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Abstract
Background—The studies of complex traits project new challenges to current methods that
evaluate association between genotypes and a specific trait. Consideration of possible interactions
among loci leads to overwhelming dimensions that cannot be handled using current statistical
methods.

Methods—In this article, we evaluate a multi-marker screening algorithm – the backward genotype-
trait association (BGTA) algorithm for case-control designs, which uses unphased multi-locus
genotypes. BGTA carries out a global investigation on a candidate marker set and automatically
screens out markers carrying diminutive amounts of information regarding the trait in question. To
address the ‘too many possible genotypes, too few informative chromosomes’ dilemma of a genomic-
scale study that consists of hundreds to thousands of markers, we further investigate a BGTA-based
marker selection procedure, in which the screening algorithm is repeated on a large number of random
marker subsets. Results of these screenings are then aggregated into counts that the markers are
retained by the BGTA algorithm. Markers with exceptional high counts of returns are selected for
further analysis.

Results and Conclusion—Evaluated using simulations under several disease models, the
proposed methods prove to be more powerful in dealing with epistatic traits. We also demonstrate
the proposed methods through an application to a study on the inflammatory bowel disease.
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Introduction
The mapping of complex traits is one of the central and challenging areas of human genetics
today. This is a consequence of the ‘complex’ or multifactorial characteristic of a large number
of common human disorders, in that they cannot be attributed to alleles of a single gene or risk
factor [1–3]. Rather, these disorders find their sources within the combined action of a multitude
of genes and environmental factors, each contributing modest effects. Encouragingly, the
evolution of technologies on DNA polymorphisms has led to the identification of a large
number of new markers, covering almost every region of the human genome. Facilitated by
this dense marker map, studies involving a large number of markers (usually on a genomic
scale) have recently become popular in the search for the susceptibility genes of complex
human disorders. However, most current statistical methods, when applied in such studies, can
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only extract partial (marginal only) information out of the data. This is because these statistical
methods, developed during the last two decades [e.g., 4–9], were primarily designed to deal
with small numbers of markers and simpler disease model assumptions. It is easily realized
then that these methods are less than readily applicable for comprehensive large-scale genome-
wide searches of complex human disorders. Even for studies on the scale of hundreds to
thousands of markers, the number of possible interactions among genetic loci becomes
overwhelmingly large.

Current strategies, therefore, compromise either by ignoring higher dimensions of interaction
(as seen in marginal association mapping); or by focusing on small numbers of regions at a
time (as seen in candidate gene studies; see [10] and [11] for some considerations on this
strategy for complex traits).

Although marginal association based searches are relatively easy to implement, we find that
there are serious drawbacks to the method. In large-scale studies such as genome scans,
marginal association-based searches typically involve a test statistic that examines association
locally and repeatedly at each marker or at a combination of nearby markers. The problem
becomes that the search ignores potential interaction information among markers of potential
importance, especially those located on different chromosomes. Thus these methods are less
likely to have adequate power in detecting disease loci for complex traits, where substantial
amounts of information are reflected in the interactions among loci as well as other non-genetic
risk factors. New methodologies capable of inspecting disjoint marker loci while running large-
scale scans are in order.

Detailed analyses that focus on a small numbers of regions, such as candidate gene studies, are
powerful tools when several important loci have been identified through a larger-scale
preliminary selection. The success of such a study, however, relies on the informativeness of
the loci selected, with respect to the trait in question. If the preliminary search fails to capture
some of the major genomic regions for the trait under study, the subsequent detailed study will
be much hampered, especially for complex traits where genes have shown substantial
interdependence. Unfortunately, for most current candidate gene studies, the marker selection
is done through a marginal association mapping. Methodologies that improves the
informativeness of genome scans will lead to more efficient candidate gene studies.

This article presents a fundamentally different method to address the mapping problems of
dichotomous traits in genome scans or large-scale studies with hundreds to thousands of
markers, focusing on the analysis with consideration of gene-gene interaction using case-
control data. Although such a density of genome scans is sparse in the light of current whole-
genome association studies, we have chosen to work with such a scale since we are primarily
interested in dealing with gene-gene interactions using markers at not-tightly-linked loci.
Statistical interactions observed among these markers are more likely due to genetic
interactions among different genes, rather than dependence between these two loci due to a
common neighboring gene.

More specifically, we investigate a novel large-scale marker selection procedure that efficiently
uses information and considers possible interactions among loci. This procedure has more
power detecting genes in epistatic interactions than current strategies. We will also outline, in
the discussion section, how the statistics and the proposed BGTA method can be applied to
candidate gene studies and studies with a denser marker map (say, using a current 100 k or 500
k platform).

The main idea studied in this article represents an important extension to unphased genotyped
data in case-control study of what we proposed and developed in [12], a global marker
screening approach with a BHTA algorithm (the backward haplotype transmission association
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algorithm) that is suitable for case-parent trios. In [13], BHTA was successfully applied to an
analysis of inflammatory bowel disease data. The novel findings in this case study illustrate
and project the usefulness and potential values of this new approach to the analysis of common
diseases more generally.

In this article, we first introduce a large-scale genotype-based marker screening algorithm that
selects a set of influential markers exhibiting signs of association with disease genes and their
interactions. At each iteration the algorithm deletes the marker that contributes least genotype
association information, operating in a backward manner that thus leads to its name, ‘backward
genotype-trait association (BGTA) algorithm’. Two statistics are used in the evaluation of
markers’ contributions: genotype- trait distortion (GTD) and genotype-trait association (GTA).
These two statistics are formulated using unphased multi-locus genotypes observed from cases
and controls. Heuristically speaking, GTD measures the amount of disease information
contained in the current marker set, whereas GTA determines the (relative) importance of each
marker that remains in the current marker set under study. An advantage of the statistic GTA
is that its expected value under the null hypothesis remains zero no matter the markers under
evaluation. As a result, the screening algorithm can be carried out without using a reference
probability distribution at each iteration. The algorithm continues to the next cycle once the
least important marker is removed and stops if the deletion of any additional marker causes
GTD to drop. Therefore, BGTA screening algorithm is a greedy algorithm searching for a
marker set that displays a maximum of association with the disease trait, rather than a testing
procedure that identifies the most statistical significant marker set.

Secondly, we propose a marker selection procedure using BGTA-based random subset
screenings to counter the dilemma posed by moderate sample sizes of individuals and large
numbers of genotypes. This procedure allows the BGTA screening algorithm to survey the
genome-scale candidate marker set using the largest informative scope allowed by the sample
size. Information extracted by the algorithm is then aggregated to rank the overall importance
of the markers.

The BGTA method is evaluated using three simulated examples. The first is a simple genetic
heterogeneity model, whereas the second and the third are from the class of epistatic models.
Performance of BGTA under these models is then compared with marker-by-marker χ2 tests
and a thoroughly evaluated [14] current large-scale screening method – the set-association
method proposed by Hoh et al. [15]. In all examples calculated, BGTA demonstrates high
detection power and well-controlled false positive rates. Results from the second and the third
example most clearly illustrate BGTA’s power in extraction of useful information on
interaction among trait loci, which is then transformed into joint return patterns in BGTA-based
screenings. We also illustrate the proposed method through an application to an inflammatory
bowel disease data set originally studied by Rioux et al. [16]. Using 56 unrelated cases and 56
controls sampled from this set of pedigrees, we demonstrate the BGTA method using genotypes
on 402 markers. Despite the small size of the data used, BGTA detects association signals on
three previously identified IBD loci.

Based on our single-CPU computational experiments, the proposed BGTA method can analyze
studies with the number of markers ranging from dozens to 5000+. Especially, BGTA was
recently applied to a Rheumatoid Arthritis [MIM 180300] study, originally studied in Amos
et al. [17], with more than 5000 SNPs genotyped on ~ 400 of selected RA patients and
unaffected individuals (implemented in [18]). Given a cluster of 10 CPUs, the proposed BGTA
method can realistically analyze within a reasonable amount of time a 10k genome scan or
large-scale genomic studies of a similar size. The proposed BGTA method and related
computer programs are readily applicable to current research on human disorders in a number
of scenarios such as genome-wide scans involving several hundreds to 10k markers [e.g., 19–
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21], second-stage analyses of whole-genome association studies [e.g., 22], studies for a given
large genomic region of interests [e.g., 23] and candidate gene studies with a few SNPs at each
of many candidate loci [e.g., 24,25]. The computer programs (including an MPI
implementation for parallel computing [26]) for methods described in this article can be
downloaded at http://statgene.stat.columbia.edu/

Methods
In light of the problems facing the field of mapping complex traits today, there is a great demand
for new methods that are capable of capturing interactions among disease loci [27] by
maximizing the use of information contained in data sets. Since the term ‘interaction’ does not
have completely overlapping meanings in statistics and in genetics, for the convenience of
discussion in this article, we define there is interaction between two genes if the disease
penetrance given their two-gene genotypes depends on the allele values at both gene loci. In
the sense of a two-locus disease penetrance table of these two genes, this is equivalent to require
that this table cannot be reduced to a single-locus disease model. This represents a more
generalized definition of ‘interactions’ than most mathematical models of epistasis (such as an
additive or multiplicative penetrance model) [28–30] but a closer definition to that ‘the effect
of one locus is altered or masked by effects at another locus’ as discussed in [31].

To capture such gene-gene interaction, it is then important to examine genetic variants across
multiple loci at a time. Important interaction information is lost if the markers are tested
independent of each other. For example, in the case-parent trio design, allelic transmissions on
multiple unlinked loci (or transmitted haplotypes) contain valuable association information
regarding interaction among the marker loci besides information on marginal effects.
Haplotype transmission distortion is not a mere combination of association between individual
markers and possible disease genes nearby.1 It contains information that can reveal possible
epistatic structures among the disease loci. For designs where haplotype data are not available,
such as population-based case-control studies, unphased multi-locus genotypes should be used
to extract interaction information across difference genomic loci. In the following, we define
information-measuring statistics based on unphased multi-locus genotypes and propose a
marker selection procedure through marker screenings based on the novel statistics. More
details on algorithm statistics and theoretical issues are given in the Appendix.

Assumptions and Data Notation
In studies given patients of a certain disease and unrelated controls, genotypes are observed at
each marker locus for every individual studied. Since the cases and controls are genetically
unrelated, no information is available for the inference of haplotypes (phases) across different
marker loci. Thus we directly use the unphased genotypes in such case-control designs.

Assume a case-control study for a dichotomous trait (diseased or disease-free), with nd cases
and nu unrelated controls randomly sampled from the diseased and disease-free subpopulations
respectively. Suppose that k diallelic markers M1, M2, …, Mk are being studied. The two alleles
of marker Mi are denoted as ai and bi, i = 1, 2, …, k, with corresponding genotypes: ai/ai, ai/
bi, and bi/bi. Consequently, these k diallelic markers generate a total of 3k possible genotypes.

Let the possible genotypes be . To evaluate the global disease information
carried by these k markers, we define the following genotype counts, for each genotype

 is the number of cases that carry genotype , and  is the corresponding count in

1Here we define the haplotype transmission distortion (disequilibrium) [12] as the differences between the haplotype distribution of the
transmitted haplotypes and that of the untransmitted haplotypes.
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controls. In the following discussion on the method proposed, we also use the following
notations on genotypes:

Here, and in the following, D or d is short for ‘disease’ and U or u is short for ‘unaffected’ or
‘disease-free’.

Association between Unphased Multi-Locus Genotypes and a Dichotomous Trait
The primary goal of a genome scan or a large scale genetic study is to identify or to narrow
down the locations of the disease-predisposing variants for the dichotomous trait under study.
For convenience, assume that there are kd unknown genes affecting the risk of the dichotomous
trait (for complex traits, usually kd > 1). The penetrance of the trait status – say, ‘diseased’ or
‘disease-free’ – varies among different disease-predisposing genotypes, say L different ones,
spanned by these kd trait loci. Denote these L disease-predisposing genotypes with

, each with population frequency  and disease penetrance . The

population disease prevalence P(D) simply equals . The trait genotypes,
, at the unknown trait loci and their corresponding trait penetrances can only be studied

through marker loci close to and associated with these trait loci. Thus, for the set of k candidate
markers under study, it is natural to consider the ‘penetrances’ (conditional probability of the
given trait) given the k-marker genotypes and measure the trait information carried by them
through their association with the trait genes. Define the ‘penetrance’ given the genotype

.2

If none of the k markers are in association with the disease loci, i.e., , for all

 and all . On the other hand, if one or more markers are in
association with the trait, such association must be reflected in the fact that, for some

. It can be shown using simple algebra that

which indicates that multi-locus genotype-trait association can be studied through the
comparison of the genotype distributions among the cases and the controls.

Screening Statistics
In the previous section, we have shown that a set of k markers’ association to the trait under
study can be measured through comparison of multi-locus marker genotype distributions
among the cases and the controls. If the genotype counts of the cases and the controls are
organized into a two-column table, comparing these two genotype distributions (as two
multinomial distributions) is related to tests of independence on this 3k × 2 table. In current

2It can be shown that .
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statistical literature, such a test is usually carried out using the Pearson χ2 test [32] and the
likelihood-ratio χ2 test if n/3k is close to or greater than 5, or the Fisher’s exact test for small
n/3k values [33, chapter 3]. The χ2 tests rely heavily on the approximation of the χ2 distribution
to the sampling distribution of the test statistics which is poor when n is relatively small. The
exact test is highly computationally intensive even when Monte Carlo strategies are employed.
Additionally, these test statistics intend to measure the statistical significance but not the extent
of the association. For more reliable evaluation of association information and faster screening,
we introduce two important new statistics in the following.

Genotype-Trait Distortion (GTD) statistic is intended to measure the current markers’
association information regarding the trait through aggregated genotype counts (as genotype
distributions) from the samples collected. Considering the natural empirical estimates of

genotype frequencies, we have , where genotype counts

such as  are defined as previously. Thus GTD is formulated straightforwardly as

(2)

The expectation of GTD is derived as

(3)

where  is short for  and  for  to simplify the formulations. From the first
term in (3), which is of a higher order and dominates over the second term, it is seen that the
larger the difference between the genotypic distributions among the cases and among the
controls, the larger the expected value of GTD(k) is. This explains why we chose GTD(k) to
serve as a measure for genotype-trait association information.

From (3) we also note that GTD shows its smallest value when none of the markers are
associated with the trait. If some of the current set of markers used in calculating GTD are
associated with the trait, E(GTD(k)) will increase as  diverge. The stronger the
association signal, the greater the difference between , and the larger the value of
the GTD score. However, for a given marker set, a large value of GTD (k) only indicates that
some of the markers in the set are important or associated with the trait, while others may just
simply contribute noise. If these unimportant markers are removed from the marker set, the
association signals with respect to the trait under study should become stronger. Naturally, the
importance of any marker Mr can then be evaluated through the difference between the GTDs
before and after removing the given marker. Unlike other statistics that evaluate individual
marker one at a time, GTD (k) is calculated based on the k-marker genotypes instead of
genotypes at individual loci. Therefore, the use of the ‘information’ drop measured by ΔGTD
to evaluate a single marker can take advantage of both signals from interactions among markers
and that of this given marker.

We consider a current set of k markers, {M1, M2, …, Mk}, and the new set with the reduction
of the marker Mr; that is, {M1, M2, …, Mr−1, Mr+1, …, Mk}. The statistic Genotype-Trait
Association (GTA) is defined as
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(4)

where r indicates the underlying marker evaluated by this GTA score and ΔGTD is the
difference between the GTD scores computed on the new marker set and the old marker set.
Despite its seemingly complicated expressions (for details, see the Appendix), the adjusting
term Ã has a symmetric form and is of a lower order. By adding this term, GTA(r) has
expectation 0 when none of the markers are associated with the trait. While some of the current
markers are associated with the trait, the value of GTA(r) reflects the importance of the given
marker. More specifically, if marker Mr is not associated with the trait, while other markers in
the current marker set are, the expected value of GTA(r) will be strictly positive; if Mr is
associated with the trait, the expected value of GTA(r) will be negative, and the magnitude of
the value will reflect Mr’s importance. Since GTA(r) measures directly the information score’s
change due to the removal of Mr, the most attractive advantage of using GTA(r) is that the
importance of a given marker can be evaluated without reference to a probability distribution.
More computing details and theoretical properties of GTA can be found in the Appendix.

BGTA Screening Algorithm
Based on the properties of GTD and GTA, we propose in this section a multi-locus screening
algorithm. Unlike conventional hypothesis testing, our algorithm is an inferential procedure in
the sense that each marker is evaluated and ranked by statistics measuring its association with
the trait. During each step of the screening, markers in the current set are assessed for their
importance in terms of the relative association to the trait measured by the GTA statistic. Each
marker with the least association (with the largest positive GTA score value) is deleted and the
screening process then moves to the next cycle on the reduced marker set until all remaining
markers show important associations with the trait.

More specifically, the screening process uses the properties of GTA such that a negative value
of GTA indicates the importance of a marker under evaluation and a positive GTA suggests
that the removal of the given marker would increase the association signal strength of the
reduced set (measured by GTD). The backward genotype-trait association (BGTA) marker
screening algorithm is developed as follows, based on such properties, which can be viewed
as a greedy marker reduction process rather than a series of tests.

1. Start with all markers in the candidate set.

2. Given the current marker set with k markers, calculate the GTA(r) score for each
marker, r = 1, 2, …, k. If there are non-negative scores, delete the marker with the
maximum GTA(r) score; otherwise stop and return the remaining markers.

3. If there is no marker remains in the set, stop; otherwise set k = k - 1 and continue on
to step 2.

Due to the backward fashion of BGTA, markers with strong interactions tend to return together.
This is because removing any one of these markers would weaken the association strength
dramatically. This property of BGTA is even more preferable when these markers only
demonstrate weak or no marginal signals. It also renders BGTA more powerful in detecting
genes in epistasis, an outcome less likely to be achieved by traditional marker-wise methods
[27].
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Marker Selection Based on Random Subset BGTA Screenings
The BGTA screening algorithm proposed in the previous section is a powerful procedure that
efficiently uses multi-locus association information. However, the performance of the BGTA
algorithm is limited by the dimension of the data. Since the number of genotypes generated by
a moderately sized marker set is often much larger than the sizes of the cases and the controls,
it is difficult for BGTA to screen informatively all the candidate markers during one iteration.
For instance, in theory 30 markers generate 330 genotypes. Even if we consider the haplotype
blocks [34–36], the actual number of possible genotypes is often much larger than the
magnitude of regular sample size of individuals, usually in the hundreds. This becomes a
problem of sparseness for BGTA where the genotype counts are mostly ‘0’ or ‘1’s at the
beginning of the backward screening of all markers. When based on these counts GTA(r)’s are
noninformative, and so markers are deleted randomly until the dimension of the genotypes
reduces to a level that can be studied using the number of individuals in the data.

The ‘small n, large p’ dilemma as observed here for the analysis of current data from genetics
has been one of the major challenges in genomic studies. A small number of observations,
cases and controls in this article, allow one to only study informatively the interactions among
a small number of dimensions. As such a scope of inspection is decided by the size of data,
there is no statistical or mathematical tactic can overcome this limitation.

If the BGTA screening algorithm is applied to all the markers in a a large-scale study, it is
possible that important markers may be missed due to the noninformative deletion at the
beginning of the process. At the same time, these noninformative deletions can also pose
unnecessary computational complexities. We therefore suggest in the following a marker
selection procedure based on repeated BGTA screenings on random subsets of markers to
address this issue of dimensionality:

1. Randomly select a subset of k out of all the markers in a large-scale study scan, where
k is relatively small, say 10, so that the screening on these k markers is more
informative. Repeat BGTA screening on a large number B, say 10,000, of random
subsets and record the screening result of each repetition. (See section 2.6 for
discussion on choice of B.)

2. Calculate the number of times (out of B screenings) a marker is returned by BGTA,
or the return frequency for each marker, and then rank them by those frequencies.
Important markers, those with significantly higher return frequencies, are selected
based on their distribution. Joint returning patterns observed in such random subset
screenings contain information on inter-locus interactions. More details on joint
returning patterns are illustrated in the discussion of examples 2 and 3 (3.3).

Randomly subsetting the markers and carrying out a detailed screening allows one to take
advantage of more of the information contained in the data because the algorithm explores the
large candidate marker set using the largest scope of inspection allowed by the data. The study
of each random subset is comprehensive because the screening algorithm takes into account
all possible interactions among the loci by using multi-point genotypes. Using a large though
not comprehensive number of random subsets, the algorithm navigates much of the interactions
among the markers under study. This is different from other approaches that employ a
dimension reduction based on marginal information strategy before detailed modeling.

After markers have been evaluated based on a large number of random subset BGTA
screenings, the return frequency is calculated. We then further separate the markers into two
groups based on the distribution of their return frequencies, one with significantly higher return
frequencies, defined as the ‘important’ marker group, and one with the remaining markers with
lower frequencies, defined as the ‘unimportant’ group. To do so, one needs to decide a selection
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threshold based on the observed set of return frequencies. In this article, we assume that of all
markers examined only a small proportion are associated, which is usually true for a large-
scale study. Therefore, for moderate number of markers (for example, several hundreds), we
define a selection threshold that is 1.8 times IQR (inter-quartile range) above the 3rd quartile
of the observed return frequencies. Markers with return frequencies greater than this threshold
will be selected into the ‘important’ group. This IQR-based criterion is roughly equivalent to
a 3.1 standard deviation above the mean.3 For larger numbers of markers, the selection may
be achieved through the strategy based on local false discovery rate proposed in [37], as
illustrated in [13]. The above strategies are based on the assumption that most markers under
study are unassociated, which is usually true for a large-scale study with hundreds to thousands
of markers.

Selection of B and k
The selection of B (number of repeated random subset screening) and k (size of initial subset)
are important for the markers’ return frequencies to reflect gene-gene interaction information,
which also depend on the total number of markers under study, denoted by K. Under the null
hypothesis, markers are returned or deleted at random. Under the alternative, markers with
association to the disease trait are returned with a higher probability than markers with no
association to the disease. Assume that, in a study, an unassociated marker has probability p1
to be selected and returned in a random subset BGTA screening (including situations where
this marker is not included in the initial subset). Usually, p1 can be written in the form of c/
K, where c is a constant (usually, the average size of returned subsets). Assume there is a marker
M1 that has weak or no marginal signal but have strong detectable signal with another marker
M2, so that once they are both selected into an initial k-marker subset, they will be returned
together as important. Thus the probability that M1 is returned as important is as follows:

We have derived in [12] a general formula for B in terms of p1, p2 and K,

in order to have approximately 99% probability to separate an important marker from an
unimportant marker. If k scales up with  is close to a constant, and thus B should
increase linearly with K. If k is kept as a constant, B needs to be approximately proportional
to K3 in order to detect M1. It should be noted that what presented above is the most difficult
situation for detecting M1, in reality, M1 may have some moderate marginal signal or
interactions with multiple markers, which will increase the value of p2 and lead to a much
smaller value of B needed. Larger sample sizes will allow larger initial subset size k and
improve screening efficiency (lower value for p1) and consequently require smaller B values.
For example, if K = 1000 and c = 2, if one uses k = 15, for the most extreme case outlined
above, B should be approximately 3,000,000. Under current computational power, BGTA is
applicable to studies with hundreds to several thousands of markers.

33.1 is the critical value for 0.001 Type I error rate from the standard normal distribution.

Zheng et al. Page 9

Hum Hered. Author manuscript; available in PMC 2009 October 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Simulations and Results
We have introduced a marker selection procedure based on random subset BGTA screenings.
To best understand how the marker selection works, in this section, we evaluate the methods
proposed in the previous section using simulated examples. It is instructive to compare the
empirical power of BGTA method with some current approaches. The suitable method for
comparison should use the genotype information under case-control study; more importantly,
it should be designed to have joint analysis on multiple markers so that it also considers the
interactions among disease genes. For these reasons, we consider the set-association method
proposed by Hoh et al. [15], which has been thoroughly studied in [14]. For a more complete
comparison, we also compare BGTA to marker-by-marker genotype Pearson χ2 tests on 3 × 2
contingency table (one column is a marker’s genotype distribution among the cases and the
other is that of the controls). Finally, we demonstrate the BGTA method using an application
to a real data set on inflammatory bowel disease (IBD [MIM 266600]), originally studied in
[16].

The Set-Association Method by Hoh et al. [15]
The set-association method [15] evaluates a set of possibly interacting trait-associated SNP
markers at various positions on the genome. For the ith marker, its association to the disease
is measured by the product of the allelic association (ti) and the Hardy-Weinberg disequilibrium
information (ui), that is, a single-marker statistic si = ti × ui. For multiple markers, the
association to the disease is measured by the sum of these single-marker statistics, defined as
the set-association score S = Σ(ti × ui). The motivation of this sum statistic is that, conditioning
on the disease trait, the test statistics of markers at loci that are in association with interacting
disease predisposing genes would be dependent and hopefully positively correlated. Such a
dependence does not exist for loci that are not linked or in association with the disease trait.
Thus, by adding the marginal test statistics, the power of detecting multiple disease
predisposing loci becomes greater.

To initialize, all N markers under study are ranked by their single-marker statistics, from the
highest to the lowest, with corresponding ordered statistics s(1) ≥ s(2) … ≥ s(N). Then, cumulative
sums of top markers are calculated and evaluated: S(1) = s(1), S(2) = s(1) + s(2), and so on until

. Each S(n) has an associated p value that indicates the strength of the association
between the top n markers and the disease. As the number of n increases from 1, the p value
may decrease, which means more informative markers are included. The process stops when
a minimum p value (strongest association) is reached, where adding any further marker will
introduce noise to current n top genes and increase the p value. The final p-value of these
markers, adjusting for the optimizing selecting process, is then evaluated using permutation
tests. If the p value is significant at a pre-decided level, the current n top markers are then
selected as the important markers with marginal and potential joint effects on the disease. In
our simulation study, we use the Sumstat package downloaded from
http://linkage.rockefeller.edu/ott/sumstat.html.

Genetic Heterogeneity Model: Example 1
We first evaluate the utility of BGTA method on multiple disease loci under a genetic
heterogeneity model. Without much biological interaction among the disease loci, genetic
heterogeneity characterizes a disease where independent mutations at several susceptibility
loci lead to a same disease outcome. As a result, individuals who have mutations at any of these
loci will have a higher susceptibility to the disease. These loci may be unlinked or on different
chromosomes, such as well-apart genes that are on a common biochemical pathway. Under
the heterogeneity model, marginal effects of disease loci are strong and dominant.
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Such a model is usually regarded as ‘lack of epistasis’ in biological sense. However, as
illustrated in [31], even such a model can be interpreted as epistatic under some definitions.
Especially, such models can be show to have a statistical interaction term under the additive
model of penetrance. However, when the disease alleles have relatively low population
frequency, it is rare to observe cases who are homozygous of the disease predisposing allele
at both loci. Thus, with a moderate-sized sample, association information under such a model
is mostly marginal.

For this example we assume a disease with three susceptibility loci, which are not linked and
have no interactions. Two copies of mutated allele at any of these three disease loci cause a
higher penetrance of the disease. 80 diallelic markers are simulated. For each susceptibility
locus, there are two markers in linkage/association with the disease genes, which makes a total
of six associated markers. Figure 1 (example 1) displays the comparison of BGTA, set-
association methods and marker-by-marker χ2 tests using 300 simulated data sets of a moderate
sample size, 150 cases and 150 controls.

As shown in figure 1 (example 1), under the genetic heterogeneity model where strong marginal
effects of disease loci are present, BGTA method performed slightly better than the set-
association method and comparable to the marker-wise χ2 tests. All methods demonstrated
satisfactory control of false positives. We will show in the next examples that the BGTA
method becomes relatively more powerful when the interactions among susceptibility loci
become substantial.

Disease Models with Epistasis: Examples 2 and 3
Recently, more attention has been devoted to the detection and investigation of the epistatic
interactions [1,27]. Cordell [31] provided a historical account of the study of epistasis,
including different definitions and methods, where penetrance tables were used to demonstrate
several examples with two interacting disease loci. Frankel and Schork [38] illustrated a model
with pronounced epistatic interaction, where marginally association to either of the two disease
loci is not readily detectable. Here, we study BGTA using simulations under two epistatic
models with different extent of epistasis, in order to understand how BGTA detects epistatic
interactions by using multi-locus genotypes. These two models are quite hypothetical.
Actually, they represent the cases where information would be hard to extract completely at
marginal. We use these difficult examples to illustrate the potential of the BGTA method.

In the first model, the genes have substantial interactions among themselves, while maintain
readily detectable marginal effects. The second model has only joint detectable effects
(complete epistasis), similar to the model discussed in [38], and is an extreme and hypothetical
case. For either model, two interactive disease loci A and B are simulated. Locus A has two
possible alleles, A (normal) or a (mutated), and locus B has alleles, B (normal) and b (mutated).
60 diallelic markers are simulated with two markers in association with each disease loci (a
total of four markers are associated with the disease). The disease models are shown in the
penetrance tables in table 1. For each model, we evaluate the methods using 300 data sets
simulated with 150 cases and 150 controls.

Table 1a displays the disease model for example 2, which is set up so that an individual is
affected if and only if two deleterious alleles and two normal alleles are present. Such a disease
model might be possible when one mutation is not enough to intrigue the disease and having
more than 2 mutations will lead to much different disease outcomes. The frequency of each
single-locus genotype is given (in parentheses) next to the genotype. The marginal effect is
shown as well, measured by the penetrance associated with single-locus genotypes at each
locus individually. For example, the penetrance of genotype a/a in locus A is computed by
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multiplying each penetrance in the first row by the given frequency in the column: [(1/4) × 0
+ (1/2) × 0 + (1/4) × 1] = 0.25.

Under the settings in table 1a, there are notable joint effects between loci A and B since the
penetrance depends on the two-locus genotypes at both loci. On the other hand, since the
marginal penetrances of three single- locus genotypes at each locus are not all equal, each gene
can still be detected marginally.

Table 1b follows a similar setting as in table 1a. However, it defines a hypothetical situation
where two genes A and B can not be detected marginally, and have only detectable joint effects.
Note that the marginal penetrances given the three single-locus genotypes at each locus are all
equal, which suggests that if one studied any disease locus independently of the other, no
detectable effect at that locus would be observed.

The performances of BGTA method in comparison with the set-association method and the
marker-wise χ2 under epistatic models I and II are displayed in figure 1 as examples 2 and 3.

Figure 1 shows clearly that, compared with the set association method and the marker-wise
χ2 tests, BGTA method gains more advantage on power when the joint effects among disease
loci become more substantial. Especially in the complete epistatic model (epistatic model II),
BGTA method demonstrated an absolute advantage over the other two methods, which rely
on marker-wise statistics and thus has no power in detecting any disease locus. For example
2, the high power of BGTA indicates the association signal between the markers and the disease
is extremely strong. The performance of the markerwise genotype association χ2 tests appears
to be satisfactory but actually suffers a more than 30% efficiency drop. The performance of
the set-association method suffers from its use of marginal statistics and also possibly its
selection of test statistics (allelic association and HWD statistics may not be the most
appropriate statistics for this disease model).

Moreover, in the random subset BGTA screening results, one could observe the joint returning
patterns between markers that are associated with the interacting genes (details not shown).
We call the smaller set of returned markers from one random subset BGTA screening a return
cluster. For example 1, if we look at the B = 5000 returned marker clusters, the return clusters
with more than one markers all have very low frequencies and are mostly unimportant marker
pairs, meaning that these pairs do not point to two separate important disease susceptibility
loci. This is due to the fact that, for example 1, the genes are not simulated to have strong
interactions. For the epistatic models, examples 2 and 3, however, the most frequently returned
pairs are those pointing to the two interacting disease loci, and their frequencies are
significantly higher than the other returned clusters. This indicates that the BGTA method
extracts important information on inter-locus interaction as it screens out unimportant markers.
Another important indicator of gene-gene interaction is the GTD scores. Returned clusters with
high GTD values are good candidates of interacting genes for further analysis. An easy strategy
to fully explore interactions among selected marker loci is to calculate the GTD scores for pairs
of these markers. The higher the score is, the stronger is the indication of gene-gene interaction.
Higher-order interactions can be further identified by looking at the GTD scores on subsets
with more than two markers.

Application to Inflammatory Bowel Disease Data: Example 4
For demonstration purposes, we apply BGTA to a data set of inflammatory bowel disease
pedigrees analyzed in [16] and then re-analyzed by Lo and Zheng (2004) [13].

The inflammatory bowel disease (IBD [MIM 266600]) can be further diagnosed as ulcerative
colitis (UC [MIM 191390]) or Crohn’s disease (CD) – two chronic idiopathic inflammatory
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diseases of the gastrointestinal tract. UC and CD are considered together because of their
overlapping clinical, epidemiological, and pathogenetic features and their shared
complications and therapies. For a comprehensive review of IBD and previous genome-wide
screens, the readers are referred to Chapter 15 of [39]. Datasets used in this study are retrieved
from the files (in LINKAGE format) provided by Whitehead Institute, MIT, on a study
investigated by Rioux et al. [16]. The dataset contains 112 IBD pedigrees with more than two
Crohn’s disease patients (89 with two patients, 20 with three patients and 3 with four patients),
which is about 66% of the original dataset used in [16].

In order for BGTA to be applicable, we divide the 112 pedigrees in the data arbitrarily into
two halves. From each pedigree in the first half, we sample one IBD patient; and we sample
one non-patient from each pedigree in the second half. The haplotype phases, inferred from
the pedigree data, are ignored. The resulting genotype data set is not exactly a population-
based case-control data set but the 56 cases and 56 controls are independent. Thus, the BGTA
method is still valid. We investigate the same set of 402 markers as in [13] and practice multiple
imputations to address the issue of missing data. The readers are referred to [13] for details on
data preparation.

We run B = 50,000 random subset screenings on each of the 10 imputed data sets, which gives
us a total of 500,000 BGTA screening result sets. The aggregated return frequencies for the
markers studied are plotted in figure 2 and figure 3. BGTA identifies the same association
signals at the loci of IBD2, IBD3 and IBD5, as detected by BHTA [12] in [13]. For IBD1 and
IBD4, weaker signals result in somewhat higher return frequencies but not significantly higher.
Considering the small size of the cases and controls used, the amount of information extracted
by BGTA is rather impressive.

Conclusion and Discussion
In this article, we have shown that BGTA-based marker selection provides a powerful approach
to the association mapping of dichotomous complex traits under designs where only unphased
genotypes are available. It utilizes the genotype-based statistics GTD and GTA, which can
capture the marginal and joint effects of multiple susceptibility loci on the disease under study.
Moreover, the random subset screening mechanism efficiently screens the largescale genomic
data and explores the possible interactions, even clusters, among multiple markers. Different
from conventional methods which examine markers locally and draw conclusions on one after
another, BGTA marker selection procedure ranks the markers by their return frequencies and
selects important ones for further detailed study. Additionally, the resulted marker set from
each BGTA subset screening can be used to study the interaction among those markers who
are returned together.

For simplicity, we only consider, in this article, diallelic markers, such as SNPs. This method
can be applied to multiallelic markers straightforwardly. Recall the definition of key statistic
GTD (page 11), it only uses the genotype information – the counts of multi-locus genotypes
observed in cases and controls. Therefore, the ‘study unit’ in BGTA algorithm is the genotype
instead of marker. For example, a triallelic marker has six possible genotypes; then the
difference between GTDs before and after deleting a triallelic marker, equation (A.5), will have
15 cross product terms. The algorithm will be carried out similarly though the calculations are
tedious. However, it is notable that the increased allele number deteriorates the sparseness
problem given a certain sample size. Further investigation should be conducted to find a
solution to this issue.

In all previous examples, our simulations are based on relatively small marker sets such as sets
with 60 or 80 markers in total. Under these settings, B = 5000 repeated random subset
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screenings are enough to detect the disease- associated markers. However, as more and more
markers become available with the development of biotechnology, the number of candidate
markers in a genome scan study is now in the thousands or even hundreds of thousands. For
studies with hundreds to several thousands of markers, one needs to increase B according to
the discussion in section 2.6. For studies with hundreds of thousands of markers, we are
currently considering possible multi-stage strategies. One possible way is to have exhaustive
marginal scan (or scan of all pairs of markers as in [40]) in the first stage and then carry out
full BGTA scan on selected markers. Another possible strategy is to start with an equally-
spaced subset of markers (say, 2000 of them) and carry out a first stage of BGTA screening;
after the first stage, increase density of markers at loci identified in the first stage for the second
stage of BGTA screening. Due to the challenging dimensions of current whole-genome
association studies, both strategies inevitably make some compromising choices: the first
strategy might miss some important loci that have weak or no marginal signal; the second
strategy might miss some important loci if the initially selected markers do not have strong
linkage disequilibrium with the disease predisposing genes nearby.

In addition to genetic markers, information on some covariates can also be used in the BGTA-
based methods, such as sex, age, environmental factors, etc. We can treat them as
‘pseudomarkers’ and discretize theirs value into several levels as the ‘pseudogenotypes’.
Incorporating such covariates into the screening has the potential to reveal important gene-
covariate interactions.

For candidate gene studies, the BGTA methods can help identify gene-gene interactions. One
possible strategy is that one selects several markers from each candidate gene under evaluation
to form a random subset for each BGTA screening. Since under a candidate gene study, a
substantial percentage of the markers may show association with the disease trait, return
frequencies from random subset screening may not be informative. GTD scores, as the
association information measure, carry more detailed information about each gene-cluster
identified. For a candidate gene study, one should record the gene-cluster returned from each
random subset screening and rank these clusters by their GTD scores. Clusters with high GTD
scores may represent important inter-region interactions.

Either in a whole-genome association study or a candidate gene study, the density of markers
at a given loci is usually high. In other words, there might exist high linkage disequilibrium
(LD) among the markers, especially for markers that are at a same gene locus. For markers
that are associated with a disease gene, the GTD score of two markers that are in complete LD
will have the same expectation as their individual GTD scores separately. One of these two
markers will be removed randomly since either marker’s GTA score will be zero given the
other marker. For two markers that are in high LD, the marker that has the weaker association
with the disease will be removed since it adds noises to the information contained in the other
marker. Screening on subsets that contain both markers discovers a similar amount of
information as on subsets that contain only one of them. Therefore, to make the method more
efficient, initial marker sets should have markers that are not highly associated among
themselves. Such initial marker sets can be achieved via more structured sampling of markers.
For example, one can randomly select k genetic regions, and within each region, randomly
select one marker.

The proposed methods are not for multiple hypothesis testing, but rather should be viewed as
part of an inferential process to select for further analysis, the markers and other risk factors
that have demonstrated important association with the trait under study. As demonstrated in
the examples we have evaluated using simulation studies, BGTA methods have shown great
potential in dissecting the complex interactions simulated among the associated markers.
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Appendix
The BGTA algorithm employs two important statistics, GTD and GTA, which carry both
marginal and joint association information between the candidate markers and the disease loci.
In this appendix, we demonstrate the mathematical justifications of these properties.

For convenience, we apply the commonly used genotype coding to the multi-locus unphased
genotypes used in the algorithm, where each entry in such a vector represents a diallelic marker
and its value is the number of a certain allele at that marker. For example, a four-marker
genotype below can be represented by a four-dimension vector with each entry value as the
number of allele bi, i = 1, 2, 3, 4,

A Derivation and Expectation of the GTA Statistic
Same as in the METHODS section, let Sk be the current set with k markers, Sk = {M1, M2, …,
Mk}, and  denotes the new set less a certain marker Mr, that is,

For Sk and , we define the genotype sets as

, respecitively. Then,  can be rewritten
as an extended set from Gr,

(A.1)

where 0, 1 and 2 represent the three possible genotypes at marker Mr. For convenience, we use

 (s) to represent the extended vector of genotypes

so that  (s) ∈  and  (s) ∈ r. Similar to  as in the METHODS section

on page 8, we define  as the numbers of times that genotype  ∈ r is
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observed among the cases and controls, representatively. We further define  (s) and

 (s) as the counts for the ex tended genotype  (s) ∈ , s = 0, 1 or 2.

These genotype counts satisfy that

(A.2)

and

(A.3)

Thus, using these counts, it is easier to examine explicitly the information loss due to the
deletion of marker Mr, measured by the difference between GTD(k) and GTD(k-1). More
specifically, we rewrite these two scores as follows.

Before removing Mr,

(A.4)

After Mr is removed,

(A.5)

where

(A.6)

and s, t = 0, 1, 2. From the above equations, one can write explicitly the difference between
GTD(k) and GTD(k-1) as
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The statistic GTA(r) is then defined as:

(A.7)

where

and

s, t = 0, 1, 2.

To clearly show the expectation of GTA(r), notations for the parameters and statistics for the
genotypes before and after deleting Mr are to be defined systematically. Generally, for

genotypes  (s) (before deleting Mr) and  (after deleting Mr), where s ∈ {0,1,2}, ∈
{1,2, …,3k-1}, the systematic notations are described as follows:

before deleting Mr after deleting Mr

genotype
gi

(k−1)(s) gi
(k−1)

risk ratio ri(s) ri

population probability pi(s) pi

counts in cases
nd ,i

(k−1) nd ,i
(k−1)

counts in controls
nu,i

(k−1)(s) nu,i
(k−1)

where s indicates the genotype at the Mr locus. Here risk ration, ri, is the ratio of the disease
penetrance given genotype gi and the population disease prevalence.

They satisfy the equations:
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(A.8)

In the case or control group, the count of each genotype can be considered as a random variable.

For example, the counts , given their sum , will follow a
multinomial distribution with the probability function

(A.9)

In other words, the probability of observing the extended genotype (s) given  is

s = 0,1,2. Therefore, one can derive the following conditional expectations:

(A.10)

(A.11)

and then

(A.12)

Similarly, in the control group, the probability of observing genotype (s) given  is

and
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(A.13)

Recall the fact that the case and control groups are sampled independently, so the expectation
of cross product of counts between case and control groups is

(A.14)

To calculate the expectation of GTA(r), that is, E(GTA(r)) = E(1/2 Δ GTD) + E(Ã), we first
calculate E (1/2 ΔGTD) based on (A.12), (A.13) and (A.14),

(A.15)

In the above equation,

(A.16)

N(s,t) can be estimated unbiasedly by

(A.17)

which is an item in the adjusting term Ã as defined in (A.7). Finally, the expectation of GTA
can be derived by combining (A.15) and (A.17)
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(A.18)

From (A.18), one can easily conclude that E(GTA(r)) = 0 under the null hypothesis of no
association, that is, ri(s) = 1, i ∈ {1,2, …,3k-1}, s ∈ {0,1,2}.

B Properties of the GTA Statistic
In the previous section, we computed the expectation of GTA(r) in terms of population
probabilities pi(s) and risk ratios ri(s) for genotype gi

(k-1)(s), s ∈ {0,1,2}, i ∈ {1,2, …, 3k-1}.
In this section, we discuss the relation between the importance of a marker Mr and the values
of E(GTA).

Under the null hypothesis of no association, that is, ri (0) = ri (1) = ri (2) = 1, i = 1,2, …,3k-1,
then it is easy to obtain that E(GTA(r)) = 0 from (A.18).

Under the alternative hypothesis, that is, there is one or more markers in association with the
disease trait, then we can find some i ∈ {1,2, …, 3k-1} and some s ∈ {0,1,2} such that ri(s) ≠
1. However, the mechanism of the associations among k markers is complicated. In the
following, we will discuss three scenarios under the alternative hypothesis.

Scenario One: Mr is not in association with the disease while some other current markers are.
Thus, the conditional probabilities satisfy the equation P(D|gi) = P(D|gi(0)) = P(D|gi(1)) = P
(D|gi(2)), and consequently, we have ri = ri(0) = ri(1) = ri(2). In this case,

(B.1)

Since one or more of the remaining markers other than Mr have association with the disease,
then ri ≠ 1 for some i ∈ {1,2, …,3k-1}. Thus, E(GTA(r)) is strictly positive under this scenario.

Scenario Two: Mr is in association with the disease while none of the other current markers
are. More specifically, we have P(gi | D) = P(gi), i = 1,2, …,3k-1, and ri(s) ≠ 1 for some s ∈
{0,1,2}. Define Ai = pi (0) pi(1)(ri(0) - 1)(ri(1) - 1) + pi (0) pi(2)(ri(0) - 1) (ri(2) - 1) + pi(1)
pi(2)(ri(1) - 1)(ri(2) - 1), where i = 1,2, …,3k-1. Then

(B.2)

Therefore, under this scenario,
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Scenario Three: Mr is in association with the disease, and also has interactions with some other
markers. Without losing generality, assume that only one of the other marker Mq has interaction
with Mr, and all the other markers are independent of the disease. Therefore, the disease status
is determined by the marginal and joint effects of Mr and Mq. To distinguish from marker

Mr, let {0q, 1q, 2q} denote the genotypes at the locus of Mq. In addition, let  denote the
genotypes on the remaining k - 2 markers. The corresponding population probability and risk

ratio are  respectively. Based on these notations, the extended k-marker genotype

can be written as  (s, tq), i = 1,2, …,3k-2, where s and tq are genotypes for Mr and Mq
respectively, and similarly we define pi(s, tq) and ri(s, tq). It is worth to mention that the set

can also be re-written as

To shorten the formulations, we define Δi(s) = pi(s)(ri(s) - 1).

Following the above notations, we have

(B.3)

where Δl(s, tq) is defined as pl(s, tq)(rl(s, tq) - 1). From the assumption that the other k - 2
markers (excluding Mr and Mq) are independent of the disease, their risk ratios satisfy r(k-2)

l =
1, l = 1, 2, …, 3k-2. Then Δl (•, •), l = 1, 2, …, 3k -2 will satisfy

(B.4)

This leads to a constraint on the nine terms, Δl (s, tq), (s, t = 0, 1, 2), that they add up to zero.
This implies that some of them are positive and some negative. In order to see the interactions
between marker Mr and Mq, the signs of each value will be analyzed within three sets Ω0 =
{Δl (0,0q), Δl (1, 0q), Δl (2, 0q)}, Ω1 = {Δl(0, 1q), Δl (1, 1q), Δl (2, 1q)}, and Ω2 = {Δl (0, 2q),
Δl (1, 2q), Δl (2, 2q)}. For example, if the signs in Ω0 are all ‘+’ (or all ‘−’), we use ‘same’ to
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characterize the signs in Ω0; otherwise, we say ‘change’. It is easy to observe that the within-
set changes are due to Mr whereas Mqcontributes to between-set differences. As shown in table
2, the last two columns indicate the signs of E(GTA(r)) and the importance of Mr under different
levels, which shows strong agreement with our marker selection criteria. Due to the symmetry,
Ω0, Ω1 and Ω2 can be discussed exchangeably and table 2 only lists all unique-by-symmetry
scenarios of possible interactions between markers Mr and Mq and the corresponding signs of
E(GTA).
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Fig. 1.
Comparison between BGTA, set-association and markerwise χ2 tests using simulations.
BGTA, the set-association algorithm and marker-wise χ2 tests are compared using simulations
under three disease models (examples 1–3). a Average power in detecting associated markers
with 95% confidence bars, which is the average probability for an associated marker to be
selected (averaged over 4 or 6 associated markers: 2 markers per disease gene loci are
simulated). b Power in (or the probability of) detecting all disease loci jointly with 95%
confidence bars. c Average number of disease loci detected. d Average number of unassociated
markers selected with corresponding estimated probability of false positives. The performance
is evaluated using 300 simulated data sets of 150 diseased (cases) and 150 undiseased (controls)
individuals. For example 1, 80 markers are simulated and for examples 2 and 3, 60 markers
are simulated. Simulation specifications: (1) for example 1, disease gene predisposing allele
is set to have population frequency 0.05; for examples 2 and 3, disease gene predisposing allele
is set to have population frequency 0.5. (2) Marker allele population frequencies are set to 0.5.
(3) Linkage/ LD between disease loci and associated markers: θ = 0.01 (recombination fraction)
and Δ = 0.8 (standard LD). (4) Inter-markers linkage/LD are randomly generated from θ ~ U
(0.05, 0.1) and Δ ~ U (0.1, 0.2). (5) For all examples, individuals without the disease
predisposing genotypes have a 0.001 probability to be affected. BGTA specifications: random
subset size used is k = 10; B = 5,000 random subset screenings were run for each simulation;
marker selection is through IQR-based criterion on return frequencies. Set-association
specifications: maximum number of top markers to sum is set to 20; the final selection
significance level is set to 0.05.
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Fig. 2.
BGTA return frequencies for IBD data: chromosomes 1–9. Aggregated return frequencies from
500,000 BGTA random subset screenings (k = 8) are plotted versus marker location on the
genome. Only markers included in the screening are shown. The median return is marker by
a horizontal solid line, whereas the selection threshold is marked by a broken line. Selected
important markers are labeled for readers’ reference. Seven horizontal bars indicate the
previously reported IBD susceptibility loci, IBD1–IBD7. BGTA identified IBD2, IBD3 and
IBD5 and showed weak signals on IBD1 and IBD4.
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Fig. 3.
BGTA return frequencies for IBD data: chromosomes 10–23. Aggregated return frequencies
from 500,000 BGTA random subset screenings (k = 8) are plotted versus marker location on
the genome. See legend of figure 2.
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