of * 3,
or that the baryon density is much larger than predicted by

nucleosynthesis. The observed high baryonic mass fraction
in clusters (Eq. 1), combined with the nucleosynthesis limit
(Eq. 2), suggest (for h ı 0:5− 1)

�m ı 0:25 0:1: [3]

Evolution of Cluster Abundance

In a recent study by Bahcall, Fan, and Cen (19, 20), we show
that the evolution of the number density of clusters as a func-
tion of cosmic time (or redshift) provides a powerful con-
straint on �m (19–22). The growth of high-mass clusters from
initial Gaussian fluctuations depends strongly on the cosmo-
logical parameters �m and σ8 (where σ8 is the root-mean-
square mass fluctuation on 8h−1 Mpc scale; refs. 23–27). In
low-density models, density fluctuations evolve and freeze out
at early times, thus producing only relatively little evolution
at recent times (z + 1). In an �m = 1 universe, the fluctu-
ations start growing more recently, thereby producing strong
evolution in recent times; a large increase in the abundance
of massive clusters is expected from z 7 1 to z 7 0. The
evolution is so strong in �m = 1 models that finding even
a few Coma-like clusters at z , 0:5 over 7103 deg2 of sky
contradicts an �m = 1 model where only 710−2 such clusters
would be expected (when normalized to the observed present-
day cluster abundance). The evolution of the number density
of Coma-like clusters was recently determined from obser-
vations and compared with cosmological simulations (19–21).
The data show only a slow evolution of the cluster abun-
dance to z 7 0:5, with 7102 times more clusters observed
at these redshifts than expected for �m = 1. The results yield
�m ı 0:35 0:1.
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The evolutionary effects increase with cluster mass and with
redshift. The existence of the three most massive clusters ob-
served so far at z 7 0:5–0.9 places the strongest constraint
yet on �m and σ8. These clusters (MS0016+16 at z = 0:55,
MS0451− 03 at z = 0:54, and MS1054− 03 at z = 0:83, from
the Extended Medium Sensitivity Survey, EMSS; ref. 28) are
nearly twice as massive as the Coma cluster and have reliably
measured masses (including gravitational lensing masses, tem-
peratures, and velocity dispersions; refs. 3, 9, 29–32). These
clusters posses the highest masses (* 8 3 1014h−1 M� within
1.5h−1 comoving Mpc radius), the highest velocity dispersions
(* 1200 km s−1), and the highest temperatures (* 8 kev) in
the z , 0:5 EMSS survey. The existence of these three mas-
sive distant clusters, even just the existence of the single ob-
served cluster at z = 0:83, rules out Gaussian �m = 1 models
for which only 710−5 z 7 0:8 clusters are expected instead
of the 1 cluster observed (or 710−3 z , 0:5 clusters expected
instead of the 3 observed). [See Bahcall and Fan (29).]

In Fig. 2, we compare the observed versus expected evo-
lution of the number density of such massive clusters. The
expected evolution is based on the Press–Schechter (23) for-
malism that describes the growth of structure in a hierarchical
universe with standard initial Gaussian density fluctuations;
this formalism agrees well with direct numerical cosmologi-
cal simulations (20, 26). The expected evolution is shown for
different �m values (each with the appropriate normalization
σ8 that satisfies the observed present-day cluster abundance,
σ8 ı 0:5�−0:5

m ; refs. 26 and 33). The model curves range from
�m = 0:1 �σ8 ı 1:7) at the top of the figure (flattest, nearly
no evolution) to �m = 1 �σ8 ı 0:5) at the bottom (steep-
est, strongest evolution). The difference between high and low

Fig. 2. Evolution of the number density of massive clusters as a
function of redshift: observed versus expected (for clusters with mass
* 8 3 1014h−1M� within a comoving radius of 1:5h−1 Mpc). [Adapted
from Bahcall and Fan (29)]. The expected evolution is presented for
different �m values by the different curves. The observational data
points (see text) show only a slow evolution in the cluster abundance,
consistent with �m ı 0:2+0:15

−0:1 . Models with �m = 1 predict 7105 fewer
clusters than observed at z 7 0:8, and 7103 fewer clusters than ob-
served at z 7 0:6.

�m models is dramatic for these high mass clusters: �m = 1
models predict 7105 times fewer clusters at z 7 0:8 than do
�m 7 0:2 models. The large magnitude of the effect is due to
the fact that these are very massive clusters, on the exponen-
tial tail of the cluster mass function; they are rare events and
the evolution of their number density depends exponentially
on their “rarity,” i.e., depends exponentially on σ−2

8 9 �m (20,
23, 29). The number of clusters observed at z 7 0:8 is consis-
tent with �m 7 0:2 and is highly inconsistent with the 710−5

clusters expected if �m = 1. The data exhibits only a slow,
relatively flat evolution; this is expected only in low �m mod-
els. �m = 1 models have a 710−5 probability of producing the
one observed cluster at z 7 0:8, and, independently, a 710−6

probability of producing the two observed clusters at z 7 0:55.
These results rule out �m = 1 Gaussian models at a very high
confidence level. The results are similar for models with or
without a cosmological constant. The data provide powerful
constraints on �m and σ8: �m = 0:2+0:15

−0:1 and σ8 = 1:2 5 0:3
(68% confidence level) (29). The high σ8 value for the mean
mass fluctuations indicates a nearly unbiased universe, with
mass approximately tracing light on large scales [because the
galaxy fluctuations, which represent the light, exhibit a similar
value of σ8�galaxy� ı 1]. This conclusion is consistent with
the suggested flattening of the observed M/L ratio on large
scales (Fig. 1).

In Fig. 3 we summarize the four independent �m (σ8) con-
straints obtained from the cluster results discussed above:
(i) the present-day cluster abundance constraint (26, 33)
�0:5
m ı 0:5/σ8; (ii) the high-redshift (z 7 0:5–0.9) cluster

abundance constraint (29) [the overlap of the z 7 0 and
z 7 0:5–0.9 abundance constraints of (i) and (ii) yields the
cluster evolution constraint discussed above]; (iii) the �m de-
rived from the high baryon fraction in clusters; and (iv) the
�m obtained from cluster masses. The results are all consis-
tent with each other for �m = 0:2 5 0:1 and σ8 = 1:2 5 0:2
(1σ level). �m = 1 models are highly incompatible with these
results (& 10−6 probability).

Summary

We have shown that several independent observations of clus-
ters of galaxies all indicate that the mass-density of the uni-
verse is subcritical: �m ı 0:25 0:1. A summary of the results,
presented in Fig. 3, is highlighted below.

1. The mass-to-light ratio of clusters of galaxies and the
suggested flattening of the mass-to-light ratio on large scales
suggest �m ı 0:25 0:1.

2. The high baryon fraction observed in clusters of galaxies
suggests �m ı 0:25 0:1.

3. The weak evolution of the observed cluster abundance to
z 7 1 provides a robust estimate of �m ı 0:2+0:15

−0:1 , valid for
any Gaussian models. An �m = 1 Gaussian universe is ruled
out as a & 10−6 probability by the cluster evolution results
(Figs. 2 and 3).

4. All the above-described independent measures are con-
sistent with each other and indicate a low-density universe
with �m ı 0:25 0:1 (Fig. 3). �m = 1 models are ruled out by
the data. While non-Gaussian initial fluctuations, if they exist,
will affect the cluster evolution results, they will not affect ar-
guments 1 and 2 above. Gaussian low-density models (with or
without a cosmological constant) can consistently explain all
the independent observations presented here. These indepen-
dent cluster observations indicate that we live in a lightweight
universe with only 720–30% of the critical density. Thus, the
universe may expand forever.
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Fig. 3. Constraining the mass-density parameter, �m, and the mass fluctuations on 8h−1 Mpc scale, σ8, from several independent observations
of clusters: cluster dynamics (blue band); baryon fraction in clusters (pink); present-day cluster abundance (z 7 0; green); and cluster abundance
at redshift z 7 0:7 (yellow). (The latter two abundances yield the cluster evolution constraints shown in Fig. 2; see text.) All of these model-
independent observations converge at the allowed range of �m = 0:2 5 0:1 and σ8 = 1:2 5 0:2 (68% confidence level; red). The dotted lines
illustrate the mean microwave fluctuations constraints, based on the COBE satellite results, for a Cold-Dark-Matter model with h = 0.7 (with
and without a cosmological constant, denoted as LCDM and OCDM respectively; both models are consistent, within their uncertainties, with the
best-fit �m − σ8 regime of the cluster observations.)
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