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Abstract
α-Synuclein is an abundant highly charged protein that is normally predominantly localized around
synaptic vesicles in presynatic terminals. Although the function of this protein is still ill-defined,
genetic studies have demonstrated that point mutations or genetic alteration (duplications or
triplications) that increase the number of copies of the α-synuclein (SCNA) gene can cause
Parkinson’s disease or the related disorder dementia with Lewy bodies. α-Synuclein can aberrantly
polymerize into fibrils with typical amyloid properties, and these fibrils are the major component of
many types of pathological inclusions, including Lewy bodies, which are associated with
neurodegenerative diseases, such as Parkinson’s disease. Genetic studies have clearly established
that alteration in the α-synuclein gene can lead to neuronal demise. Although there is substantial
evidence supporting the toxic nature of α-synuclein inclusions, other modes of toxicity such as
oligomers have been proposed. In this review, some of the evidence for the different mechanisms of
α-synuclein toxicity is presented and discussed.
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Introduction
Parkinson’s disease (PD) is a progressive, neurodegenerative disorder characterized by
bradykinesia, resting tremor, cogwheel rigidity and postural instability [1,2] associated with
the loss of dopaminergic (DA) neurons in the substantia nigra (SN) pars compacta [3,4].
Although the major pathological hallmarks of PD, Lewy bodies (LB) and Lewy neurites (LN),
were originally observed in 1912 [5], α-synuclein (α-syn) was not identified as the major
component of these proteinaceous inclusions until 1997 [6] following the discovery of PD
kindred with point mutations in the α-syn gene (SNCA) [7]. In addition to PD, the presence of
α-syn pathological inclusions is one of the defining features of several other neurodegenerative
diseases, including dementia with Lewy bodies (DLB), LB variant of Alzheimer’s disease and
multiple system atrophy (MSA) [6,8–13]. Furthermore α-syn inclusions are also found in a
significant percentage of other neurodegenerative disorders, including neurodegeneration with
brain iron accumulation type-1, Down’s syndrome, progressive autonomic failure and familial
and sporadic Alzheimer’s disease [14–21]. Collectively these diseases have been defined as
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α-synucleinopathies. This review will focus on the potential molecular mechanisms by which
α-syn may cause neurodegeneration.

The α-Synuclein Protein
α-Syn is a small, highly charged 140-amino acid residue protein characterized by several major
regions: 1) an amino-terminal region containing several imperfect KTKEGV repeats, 2) a
hydrophobic center domain also referred to as the non-amyloid component (NAC) region, and
3) a highly negatively charged carboxy-terminus region (Figure 1). α-Syn is a soluble, heat-
stable and natively “unfolded” protein [22,23]. It is predominantly expressed in central nervous
system (CNS) neurons, where it is localized at presynaptic terminals in close proximity to
synaptic vesicles [24–27] and can associate with lipid membranes by forming amphiphatic α-
helices, as shown in vitro [22,28–31]. Although the function of α-syn is still poorly understood,
several studies suggest that it is involved in modulating synaptic transmission, the density of
synaptic vesicles and neuronal plasticity [26,27,32–34], as well as provide a supportive role in
the folding/refolding of SNARE proteins critical for neurotransmitter release, vesicle recycling
and synaptic integrity [35]. However, knockout mouse models of α-syn are not lethal, and brain
morphology is intact, suggesting that α-syn is not required for neuronal development and/ or
that compensatory pathways are present [33,34]. In vitro studies have shown that the carboxy-
terminal region of α-syn is required for chaperone-like activity [36–38]. α-Syn can also
associated with many proteins [39] and can regulate the activity of several enzymes, including
tyrosine hydroxylase, the rate-limiting enzyme in dopamine production [40,41], mitogen-
activated protein kinases (MAPKs) [42], and phospholipase D (PLD) [43,44].

Disease-Causing α-Synuclein Mutations
The most direct and compelling evidence for a fundamental role of α-syn in the pathogenesis
of α-synucleionopathies is the causal relationship between genetic mutations and disease. The
mutation Ala53Thr resulting from a G to A nucleotide transition at position 209 of the SNCA
(α-syn) gene was first identified in a large Italian family (Contursi) and three small Greek
families with autosomal dominant PD [7]. Thereafter, the Ala53Thr mutation was identified
in at least 8 additional PD kindreds [45–48], and another autosomal dominant mutation
(Ala30Pro) was identified in a German kindred [49]. The Glu46Lys mutation in α-syn was
identified in kindred manifesting classical PD or PD with features of dementia associated with
widespread Lewy pathology, referred to as DLB [50]. In addition, short chromosomal
duplications or trisomies containing the SCNA gene, plus relatively short flanking regions on
chromosome 4, were discovered in patients with PD or DLB [51–53], indicating that a 50 %
increase in the expression of α-syn is sufficient to cause disease.

Formation of α-Synuclein Amyloidogenic Inclusions
α-Syn filaments (10–15 nm-wide) are the major ultrastructural component of pathological
inclusions characteristic of synucleinopathies [6,12,13]. These inclusions can occur in cell
bodies such as LBs that are present in neurons of patients with PD and DLB or such as glial
cytoplasmic inclusions (GCIs) that form in oligodendrocytes of individuals with MSA. α-Syn
inclusions can also present in the processes of affected cells, forming for example dystrophic
neurites or large axonal swellings termed neuroaxonal spheroids [12,13].

In vitro studies have shown that recombinant soluble α-syn can readily polymerize into
amyloidogenic fibrils that are structurally similar to those in human brains [54–57].
Polymerization of α-syn is a nucleation dependent process, i.e. fibril formation displays a lag
phase followed by a rapid increase in fibril formation [57–60], and this lag phase is dramatically
reduced by the addition of a “seed” or “nucleus” of pre-aggregated α-syn [59]. The
polymerization of α-syn is associated with a dramatic conformational change from random
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coiled to predominantly β-pleated sheet [61–64], and it has been proposed that α-syn progresses
from an unordered monomer through partially folded intermediates, and finally elongates into
“mature” filaments [58].

The central hydrophobic region in α-syn is necessary for fibrillization [64,65] and this region
is buried within the fibril core, as demonstrated by immuno-electron microscopy analysis and
proteinase K resistance assays [64,66,67]. The negatively charged carboxy-terminus negatively
regulates fibril formation such that deletions of this region promotes fibril formation [62,67].
The presence of the amino-terminal region also reduces fibrillogenesis, as deletions of some
of the repeats can accelerate filament formation [68].

The Ala53Thr and Glu46Lys α-syn proteins show increased rates of self-assembly and fibril
formation [54–55,57,60,69–72]. This is consistent with studies showing that the Ala53Thr α-
syn preferentially adopts a β-sheet conformation [73]. These in vitro data suggest that the
Ala53Thr and Glu46Lys α-syn mutations could be pathogenic because of their increased the
propensity to form pathological inclusions. In fact, α-syn, which contains both the Gly46Lys
and Ala53Thr mutations, fibrillizes more rapidly than the Ala53Thr mutation alone, and this
protein is even more likely to conform to the amino-terminal structure of α-syn in pathological
inclusions, as detected by conformational-specific antibodies [74].

While some reports suggest that Ala30Pro α-syn forms fibrils more slowly than WT α-syn
[69], this finding is not consistently observed by others [55,57]. In addition, the Ala30Pro
mutation appears to affect α-syn properties independent of protein aggregation. The Ala30Pro
mutation may partially impaired the ability of α-syn to bind to brain vesicles [35,75], likely
due to a decreased likelihood to form α-helices [35,73]. However, it does not significantly
prevent α-syn localization to presynaptic terminals [76]. This mutation can also directly impair
the in vitro chaperone-like activity of α-syn [36], and studies in mice indicate that Ala30Pro
α-syn is deficient in the ability of refolding SNARE proteins [35], which may be due to its
reduced ability to interact with vesicles.

Protofibrils/ Oligomers Toxicity Hypothesis
The polymerization of α-syn from unstructured monomer to mature amyloid fibrils rich in β-
sheets proceeds through the formation of several altered-sized oligomers and polymers that
can be visualized and assayed by electron microscopy, atomic force microscopy and size-
exclusions chromatography (Figure 2) [69,77]. Several of these intermediates (as well as
products that may not culminant into fibrils) have been described as spheres (2–6 nm in size),
chains of spheres (also termed protofibrils) and rings resembling circular protofibrils (also
termed annular protofibrils) [69,77,78].

Several findings have suggested that protofibrils or some forms of α-syn oligomers may be
toxic. This hypothesis is analogous to the proposal that amyloid assembly intermediates of
other amyloidogenic proteins such as the Aβ peptide involved in Alzheimer’s disease may be
toxic [77,79]. The initial observation that Ala30Pro α-syn may have a tendency to accumulate
as oligomers instead of mature fibrils led to the suggestion that α-syn may have a similar toxic
mechanism [69,77]. In addition, the formation of such oligomers in vitro is shown to increase
leakiness of synthetic lipid vesicles [80]. Two mechanisms have been proposed to explain this
effect of α-syn oligomers on membrane permeability: 1) α-syn annular oligomers may integrate
into membrane resulting in the formation of pores or channel-like structures that could cause
uncontrolled membrane permeability [77–79,81–83], and 2) oligomers enhance the ability of
ions to move through the membrane bilayer, without the formation of pores [84].

Direct in vivo data supporting the “toxic oligomeric α-syn hypothesis” are still relatively limited
and most of the evidence is circumstantial. There are studies in cultured cells that support this
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notion, but others demonstrated a lack of association between intracellular oligomer and
toxicity (see the section on “Cell culture studies of α-synuclein toxicity” below). There is also
a paucity of animal studies to directly support this hypothesis, but this could be related to the
difficulties in monitoring these species in vivo due to their transitory nature.

Cell Culture Studies of α-Synuclein Toxicity
Several studies in cultured cells indicate that the expression of mutants of α-syn (Ala53Thr or
Ala30Pro) can sensitize cells to toxic challenges; however, the results of these studies are not
unequivocal [85–96]. In some studies, toxicity induced by the expression of mutant α-syn is
associated with the formation of α-syn aggregates [88,89,91,97]. The over-expression of wild-
type (WT) α-syn in some settings has also been reported to render cells more vulnerable to
cellular challenges [42,94,97–103]. In striking contrast, other studies have shown that
expression of WT α-syn can protect against cellular stresses [88,99,104–109]. Nevertheless,
several different mechanisms, including proteasomal inhibition, affects on signal transduction
pathways, mitochondrial alterations, increased levels of free radicals, and membrane clustering
of dopamine transporter resulting in increased dopamine uptake, have been proposed as toxic
mechanisms associated with the expression of WT or mutant α-syn [42,90,92,96,98–100,
110].

Several studies have shown that the extracellular addition of in vitro generated α-syn oligomers
to cultured cells can lead to toxicity [111,112]. Although these studies are artificial, there is
some data to suggest that α-syn that may normally be secreted by cells or released due to cell
death can be directly or indirectly toxic to other adjacent cells (see [113] and references therein).
Some studies suggest that the intracellular formation of α-syn oligomers in H4 neuroglioma
cells is associated with toxicity [114]. Conversely, others studies have shown that the formation
of abundant Ala53Thr α-syn oligomers in SH-SY5Y cells induced by increasing intracellular
catecholamine levels is not associated with toxicity [115].

The reasons for the discrepancies in the results between the toxic or protective effects of α-syn
are not clear, but cell types, the promoters and transfection methods used to overexpress α-syn,
the use of tagged protein versus native α-syn, the nature of the toxic stimulus utilized, and the
level of expression, may be important factors [110].

Studies of α-Syn Toxicity in Yeast (Sacchatomyes Cerevisiae)
Although no orthologue of α-syn exist in yeast, expression of untagged WT α-syn or WT α-
syn-EGFP in the yeast Sacchatomyes cerevisiae (S. cerevisiae) can inhibit cell growth and may
result in cell death [116–119]. When expressed at low levels or upon initial expression at high
levels, α-syn is localized to the plasma membrane, but when expressed at high levels it
subsequently forms cytoplasmic inclusions that is associated with toxicity [116–118].
Expression of Ala53Thr α-syn results in similar distribution profiles and toxicity. In contrast,
Ala30Pro α-syn displays both plasma membrane and diffuse cytoplasmic localizations, does
not form inclusions, and demonstrates much reduced cell growth inhibition [116,117]. The
altered distribution of Ala30Pro α-syn could be due to its reduced affinity for lipid membranes
and/or targeting to the vacuole for degradation [119]. Further studies show that the α-syn
inclusions in yeast are not comprised of amyloid-like fibrils, but instead are α-syn associated
with clusters of vesicles [116,120]. The expression of α-syn in S. cerevisiae impairs
endoplasmic reticulum (ER) to Golgi vesicle trafficking, which leads to the accumulation of
these membranous vesicles [116,118,120]. A genome-wide screen identified several
suppressors of these defects in ER-Golgi trafficking, including the Rab guanosine
triphosphatase Ypt1p, which also suppresses α-syn toxicity [118]. Although the importance of
these findings as it relates to the pathobiology of α-syn in humans is not completely clear, there
is some experimental evidence suggesting that the deleterious effects of α-syn in this pathway
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may be relevant to disease. Expression of Rab1 (the murine othrolog of YPT1) in Drosophila
rescues toxicity induced by expressing WT and Ala53Thr α-syn in DA neurons [118].
Similarly, expression of Rab1 can rescue the demise of DA neurons induced by over-expressing
Ala53Thr α-syn in cultured rat midbrain primary neurons [118].

Studies of α-Syn Toxicity in Drosophila Melanogaster
There are no known orthologs of α-syn in Drosophila Melanogaster; nevertheless the ability
to use this organism to identify genetic modifiers and to conduct studies of neurodegeneration
in a shorter timeframe than in mammals has compelled the development of α-syn transgenic
(tg) flies. Expression of human α-syn in Drosophila is reported to result in a selective age-
dependent neuronal loss of DA neurons, locomotor dysfunction and cytoplasmic inclusions,
some of which are composed to 7–10 nm wide filaments with additional granular material
similar to LBs [121]. Co-expression of the chaperone heat-shock protein (Hsp) 70 can suppress
neuronal degeneration, while a dominant negative form of Hsp 70 increases DA neuronal loss
[122]. In addition, a drug that inhibits Hsp 90, a negative regulator of heat shock response, also
rescues DA neuronal loss. However, these initial observations in α-syn tg flies have been
challenged since locomotor dysfunction could not be replicated by others [123]. In addition,
the loss of DA neurons is not observed when a whole-mount immunohistochemistry approach
is used, compared to sequential paraffin sectioning used in the other studies [123], suggesting
that expression of α-syn may not result in DA neuronal death but in other toxic effects that
could alter neuronal morphology or the size of DA neurons.

Studies of α-Syn Toxicity in Caenorhabditis elegans
There is also no known ortholog of α-syn in the worm Caenorhabditis elegans (C. elegans),
but the potential utility of this organism to quickly identify genetic modifiers compelled studies
to develop α-syn tg models. However, the effects of expressing WT and mutants of α-syn in
DA neurons of C. elegans have been controversial. Lakso and colleagues report that expression
of WT or A53T human α-syn using pan-neuronal or DA neuronal promoters cause a reduction
in the number of DA neuron cell bodies and processes [124]. Conversely, Kuwahara and
colleagues do not observe a demise of DA neurons using a DA-specific promoter to express
human WT, A30P or A53T α-syn, although a decrease of neurites is noted [125]. It is suggested
that the apparent reduction in DA neurons observed by Lakso and colleagues could be due to
a reduction in the expression of the tg-expressed marker used to monitor DA neurons, resulting
from using the same promoter to express α-syn [125]. Nevertheless, Kowahara and colleagues
report that the tg expression of A53T or A30P α-syn results in a reduction in DA levels
associated with impairment in locomotor rate in response to food, which in C. elegans is
attributed to the function of DA neurons [125].

Mouse Tg Models of α-Syn Toxicity
Several tg mouse models expressing either WT or mutant (Ala53Thr and Ala30Pro) α-syn have
been reported. Masliah and colleagues reported on the first α-syn tg mouse lines that were
generated [126]. In these mice neuronal expression of WT human α-syn is driven using a
platelet-derived growth factor-β (PDGF-β) promoter, which results in the formation of
amorphous, non-filamentous α-syn neuron aggregates in the neocortex, the hippocampus, and
occasionally in the SN. A subset of α-syn inclusions is also ubiquitin positive, which is
characteristic of authentic human α-syn inclusions. However, in contrast with typical α-syn
inclusions in PD, a significant portion of the inclusions in these mice are located in the nucleus.
The formation α-syn aggregates in PDGF-β/α-syn tg mice is also associated with a modest
reduction in striatal tyrosine hydroxylase-positive terminals. Interestingly, over-expression of
β-syn, a protein with close homology to α-syn, but unable to polymerize into amyloid fibrils
[64], by transgenic cross breeding, reduces the numbers of α-syn inclusions, ameliorates motor
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impairment and results in a partial rescue of striatal tyrosine hydroxylase-positive terminals
suggesting that β-syn may prevent α-syn aggregation [127].

Since Alzheimer’s disease pathology and PD often coincide in patients, the effects of
accumulating amyloid-β (Aβ) peptide, the major component of senile plaques characteristic of
Alzheimer’s disease, on α-syn pathobiology has been assessed using tg mice. The PDGF-β/
α-syn tg mice have been cross-bred with a tg mouse model of Alzheimer’s disease line, where
a disease-causing mutant form of the human amyloid precursor protein (APP) is expressed
resulting in the production and accumulation Aβ extracellular inclusions [128]. The expression
of Aβ peptide in these bigenic mice is shown to potentiate neuronal and presynaptic terminal
loss, motor impairments and the formation of fibrillar intraneuronal α-syn when compared to
PDGF-β/α-syn tg mice. These findings provide important information supporting the notion
that Aβ peptide, which is predominantly extracellular, can promote the formation of
intraneuronal α-syn aggregates.

The PDGF-β/α-syn tg mice also have been used to generate bigenic tg mice that overexpress
rat Hsp 70, and Hsp 70 expression is found to mitigate the formation of α-syn aggregates,
suggesting that Hsp 70 may have a role in refolding or degrading misfolded α-syn [129].

Other studies have used a Thy-1 promoter to drive the neuronal expression of WT, Ala30Pro
or Ala53Thr human α-syn in tg mice [76,130–132]. In some of the Thy-1 tg mouse lines,
expression of WT or Ala53Thr α-syn results in the appearance of perikaryal and neuritic
accumulations of α-syn and age dependent motor impairment associated with the degeneration
of ventral root axons and muscle denervation [130]. A subset of α-syn inclusions in these mice
are argyrophilic and immunoreactive for ubiquitin, but they lack the filamentous characteristics
of authentic human α-syn inclusions. Kahle and colleagues generated Thy-1 tg mouse lines
expressing human WT or Ala30Pro α-syn. These Thy-1/WT-α-syn and Thy-1/Ala30Pro-α-syn
tg mice are reported to initially developed detergent-insoluble somatodendritic accumulations
of human α-syn that is not associated with any obvious phenotype [76,131,133]. With aging
the Thy-1/Ala30Pro-α-syn tg mice develop neuronal cytoplasmic fibrillar “amyloidogenic”
inclusions that resemble the properties of authentic α-syn inclusions as evidenced by thioflavin
S-reactivity, proteinase K resistance and ultrastructure studies [132]. These inclusions are
predominantly abundant in the midbrain, brainstem, amygdala and spinal cord [132,133]. From
these studies reported by Kahle and colleagues, it is unclear if the Thy-1/WT-α-syn tg mice
develop age-dependent pathological features similar to the Thy-1/Ala30Pro-α-syn transgenic
mice or if these changes are specific and exacerbated by the Ala30Pro mutation [131,132]. The
formation of amyloidogenic inclusions in Thy-1/Ala30Pro-α-syn tg mice is associated with
deterioration in locomotor performance that progressed to spastic paralysis of the hind limbs
[128]. Furthermore, the specific formation of amyloidogenic inclusions in the amygdale of
Thy-1/Ala30Pro-α-syn is correlated with a decline in cognitive performance [133].

Tg mice have also been generated that expressed either WT, Ala53Thr or Ala30Pro human α-
syn using the murine prion protein promoter (PrP) [134,135]. PrP α-syn tg mice expressing
Ala53Thr α-syn, but not those expressing equivalent levels of WT or Ala30Pro α-syn, develop
amyloidogenic, 10–15 nm filamentous α-syn inclusions in neurons (i.e. axonal spheroids, LB-
like and LN-like lesions) that replicate many of the biochemical and histological features of
authentic human synucleinopathies [134,135]. These α-syn inclusions are predominantly
observed in the spinal cord, brain stem, deep cerebellar nuclei, and the thalamus. Similar to
Thy-1/Ala30Pro α-syn transgenic mice, the hippocampus and the SN are spared. Also similar
to Thy-1/Ala30Pro α-syn transgenic mice, PrP/Ala53Thr α-syn transgenic mice display an age-
dependent severe motor phenotype that includes reduced ambulance, paralysis of the
extremities usually beginning at a hind limb that progress to quadriparesis and arched back
posture. These phenotypic features coincide with the accumulation of filamentous
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intracytoplasmic α-syn neuronal inclusions. The degeneration of motor axons is likely the main
cause of the motor phenotype in the PrP/Ala53Thr a-syn tg mice, as dramatic Wallerian
degeneration of ventral roots was observed [134]. Ultrastructure studies show that α-syn
filamentous axonal inclusions can trap mitochondria and impair axonal transport leading to
axonal swelling containing vacuoles, vesicles and mitochondria [134]. The formation of α-syn
inclusions is also associated with motor neuron loss [136]. The increase propensity of Ala53Thr
α-syn to polymerize into fibrils compared to WT or Ala30Pro α-syn [54,55,57] is the most
likely explanation for the formation of neurotoxic inclusions in PrP/Ala53Thr α-syn tg mice,
while PrP/WT α-syn tg or PrP/Ala30Pro α-syn tg mice with similar expression do not display
pathology. Since the age-dependent phenotypic changes and pathologies in Thy/Ala30Pro α-
syn tg mice are similar to those in PrP/Ala53Thr α-syn tg mice, but PrP/Ala30Pro α-syn tg
mice are not affected, it is possible that Thy/Ala30Pro α-syn tg mice have higher expression
levels than PrP/Ala30Pro α-syn tg mice. However, a direct comparison has not been performed.
This possibility is further supported by PrP/Ala30Pro α-syn tg mice by Sudhöf and colleagues
that display similar pathological and phenotypic features as described above for PrP/Ala53Thr
α-syn tg mice [35,137].

Using the PrP/Ala30Pro α-syn tg mice, a dramatic increase in the level of the lipid-binding
protein Apolipoprotein E (ApoE) coincides with the motor impairment and motor neuron loss
associated with α-syn inclusions [137]. These findings are particularly interesting since specific
ApoE genotypic isoforms are important risk factors for Alzheimer’s disease. Further, ApoE
can modulate the formation of α-syn pathology, since bleeding these PrP/Ala30Pro α-syn tg
mice on an ApoE null background delays motor disease, while increasing survival, although
these processes are not completely abolished [137]. These findings indicate that ApoE can be
an important modulator of α-syn aggregation and related pathogenesis, although the
mechanisms are not clearly defined.

Since septin-4 (Sept4), a member of the septins family of polymerizing GTP binding proteins
that serve as scaffolds that can anchor or stabilize other molecules, is present in α-syn
pathological inclusions in human brains and interacts with α-syn [138], the effect of Sept4 on
α-syn pathobiology has been investigated in vivo in the PrP/Ala53Thr α-syn tg mice described
above. The breeding of PrP/Ala53Thr α-syn tg mice on a Sept4 null background results in an
exacerbation of locomotor deterioration and neuronal loss associated with α-syn inclusion
formation [139]. These data suggest that Sept4 may act as a suppressor of α-syn aggregation
and resulting neurodegeneration.

Counter intuitively, the transgenic mice described above do not develop substantial SN DA
neurons pathologies. For reasons that remain enigmatic, it appears that, in contrast to humans,
this population of neurons in mice is resilient to the formation of α-syn inclusions and
degeneration. This notion is consistent with the lack of pathology even when the a tyrosine
hydroxylase promoter, which drives express specifically in catecholaminergic neurons, is used
to generate WT, Ala53Thr or Ala30Pro α-syn tg mice [140].

Since α-syn inclusions in human brain contain C-terminally truncated α-syn [112,141–143],
which may be generated by incomplete 20 S proteasome degradation or calpain cleavage
[112,144–145], and C-terminal truncated α-syn fibrillizes faster in vitro (see above), Tofaris
and colleagues created tg mice expressing C-terminal truncated α-syn [146]. These tg mice
express human α-syn missing the last 20 amino acids (i.e. α-syn 1–120) driven by a rat tyrosine
hydroxylase promoter on an α-syn null background. In this model, α-syn 1–120 is expressed
in DA neurons of the SN and olfactory bulb, resulting in aggregates with either granular and
fibrillar morphologies. Shrunken neuronal perikarya and swollen axons of DA neurons are
observed, but without significant neuronal loss. In another effort to study the effect of truncated
α-syn, transgenic mice were generated using rat tyrosine hydroxylase promoter to express

Waxman and Giasson Page 7

Biochim Biophys Acta. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Ala53Thr human α-syn 1–130 (i.e. lacking the last 10 amino acids) [147]. Animals that express
this truncated protein have a significant loss of nigral DA neurons, which is not observed in a
similar tg line expressing full-length human α-syn. However, the loss of DA neurons is shown
to occur during embryogenesis without the formation of α-syn inclusion. These findings
support that this form of truncated α-syn can be toxic in nature, but its does not provide insights
in the typical age-dependent neurodegeneration associated with human diseases.

As GCIs in oligodendrocytes are key pathological features of MSA, several tg mouse lines
expressing WT human α-syn in oligodendrocytes were generated. Kahle and colleagues used
a proteolipid protein (PLP) promoter to drive express α-syn specifically in oligodendrocytes,
and these mice develop detergent-insoluble aggregates with histological profiles that
resembled GCIs [148]. These mice demonstrate increased sensitivity to striatonigral
degeneration and olivopontocerebellar atrophy induced by the mitochondrial inhibitor 3-
nitropropionic acid [149]. Expression of human α-syn using a murine myelin basic protein
(MBP) promoter results in the specific expression of α-syn in oligodendroctyes with
progressive accumulation of filamentous inclusions associated with disruption of myelin
lamina and demyelination [150]. In these mice, the accumulation of α-syn in oligodendrocytes
results in decreased dendritic density and loss of DA projections in the basal ganglia. In one
of the MBP/α-syn tg mouse lines expressing the highest levels of α-syn, severe neurological
features, including ataxia and seizure activity, resulting in premature death, is observed.

Transgenic mice expressing WT human α-syn in oligodendrocytes also have been generated
using a murine 2’, 3’-cyclic nucleotide 3’-phosphodiesterase (CNP) promoter to drive
expression [151]. The transgene is specifically expressed in oligodendroctyes resulting in age-
dependent cytoplasmic brain and spinal cord accumulations and the formation of fibrillar
inclusions. These inclusions are associated with demyelination, demise of oligodengrocytes,
age-dependent motor impairment and brain atrophy. Injury to oligodendrocytes results in
secondary neuronal degeneration including accumulation of perikaryal hyperphosphorylated
neurofilaments, degeneration of axonal terminal, neuronal loss, and formation of neuronal
inclusions comprised of endogenous mouse α-syn.

Recently, the first tetracyline-regulated conditional tg mice (tet-off) expressing human wt α-
syn was described [152]. To drive inducible expression in specific neuronal populations these
mice have been cross-bred to tg mice expressing tetracycline-controlled transactivator under
the control of the hamster PrP or calcium/calmodulin-dependent protein kinase IIα
(CaMKIIα) promoter. In one of these inducible PrP/α-syn tg mouse lines, α-syn is expressed
in the olfactory bulb, cortex, basal ganglia and cerebellum, while in another inducible PrP/α-
syn tg line expression is predominantly confined to olfactory bulb. In one of the inducible
CaMKIIα/α-syn tg mouse lines, α-syn is expressed in the olfactory bulb, cortex, basal ganglia,
hippocampus, thalamus and substantia nigra, including DA neurons. These CaMKIIα/α-syn tg
mice exhibit reductions in SN DA neurons and hippocampal neurogenesis, without the
presence of α-syn aggregates. They demonstrate a progressive motor decline as assayed by
rotarod that can not be reversed by turning off tg α-syn expression.

Studies α-Syn Over-expression in Adult DA Neurons using Viral Delivery
Several studied have used viral vectors to express α-syn in adult rats or monkeys nigral DA
neurons. One advantage of this approach is that it mitigates the possible effects of early
developmental expression of α-syn with the possibility of compensatory mechanisms.
Expression of human WT, Ala30Pro or Ala53Thr α-syn in rat or monkey nigral DA neurons
using adeno-associated viral vectors that stably express the transgene (> 6 months) results in
substantial and specific demise of these DA neurons (30–80% loss), concurrent with the
formation of cellular α-syn inclusions and dystrophic neurites [153–155]. Similar results are
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observed when using a lentiviral-based vector system to express α-syn proteins in rat nigral
DA neurons; however, over-expression of rat α-syn is much less toxic [156].

General remarks
Although genetic and pathological studies have clearly demonstrated the importance of α-syn
in the etiology of PD, several different mechanisms of toxicity have been proposed. These can
be grouped into 3 categories based on the monomeric/polymeric nature of the proposed toxic
species.

First, simple increases in intracellular abundance of monomeric α-syn have been proposed as
a mode of neuronal toxicity. Some studies in cultured cells many support this notion; however,
these findings are not unanimous and the loss of DA neurons in the SN or other types of neurons
has not been observed in tg mice that simply over-express high levels of α-syn. In PD or DLB
patients with duplication or triplication of the α-syn gene, where α-syn expression is increased
by 50% or 100%, respectively, α-syn pathological inclusions always coincide with disease (see
[157] and references therein). In addition, some studies have suggested that α-syn expression
may be increased in specific brain areas or types of neurons in individuals with sporadic PD,
but these findings have been challenged in other reports (see [158] and references therein).

Secondly, based on in vitro data discussed above, some forms of α-syn oligomers and
protofibrils have been proposed as potent toxic specifies. However, this hypothesis still lacks
solid direct in vivo studies documenting toxicity linked to the present of α-syn oligomers,
although some models using cultured cell supports this notion. Conversely, biochemical studies
have shown that the presence of some forms of α-syn oligomers in the midbrain of PrP/
Ala53Thr α-syn tg mice without any evidence of toxicity to DA neurons [115].

Lastly, the notion that the aberrant polymerization of α-syn into filaments, which eventually
form large intracytoplasmic inclusions, can cause the dysfunction and the demise of neurons
or oligodendrocytes has been support by various experimental models, as described above.
Furthermore, the involvement of α-syn aggregates in the dysfunction and demise of neurons
is suggested by the correlations between severity of dementia and LB density in patients with
DLB [159–162]. In addition, it is likely that a profusion of smaller α-syn aggregates in the form
of neuritic and pre-synaptic α-syn inclusions have a predominant role in impairing normal
neuronal function [74,128,163–165]. α-Syn aggregates may impair proteasome function
[166], and they may act as "sinks," incidentally recruiting other necessary, cellular proteins
from their normal cellular functions. α-Syn inclusions can impair cellular functions by
obstructing normal cellular trafficking (including disruption of ER and Golgi apparatus), by
disrupting cell morphology, by impairing axonal transport, and by trapping cellular
components (eg. mitochondia).

It is important to emphasize that the different alternative mechanisms of α-syn toxicity based
on the different forms of α-syn polymers are not necessarily mutually exclusive. The presence
of any form of α-syn polymer, from small oligomers to amyloid fibrils, are abnormal and may
be problematic for the normal activities of cells, thereby resulting in neurodegeneration.
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Figure 1. Amino acid sequence and regions of α-synuclein
α-Syn is composed of: 1) an amino-terminal domain (black) containing several imperfect
KTKEGV motifs (blue underline); 2) a hydrophobic center (purple) termed non-amyloid
component (NAC); and 3) a negatively charged carboxy-terminus (green). Three familial
mutations in α-syn (red) have been identified in patients with PD.
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Figure 2. Formation of α-synuclein polymeric intermediates and fibrils
α-Syn in native, monomeric form is mostly unstructured. Under certain conditions α-syn can
undergo structural changes, resulting in β-pleated sheet formation. This form of α-syn can take
two pathways, one which is off of the fibrillar pathway, and the other which will eventually
form mature fibrils. The off-fibril pathway can result in the formation of annular or other forms
of oligomers that will never develop into mature fibrils. The fibrillar pathway undergoes
intermediate stages, which include protofibrils, before maturing into long strands and becoming
LBs or LNs.
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