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ABSTRACT Most large dynamical systems are thought to
have ergodic dynamics, whereas small systems may not have
free interchange of energy between degrees of freedom. This
assumption is made in many areas of chemistry and physics,
ranging from nuclei to reacting molecules and on to quantum
dots. We examine the transition to facile vibrational energy
f low in a large set of organic molecules as molecular size is
increased. Both analytical and computational results based on
local random matrix models describe the transition to unre-
stricted vibrational energy f low in these molecules. In partic-
ular, the models connect the number of states participating in
intramolecular energy f low to simple molecular properties
such as the molecular size and the distribution of vibrational
frequencies. The transition itself is governed by a local
anharmonic coupling strength and a local state density. The
theoretical results for the transition characteristics compare
well with those implied by experimental measurements using
IR fluorescence spectroscopy of dilution factors reported by
Stewart and McDonald [Stewart, G. M. & McDonald, J. D.
(1983) J. Chem. Phys. 78, 3907–3915].

The notion of treating the dynamics of molecules with a high
density of quantum states as ergodic has a long history. This
assumption is made in most chemical rate theories (1, 2). Yet
molecular spectroscopy and computational studies show that
at low energies, or for small enough systems, the idea that all
parts of the energetically allowed phase space are accessible
does not apply (3–8). This fact raises the question as to how the
transition to facile energy flow occurs. This question, while
vital to physical chemistry, also has been raised recently by
work in nuclear physics (9) and in the study of quantum dots
(10). Fifteen years ago, in pioneering work, McDonald and
coworkers provided the experimental basis for answering this
fundamental question by studying the final extent of intramo-
lecular vibrational redistribution (IVR) in a large class of
organic molecules (11). Here we show how the characteristics
of the behavior seen by them can be understood by using recent
theoretical ideas.

Is there an easily computable parameter that traces the
energy flow transition with high fidelity? Generally, because
molecular size is clearly relevant, the total density of states has
been taken as the parameter that determines the extent of
vibrational state mixing. For example, McDonald and cowork-
ers tabulated the results of their experiments on the final
extent of IVR as a function of the total density of states of the
molecules studied (11). These experiments probe the transi-
tion to facile energy flow by using IR fluorescence spectros-
copy to measure the dilution factor s upon exciting a CH
fundamental
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uc0iu2 is the intensity borrowed by an eigenstate i from a bright
state 0 assumed to carry all the oscillator strength. Np is the
effective number of states participating in IVR. When there is
little state mixing, Np lies near unity because only one or a few
eigenstates (due to isolated anharmonic resonances) lie within
the vibrational band contour. When molecular size and energy
increase, Np finally increases to a maximum value roughly
equal to the product of the total symmetry-allowed density of
states and the width G of the band contour:

Np
(max) , Grtot 5 t21rtot. [2]

The change in Np is not gradual. Instead, McDonald and
coworkers noted a drop of s as the total density of states
reached 10–100 cm21. When looked at in terms of rtot, the
transition, while noticeable, is still strikingly broad. We must
question whether the total density of states is the controlling
factor.

It has been suggested that the relevant parameter that
determines the transition to ergodic state mixing is not the
total density of states but rather is related to the local density
of states coupled by anharmonic resonances (12–15). In 1990,
Logan and Wolynes (12) mapped the mathematical description
of vibrational energy flow in molecules caused by anharmonic
coupling to that of single-particle quantum transport in dis-
ordered media, the problem of Anderson localization. Because
of both the local nature of coupling in a vibrational Hamilto-
nian and the statistical nature of this theory, we refer to this
work and more recent developments as Local Random Matrix
Theory (LRMT). LRMT naturally leads to an understanding
of how the ergodicity transition is approached in molecules. In
this theory the dilution factor is shown to vary with the local
density of anharmonically coupled states (16), not the total
state density. According to LMRT the transition to ergodicity
(minimal possible s) depends not on rtot, but on the local
quantity

T , ~rlocVanh!2, [3]

where Vanh is the local anharmonic coupling strength and rloc
is the local density of coupled states.

Like rtot, rloc and therefore T increase with energy and
molecular size, but more slowly (see below). When T 5 Tcrit 5
1, a transition to facile energy flow is predicted. In their
development of LRMT Leitner and Wolynes provided a simple
expression for the local parameter T in Eq. 3, calculable once
the behavior of anharmonicities with order is known (15–17).

In complementary work, Bigwood and Gruebele have in-
troduced a factorization method to treat the exponentially

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked ‘‘advertisement’’ in
accordance with 18 U.S.C. §1734 solely to indicate this fact.

© 1998 by The National Academy of Sciences 0027-8424y98y955960-5$2.00y0
PNAS is available online at http:yywww.pnas.org.

Abbreviations: IVR, intramolecular energy flow (intramolecular vi-
brational redistribution); LRMT, local random matrix theory; BSTR,
Bose statistics triangle rule.
*To whom reprint requests should be addressed. e-mail: wolynes@

aries.scs.uiuc.edu.

5960



decreasing anharmonic coupling terms of the vibrational
Hamiltonian (14, 17–22). The model was later incorporated
into a computational local random matrix model [Bose Sta-
tistics Triangle Rule or BSTR (20)]. This model retains the
most important features of empirical vibrational Hamiltonians
by using known spectroscopic frequencies as input. For large
molecules it is much easier to use these techniques than those
based on ab-initio potential surfaces. The merit of BSTR is that
a reasonable description of IVR in specific molecules results.
Results computed using these models showed that when the
states mediating IVR are off-resonant, ‘‘classic’’ Golden Rule-
like behavior is often observed. However, when IVR becomes
resonant, features predicted by the analytical results derived
for the LRMT were observed, including a linear scaling of IVR
rates with Vanh at large Vanh and a dependence of IVR
thresholds on local quantities (20, 21). In fact, it was found that
these features apply to the vast majority of states on the energy
shell, named ‘‘interior states’’ because they occupy the interior
of the vibrational state space.

In this paper, we recast the experimental IVR data obtained
by McDonald and coworkers by using the local state counting
parameters T (analytical theory) (15–17) and Nloc (numerical
model) (14, 19). Nloc and T are defined in Eqs. 6 and 7,
respectively. A much sharper transition is obtained when
viewed in terms of these local parameters, which considerably
improves upon a representation of the data in terms of rtot. At
the same time we find the transition near to the analytical
transition value of Tcrit 5 1. Large fluctuations in s are
expected from theory and observed in the data near Tcrit (16).
Well above the transition, s is simply given in terms of rtot and
the width of the band contour, as in Eq. 2. This analysis of the
McDonald data suggests that local random matrix models
provide a reasonably reliable indication of whether molecular
energy redistribution will be ergodic or not.

MODELS

We briefly review the three principles we use to interpret
experimentally observed dilution factors in organic molecules.
The first is a factorization model for the Hamiltonian, which
provides a simple description of vibrational couplings in the
normal mode picture. The second is a numerical simulation of
T that involves minimal averaging over molecular quantities.
The third is an analytical model for T that involves some
additional assumptions, but can provide deeper insight into the
nature of the IVR transition.

Important quantities that enter the discussion are the har-
monic vibrational frequencies vi, the energy gap DEii9, and the
coupling matrix element Vii9 between two normal mode basis
states ui& and ui9&.

Factorized Vibrational Hamiltonian. It has been shown that
the vibrational potential surface of a molecule can be exactly
factorized as the number of vibrational degrees of freedom
approaches infinity, as long as the normal modes are suffi-
ciently random combinations of Cartesian coordinates (18).
For finite-size but highly branched molecules, the factorization
Hamiltonian is still a good asymptotic approximation (18), and

Vii9 < P
k

Rk
nk, [4]

where nk 5 uvk 2 v9ku is the quantum number difference between
two normal mode basis states ui& and ui9&. The total distance
between two states in state space is given by Q 5 S nk. Eq. 4
is a particularly good approximation for highly branched or
ring compounds (18, 22), such as those considered here. The
factor Ri scales with mean occupation number and vibrational
frequency as vi

1/2 (18, 23), and a least-squares fit to sample
potential surfaces of organic molecules in ref. 18 yields good
agreement if one chooses the specific numerical relation

Rk <
30501yQ

270
vk

1y2v#k
1y2. [5]

nk is the geometric mean occupation number of mode k in the
two states ui& and ui9&, as defined in ref. 17.

Eq. 4 embodies a simplified version of the factorization
model, which depends only on the molecular vibrational
frequencies. The main assumption implicit in its prefactors is
that bond dissociation energies must be several 10,000 cm21

(i.e., Eq. 4 could not be applied to weakly bound clusters). Of
course, this model does not describe the molecular couplings
with spectroscopic accuracy, but it is very useful when describ-
ing averaged quantities such as s. The frequencies required in
Eq. 5 were taken from the references listed in table 1 of ref.
11.

Simulations. In ref. 14, a perturbation coupling criterion +ii9
was summed to yield the effective number N1 of states ui9& that
can directly mix with a state ui& in a normal mode basis (19, 22).
N1 has an energy window proportional to Q1/2v# , where v# is the
average molecular frequency. It serves as a conservative
selector for candidate states participating in IVR (18, 22).
Here we introduce a related criterion

Nloc 5 O
i9

+ ii9
2 5 O

i9

1
1 1 ~DEii9yVii9!

2 . [6]

Nloc is a local state count with a smaller energy window
proportional to Vanh (22). Although N1 and Nloc vary in parallel
fashion, the latter is a more direct measure of local state
density (22). In practice, Eq. 6 was computed by a direct state
count of all levels of the correct symmetry in a 1000-cm21

window around the COH stretching state of interest, using
Eqs. 4 and 5 for the evaluation of the matrix element Vii9. Some
tests with a 3000-cm21 band showed deviations of less than 5%,
which are negligible considering the approximate nature of Eq.
6. The resulting values of Nloc were used instead of rtot to
reanalyze the experimental values of the dilution factor s.

Computed values of s were also obtained for comparison
with Nloc by using a local random matrix generated according
to the prescription of the BSTR model (20). BSTR differs from
the deterministic use of Eqs. 4 and 5 in that the distance Q
between two states ui& and ui9& is drawn from an exponential
distribution that simulates actual molecular distributions of Q,
subject to a ‘‘triangle rule’’ constraint (20). BSTR matrices
were varied in two ways: increasing Nloc (done by increasing
rtot, then computing Nloc by using Eq. 6) shows how s decreases
with increasing Nloc; sampling Q values from different nomi-
nally identical pseudorandom distributions shows how s f luc-
tuates because of accidental resonances at a given value of Nloc.
The BSTR model was also used to calculate distributions of s
at a given local coupling strength. This was done simply by
binning s values from different randomly seeded calculations
into constant intervals.

Analytical Model. The analytical treatment of a model for
the vibrational Hamiltonian of a molecule that embodies the
local coupling described by Eq. 3 (15–17) begins by assuming
that each element Vi,i9 is random with mean value ^uVQu&. The
theory uses a self-consistent analysis of the most probable flow
rate through its most probable value, kIVR

mp . According to
theory the transition depends on

T~E! 5
2p

3 S O
Q

^uVQu&rQ~E!D 2

, [7]

where rQ(E) is the local density of resonantly coupled states Q
away. kIVR

mp is finite only when T . 1, meaning that there is
facile energy flow. On the other hand, for T , 1 energy flow
is confined to a subset of the energetically allowed states. Thus
T 5 Tcrit is the transition criterion. While this criterion for
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molecules concerns interacting vibrational motions, a similar
analysis was later made for fermions interacting with each other.
Altshuler et al. (10) have used an approach analogous to the
Logan–Wolynes theory to study quasiparticle lifetimes in finite
size quantum dots, yielding such a criterion for this system also.

The self-consistent analysis suggests that when T(E) , 1, the
dilution factor s is distributed according to the distribution

Ps~s! 5 gs21y2 ~1 2 s!23y2 expS2 pg2

1 2 s
D

g 5 Î 3T~E!

2p~1 2 T~E!!
. [8]

Eq. 8 predicts a rather broad range of s at a given T(E), which,
as we shall see, is also apparent in the experimental data.

Binning the experimental distribution of s allows direct com-
parison with Eq. 8.

The empirical parameter Nloc described in the previous
subsection is closely related to T, as both are proportional to
(Vi,i9yDEi,i9)2 for two states in the perturbation limit, corre-
sponding to a mixing intensity. Essentially, N1, Nloc, and T
represent different statistical moments of a quantum connec-
tivity distribution. Unlike T, Nloc is sensitive to accidental
resonances. At low density of states, one would therefore
expect Nloc to fluctuate mostly on the high side of T in a
correlation plot between the two quantities.

RESULTS AND DISCUSSION

Calculations were carried out for all COH stretching funda-
mentals listed in table 1 of ref. 11 for which s was determined

FIG. 1. Experimental dilution factors s
correlated with different molecular quanti-
ties. (A) Plotted vs. the total density of
states. (B) plotted vs. T, an analytical local
coupling strength. (C) plotted vs. Nloc, a
computational local number of coupled
states. (D) Correlation between Nloc and T.
Because T and s extend over several orders
of magnitude, all plots are shown on log–log
scales.

Table 1. Molecules, dilution factors, T values, and Nloc values

Molecule s T Nloc Molecule s T Nloc

Methane 1 — 0.005 Cyclopentene 0.003 0.89 5.7
Ethylene oxide 0.5 0.015 0.16 0.008 0.70 5.0–5.1

0.7 0.018 0.12 0.01 0.35 3.1–4.5
0.8 0.01 0.10 0.01 0.67 2.9

Cyclopropane 0.7 0.0035 2.4 0.02 0.4 2.3–3.9
0.3 0.0174 1.3 2,3-Dihydrofuran 0.5 0.2 5.3

Ethane 1 0.01 1.1 Tetrahydrofuran 0.01 0.75 2.2–4.0
0.8 0.02 2.9 Cyclopentanone 0.003 1.3 2.6–5.5

Oxetane 1 0.13 1.84 Norbornene 0.01 1.6 6.8–12
1 0.18 0.22 0.1 2.6 10
1 0.22 0.29 Cyclopentane 0.01 1.7 6.1–9.0
1 0.22 0.14 0.02 1.4 6.2

Methyl formate 0.3 0.05 1.67 0.09 0.5 3.2–5.2
Propylene oxide 0.02 0.5 2.4 Cyclohexane 0.005 1.3 8.1–12

0.02 0.6 1.8 0.01 2.2 9.4
Fluorobenzene 1 0.9 2.2–3.7 0.01 1.1 —
Cyclobutanone 0.4 0.24 1.3–3.2 Isobutane 0.05 0.2 3.8

0.3 0.4 1.5 2-Methyltetrahydrofuran 0.003 1.2 11–13
Propane 0.2 0.08 3.5 0.004 1.5 13

0.4 0.26 0.4–1.1

From the data of Stewart and McDonald (11), modes other than COH stretches and results where s had only an upper bound were excluded.
The mean value of the Nloc is about an order of magnitude larger than T; the correlation between the two is shown in Fig. 1. Where Stewart and
McDonald listed a group of bands under one frequency, ranges are given for Nloc indicating the minimum and maximum values obtained numerically
for the bands near that frequency.
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experimentally. This process yielded a total of 39 separately
determined dilution factors, or 99 data points if quasidegen-
erate bands in the experimental data are counted separately.
The molecules, COH fundamental T values, and range of Nloc
values calculated for the experimentally observed fundamen-
tals in each molecule are summarized in Table 1.

The main results are summarized in Fig. 1. Fig. 1A shows the
original plot of experimental dilution factor vs. the total
density of states, adopted from Stewart and McDonald (11).
Although s decreases for larger molecules, the transition is not
very sharply defined. Fig. 1 B and C shows the same experi-
mental results replotted against the analytical local coupling
parameter T and the computed local parameter Nloc. The
resulting points map out a clear transition, with midpoints at
T ' 0.3 for the analytical LRMT, and Nloc ' 3 for the
deterministic numerical model.

The transition to free energy flow is complete at T 5 1 (ref.
16). For Nloc, the transition should occur slightly above 1: if
Nloc 5 1, each state is on average coupled to one other state.
Apparently, this is not quite sufficient for free energy flow
because it permits isolated pairs of coupled states in state
space. As Nloc exceeds 1, the likelihood of isolated clusters of
coupled levels rapidly decreases, and by Nloc 5 10 every basis
state is integrated into the quantum connectivity network.

This behavior of Nloc near the transition is exactly what is
found. Fig. 1D plots the correlation between Nloc and T,
indicating good correlation between the two types of calcula-
tions. Nloc is about one order of magnitude larger than T,
reflecting the shift in the transition midpoint. The correlation
is strongest for high local densities of states, where accidental
resonances are unimportant. The scatter gets larger for small
values of T, where the detailed nature of accidental resonances
in Eq. 6 becomes important. As expected, Nloc tends to be
larger than T at sparse densities of states because it involves no
averaging over resonances.

A critical result of Fig. 1 is that even a fairly large molecule
such as cyclohexane, with a total vibrational density of states
exceeding 1,000 per cm21 at 3000 cm21, can have a relatively
small local density of coupled states. None of the molecules
investigated by McDonald and coworkers fall far beyond the
onset of free IVR. One should therefore be very cautious in

assuming that an organic molecule with even 20–30 atoms
already supports unfettered vibrational energy flow (19, 24).

One would also expect that near T ' Nloc ' 1, IVR will be
exquisitely sensitive to the details of the molecular coupling
structure. This is so because at the transition, a single state or
a few states coupled to the initial state of interest can make the
difference between localization and free energy flow. Depend-
ing on the nature of accidentally small DEii9 and the distribu-
tion of matrix elements Vii9, nominally similar states or mole-
cules can therefore have very different dilution factors. This
effect should be particularly pronounced for edge states (14)
(the CH stretching fundamentals in the experiments), which
have the sparsest coupling structure.

Such dispersion of s is again borne out by the simulations for
Nloc and for T derived analytically. The solid lines in Fig. 1 B
and C indicate the range of dilution factors predicted by the
analytical result and by the BSTR model, showing large
fluctuations in the transition region (see below). Although the
BSTR calculation in Fig. 1C is for interior states (those with
many active vibrational modes), it matches the experimentally
observed edge states (the CH fundamentals). Again, the
analytical model explains this result: only the speed with which
ergodicity is established (IVR rate) is affected by the sparser
coupling structure of edge states, whereas the location of the
ergodicity transition depends only on the parameter T in Fig.
1B, representative of couplings among the interior states.

Above the ergodicity transition, the measured dilution fac-
tors should be similar to the inverse of the number of states
participating in IVR—i.e., the entire energetically and sym-
metry allowed state space should be filled. To check whether
this is indeed the case, we estimated the participation number
Np

(max) using Eq. 2, where the linewidth was computed by
LRMT and the total state density, by direct count. For nearly
all cases where T . 1, Np

(max) ' s21 as expected. For some of
the smallest dilution factors, which are the most difficult to
measure (e.g., for 2-methyltetrahydofuran), we found a theo-
retical value about an order of magnitude smaller than ob-
served.

An exact prediction of any specific s would of course require
a quantum dynamical calculation on a nearly exact potential
surface, as has been done for smaller systems (5). However,
both the analytical model (16) (Eq. 8) and numerical simula-

FIG. 2. Distribution P(s) of dilution factors for four different values of the locally coupled number of states. (Left) Experimental distribution
obtained by binning the data in Fig. 1C into the Nloc ranges shown. (Center) Analytical P(t) (normalized to 1) from Eq. 8 for four values of T. (Right)
Numerical BSTR P(t) (normalized so *dsP(s) 5 1) for different coupling strengths.
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tions (19, 21) make specific predictions about the distribution
of dilution factors as a function of T or Nloc. Fig. 2 shows the
experimental s values from Fig. 1C binned according to
different ranges of Nloc. The most striking feature of the
distribution is its bimodal behavior at values of Nloc near the
transition: either states tend to be isolated or IVR results in
efficient state mixing with s , 0.2. The analytical result in Eq.
8 is plotted for comparison, and it shows the same bimodal
behavior emerging from LRMT. Numerical simulations in Fig.
2 using the BSTR Hamiltonian matrices are also bimodal,
corroborating Eq. 8.

In conclusion, the transition from weak anharmonic reso-
nances and restricted energy flow to free energy flow takes
place over a narrow range of the effective locally coupled
number of states. By comparing with experimental data, we
find that within this range (0.8 , Nloc , 8 or 0.2 , T , 2),
state-specific ‘‘accidental’’ resonances are important contrib-
utors to s. In this transition region, the high sensitivity to
‘‘accidental’’ resonances results in a bimodal dilution factor
distribution. Beyond the transition range, energy flow reaches
all the accessible state space and s becomes correlated with the
total density of states. However, even surprisingly large mol-
ecules can show nonergodic behavior due to the local nature
of IVR.
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