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SUMMARY
We examine the practicality of propensity score methods for estimating causal treatment effects
conditional on intermediate posttreatment outcomes (principal effects) in the context of
randomized experiments. In particular, we focus on the sensitivity of principal causal effect
estimates to violation of principal ignorability, which is the primary assumption that underlies the
use of propensity score methods to estimate principal effects. Under principal ignorability,
principal strata membership is conditionally independent of the potential outcome under control
given the pre-treatment covariates; i.e., there are no differences in the potential outcomes under
control across principal strata given the observed pretreatment covariates. Under this assumption,
principal scores modeling principal strata membership can be estimated based solely on the
observed covariates and used to predict strata membership and estimate principal effects. While
this assumption underlies the use of propensity scores in this setting, sensitivity to violations of it
has not been studied rigorously. In this paper, we explicitly define principal ignorability using the
outcome model (although we do not actually use this outcome model in estimating principal
scores) and systematically examine how deviations from the assumption affect estimates,
including how the strength of association between principal stratum membership and covariates
modifies the performance. We find that when principal ignorability is violated, very strong
covariate predictors of stratum membership are needed to yield accurate estimates of principal
effects.
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1 INTRODUCTION
Frangakis and Rubin [1] laid out the arguments regarding careful definition of causal effects
in the presence of posttreatment intermediate outcome variables. This idea, known broadly
as principal stratification, provides a framework for valid estimation of causal treatment
effects conditional on intermediate outcomes. The crucial insight is that effects estimated in
these settings must condition on the set of potential values of intermediate outcomes under
all treatment conditions. Principal stratification refers to this classification of individuals
based on sets of potential values of intermediate variables. The resulting categories, labeled
as principal strata, are unaffected by treatment assignment, and therefore treatment effects
calculated by conditioning on these categories, labeled principal effects, can be interpreted
as causal. Treatment receipt behavior is one of the most frequently studied intermediate

NIH Public Access
Author Manuscript
Stat Med. Author manuscript; available in PMC 2010 October 15.

Published in final edited form as:
Stat Med. 2009 October 15; 28(23): 2857–2875. doi:10.1002/sim.3669.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



outcome variables in this context. For example, in the two-arm experimental setting
considered in Angrist, Imbens, and Rubin [2], according to principal stratification,
individuals are categorized into compliance strata on the basis of their potential treatment
receipt behavior under both the treatment and control conditions. In that setting, primary
interest is in estimating the effect for compliers: those individuals who would take the
treatment when in the treatment group and would take the control when in the control group.

Since the potential values of intermediate outcomes can be observed only under the
condition to which each individual is actually assigned, estimating causal treatment effects
conditional on principal strata remains challenging in practice. There has been relatively
little investigation of the situations under which different approaches work well. One
potentially intuitive and straightforward way of estimating principal effects is to use
propensity score-based methods to classify individuals into principal strata. For example, in
the Angrist et al. [2] setting, where the control group does not have access to the treatment,
we may be interested in estimating causal treatment effects for those who would and would
not receive the treatment under the treatment condition (i.e., for two principal strata,
compliers and non-compliers). The challenge here is that stratum membership is known for
individuals assigned to the treatment condition, but unknown for individuals assigned to
control. If we could identify the stratum membership of individuals assigned to the control
condition, inference would be straightforward. Given this goal, one potential way to estimate
principal effects is to use propensity score methods to identify individuals in the control
group who are likely to be compliers. We can then compare outcomes under the treatment
and control conditions within each principal stratum. This intuitive idea has been used and
discussed by previous researchers [3–6] in the context of principal stratification models,
although little is known about the practicality or performance of the approach, and there has
been relatively little formal discussion of the assumption that underlies the approach, which
we term “principal ignorability.”

Follman [4] used the propensity score approach to estimate treatment effects accounting for
levels of compliance. Follman [4] estimated a model of treatment receipt using the treatment
group members (the propensity score model), and then used the predicted probabilities of
treatment receipt in outcome models. In particular, he treated the propensity score as a
baseline covariate and included an interaction of it and treatment assignment in the outcome
model, essentially estimating a subgroup effect with the subgroup defined by predicted level
of treatment receipt. Hill et al. [3] used a similar approach to look at the effects of high
levels of participation in an early intervention for high-risk children, and found that higher-
levels of participation led to stronger and longer-lasting effects. They labeled the
individuals’ probability of belonging to particular principal strata “principal scores,” in
connection with principal stratification. In the context of randomized trials with treatment
noncompliance, Joffe et al. [5] used an approach similar to Follman [4], defining the
compliance score as a measure of the effect of randomization on treatment received. They
showed that validity of causal effect estimates depends on the link function when the
compliance score is used as a regressor. Joffe et al. [6] also discussed identification of
principal effects using the concept we refer to as principal ignorability in this paper. The key
feature of this line of principal effect estimation methods is that estimation of principal
scores and estimation of principal effects are separately conducted, which is possible based
on its critical assumption that observed covariates are su cient for identifying principal
stratum membership (principal ignorability). In contrast, in more commonly used principal
effect estimation methods, which we term “joint estimation methods” and that do not
necessarily require principal ignorability, principal stratum membership and the outcome are
simultaneously modeled.
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One potential benefit of the propensity score approaches to estimating principal effects is its
separation of the estimation into two stages: first, a model relating the covariates to the
intermediate outcome (e.g., treatment received), and second, a model relating the covariates
to the potential outcomes, given the principal scores from stage 1. This two-stage approach
leads to reduced reliance on a particular parametric model relating the covariates to the
potential outcomes, and has been shown to be very beneficial in the observational studies
context [7,8]. In particular, poor performance of parametric models in the principal
stratification approach [9] leads us to consider whether the two-stage modeling approach
could also be of use here. Another valuable advantage of the propensity score approaches is
that they are methodologically simple and conceptually easy to understand. The trade-o is
that propensity score approaches rely on being able to identify principal strata membership
on the basis of only covariate information. However, in practice, there are often pretreatment
covariates that are good predictors of principal stratum membership, and in some situations,
it is also possible to actively and intentionally collect this information [10]. Given that,
propensity score methods seem to be a promising strategy for estimating principal causal
effects.

The goal of this paper is to assess when the covariate information is su cient to estimate
principal effects well using propensity score methods and to examine how the strength of
association between the principal strata membership and covariates affects the quality of the
estimates. We believe that this is a critical step towards a better understanding of the
practicality of propensity score methods in estimating principal causal effects. We also
discuss commonly used joint estimation methods along with the two-stage methods. The
main purpose of considering both the two-stage approach and the joint estimation
approaches in the current paper is not to show superiority of one approach to another, but to
better understand how the two-stage approach works in identifying principal effects. The
next logical step would be to examine relative performance of the 2-stage and the joint
estimation approaches under various conditions, which is not the focus of this paper.

2 MOTIVATING EXAMPLE: JOBS II (THE JOB SEARCH INTERVENTION
STUDY)

This paper was particularly motivated by the Job Search Intervention Study (JOBS II: [11]),
which was a randomized experiment of an intervention for unemployed individuals. The
control condition consisted of a booklet briefly describing job search methods and tips. The
intervention condition consisted of five training sessions intended to prevent poor mental
health and to promote high-quality reemployment. On the basis of the definition of treatment
receipt as having attended at least one out of five total sessions, 55% of individuals who
were assigned to the intervention condition are treatment receivers. This definition, which
dichotomizes treatment receipt status, was adopted in previous studies that analyzed the data
from JOBS II [10–13], and also will be used in the current paper.

Given that a substantial proportion of individuals in the intervention group did not receive
the full intervention treatment, estimates of treatment efficacy vary depending on how we
take treatment receipt into account. One strategy is to estimate causal treatment effects for
individuals with different compliance types, which fits in the framework of principal
stratification. Specifically, treatment receipt behavior is the posttreatment intermediate
outcome of interest in this situation. In JOBS II, individuals assigned to the control
condition were prohibited from attending intervention sessions. Then with binary treatment
receipt and binary treatment assignment status, only two compliance types (principal strata)
are possible. Following the convention of Angrist et al. [2], we will use compliers and
never-takers to refer to these two types of individuals: compliers receive treatment if they
are assigned to the treatment condition and never-takers who do not receive the treatment
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even if they are assigned to the treatment condition. This setting provides an ideal situation
to calculate propensity scores that reflect principal stratum membership (compliance type),
which is fully observed among individuals assigned to the intervention condition.

In this paper, we focus on the high-risk group, based on previous studies [14,15] that
indicated that the job search intervention had its primary impact on high-risk individuals.
The risk score was computed based on a set of variables in the screening data that predict
depressive symptoms at follow-up (depression, financial strain, and assertiveness). A total
sample size of 410 was analyzed in this study after listwise deletion of cases that had
missingness in covariates or outcomes. Of those 410 individuals, 273 are in the intervention
condition and 137 are in the control condition. The true randomization probability was 0.7
for the intervention and 0.3 for the control (i.e., more individuals were assigned to the
treatment condition). This unbalanced design was chosen in the JOBS II trial because
considerable treatment noncompliance was expected. Table 1 shows the results from a
logistic regression of treatment receipt (compliance) on pretreatment covariates, estimated
among individuals assigned to the treatment condition. Among the seven variables included
in the model, four variables were significant predictors of treatment receipt: sense of
mastery, age, motivation to attend intervention seminars, and the level of education. In
particular, as would be expected, motivation was very highly associated with actual
treatment receipt (odds ratio = 3.782). The presence of good predictors of compliance in
JOBS II provides a nice setting to investigate how the use of propensity scores works in
principal causal effect estimation.

3 COMMON SETTING
More generally, we consider a simple two-arm experimental setting, where individuals are
randomly assigned either to the treatment or to the control (absence of treatment) condition.
The treatment assignment status Zi = 1 if individual i is randomly assigned to the treatment
condition, and Zi = 0 if assigned to the control condition. The observed treatment receipt
status Si = 1 if individual i receives the treatment, and Si = 0 otherwise. Let Si(1) and Si(0)
denote the potential treatment receipt status for i when Zi = 1 and Zi = 0, respectively. For
simplicity, we assume that individuals assigned to the control condition are not allowed to
access the treatment (i.e., Si(0) = 0 for all i), although this assumption is not essential for
identifying principal effects using the propensity score approach.

In this setting, two principal strata (compliance types) are possible based on binary Z and
binary S. The latent compliance type Ci = 1 if individual i would receive the treatment when
the treatment is offered, and Ci = 0 if individual i would not receive the treatment regardless
of the intervention assignment. According to Angrist et al. [2], these two types of individuals
are compliers and never-takers. That is,

Based on these two compliance types, we assume the following model for a continuous
outcome Y for individual i and a single covariate X:

(1)

The value of the potential outcome under treatment, Yi(1), as well as of the potential
outcome under control, Yi(0), can both be obtained from the expression in Equation (1). In
Equation (1), αn and αc are the mean potential outcomes under control for never-takers and
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compliers, respectively, when X = 0. The difference, αc – αn can be interpreted as the
difference in the potential outcome under control for compliers and never-takers with the
same value of X, capturing additional differences between those groups not due to
differences in the distributions of X. If the mean of X is not zero, αc and αn are intercepts,
and we need to take into account the differential relationships of covariates with the
outcome across strata to properly calculate the difference between compliers and never-
takers. The relationship between the covariate (or, more generally, a vector of covariates) X
and the outcome is expressed by λc for compliers and λn for never-takers. The average effect
of treatment assignment for compliers is γc, known as the complier average causal effect
(CACE). The average effect of treatment assignment for never-takers is n, known as the
never-taker average causal effect (NACE). The residual εi is assumed to be normally
distributed with mean zero and variance  for compliers and  for never-takers. However,
parametric assumptions such as normality are not essential for identifying principal effects
using propensity scores.

In the presence of covariates that predict compliance, the proportions of compliers and
never-takers can be expressed using logistic regression as

(2)

where πi is the probability that individual i is a complier, β0 is the logit intercept, and β1 is a
vector of logit coefficients that reflects the association between compliance and pre-
treatment covariates. Let πc denote the compliance rate.

We also assume that the following two common assumptions necessary to identify causal
treatment effects hold.

• Ignorable treatment assignment: Treatment assignment is independent of the
potential outcomes, given the observed covariates X [16–19]. In other words, there
are no unobserved confounders that would lead to differences in the distributions of
the pair of potential outcomes between the treatment and control groups, once we
condition on the observed characteristics. This is automatically satisfied in
randomized experiments.

• Stable unit treatment value (SUTVA): (1) the potential outcomes for each person
are unaffected by the treatment assignment of other individuals, and (2) there is
only one “version” of each treatment (e.g., the potential outcomes for someone
under a given treatment do not depend on the person who delivers the treatment,
and the control condition is the same for all individuals; [18–20]).

4 ESTIMATION OF PRINCIPAL CAUSAL EFFECTS
4.1 PROPENSITY SCORE METHODS

Propensity scores are generally used in the context of non-experimental studies where there
is interest in comparing the outcomes of treated (or exposed) and comparison (unexposed)
groups. Use of them in the principal stratification context is similar, but will also take
advantage of being in the context of a randomized experiment. The main idea behind
propensity scores is to facilitate the comparison of subjects who are as similar as possible on
background characteristics by collapsing the full set of covariates into their most important
scalar summary, the propensity score. Formally, the propensity score is defined as the
probability of being in the treatment group given the observed covariates, P(Z = 1 | X). It is
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often estimated using logistic regression. Properties of the propensity score laid out in
Rosenbaum & Rubin [21] show that analyses that match, weight, or condition on the
propensity score can yield unbiased estimates of treatment effects.

Whereas the conventional use of propensity scores is to model treatment group membership
in observational studies (where treatment group membership is the same as treatment group
receipt), the distinction in this paper is that we use propensity scores to model principal
stratum membership. In particular, the propensity score will model treatment receipt (i.e.,
compliance) in the context of a randomized experiment, where treatment assignment does
not necessarily imply treatment receipt. Following Hill et al. [3], we will use “principal
scores” hereafter to refer to propensity scores that model principal stratum membership: P(C
= 1|X).

The principal score approach utilizes ideas similar to those of the conventional propensity
score approach. The central assumption in standard propensity score settings is that the
observed covariates are all that are needed to predict treatment assignment status: i.e., that
treatment assignment is independent of the potential outcomes, given the observed
covariates (known as ignorability or unconfounded treatment assignment, as defined earlier).
This assumption is modified as follows in the principal score approach:

• Principal Ignorability (PI): Principal stratum membership is independent of the
potential outcomes given observed information: E(Ci|Xi,Yi(0),Yi(1)) = E(Ci|Xi). In
the current setting we consider, where there are only two principal strata, stratum
membership is known under the treatment condition. Therefore, the assumption
applies only to the control condition. Another expression of this assumption is that
Yi(0) ⊥ Ci|Xi, meaning that there are no unobserved differences in the prognosis
under control across compliance strata, given the observed covariates. On the basis
of Equation (1), this assumption can be expressed as:

(3)

(4)

In the definition of PI described in equations (3) and (4), αc and αn are intercepts in the
linear model shown in equation (1). In principle, the two assumptions in equations (3) and
(4) can be combined into one assumption that implies that the potential outcomes under
control are the same for never-takers and compliers, given the observed covariates. For
example, if the covariates are centered at their means in equation (1), αc – αn can be
interpreted as the difference in outcomes for compliers and non-compliers when none of
them take the treatment.

As defined above, the PI assumption clearly involves outcomes, although estimation of
principal scores does not utilize any outcome information. The use of outcome information
is restricted to the second stage, as described above. This assumes that the observed
covariates are su cient for identifying stratum membership. Because of that, however, when
principal scores are used to estimate principal effects, the results will be biased if the
assumptions shown in equations (3) and (4) are not met, as demonstrated in Monte Carlo
simulations below. While the PI assumption generally underlies the use of principal scores
to estimate principal effects, it is certainly not the only assumption that can be used to
identify principal effects. Below we discuss an alternative assumption, the exclusion
restriction, and other possible assumptions are described by Joffe et al. [6].
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The principal score method takes advantage of the fact that assignment to the treatment and
control groups was randomized. Because of randomization, we can expect that the
composition of principal strata (compliance types) and the relationship between principal
stratum membership and covariates will be the same across randomized groups. Given this
condition, principal scores can be predicted for the control group using the relationship
between covariates and treatment receipt observed in the treatment group. The intuitive idea
behind the principal score approach is to estimate the compliers’ potential outcomes under
control by finding the likely compliers in the control group: those individuals who look
similar to the treatment group compliers in terms of their baseline covariates, as expressed
via the principal score. A similar argument is used to estimate the NACE, by finding the
likely never-takers in the control group.

The specific steps we employed to estimate principal scores and principal effects in the
current paper are described below. In this paper, we focus on two uses of the principal score:
matching [22] and weighting [23,24]. We describe these methods in the context of
estimating the CACE and the NACE. Note that when estimating the CACE, the treatment
condition never-takers are not used, and likewise, when estimating the NACE, the treatment
condition compliers are not used.

Step 1: We first fit the principal score model using the treatment group members only,
predicting compliance (i.e., treatment receipt) given the covariates. The logistic regression
model shown in (2) is used for this purpose.

Step 2: From the model estimated in Step 1, predicted compliance probabilities (i.e.,
principal scores) are generated for treatment and control group members (P ).

Once principal scores are obtained from Steps 1 and 2, principal effects are estimated for
compliers and never-takers using either matching or weighting.

Step 3A. Matching: We match treatment group compliers to control group members with
similar principal scores. We used full matching [25], which in our example uses all
treatment group compliers and the full control group and forms matched sets of individuals
with at least one treated and at least one control in each matched set. The matched sets are
created in an optimal way, minimizing the average principal score distance within the
matched sets. For example, in regions of the principal score distribution with many treated
individuals and few control, the matched sets will have many treated individuals and few
controls in each. In contrast, in regions of the principal score distribution with few treated
and many controls, the matched sets will have few treated (e.g., 1) and many controls in
each. In the JOBS II example discussed below, when estimating the CACE these matched
sets ranged from having 1 treated and 13 controls to having 7 treated and 1 control. When
estimating the NACE the matched sets ranged from having 1 treated and 9 controls to
having 1 control and 6 treated. These matched sets are then used to form weights to be used
in the subsequent analyses of the outcome. In particular, treated individuals are each given a
weight of one. Control individuals are given weights that reflect the ratio of treated:control
in each matched set. For example, in a matched set that contains 2 treatment group
compliers and 3 control individuals, each treated individual receives a weight of 1 and the 3
controls each receive a weight of 2/3. In this way the treatment group compliers represent
themselves, and the control group members are weighted to look like the treatment group
compliers. Further details are provided in Hansen [26] and Stuart & Green [27]. Once the
matched sets and resulting weights are obtained, the principal effects are estimated using
regression adjustment, where the outcome values are regressed on a treatment indicator and
the covariates, with the weights from full matching. This is the first time that the outcome
values are used; doing this regression adjustment in the matched samples has been shown to
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have very good performance [8,28,29]. After the matching and regression model is run for
the compliers to estimate the CACE, the same process is used to match the non-compliers to
the control group and estimate the NACE.

Step 3B. Weighting: Using a technique known as weighting by the odds, we assign weights
to treated and control group individuals. In particular, treatment group compliers receive a
weight of 1, so that the treatment group compliers represent themselves. As is the case with
the matching approach, treatment group never-takers are not used when estimating the
CACE, and thus essentially receive a weight of 0. The control group members each receive a
weight of W = P/(1 – P), where P is the principal score (the probability of being a complier).
This weighting serves to make the control group look like the set of treatment group
compliers [30,31]. These weights can be thought of as similar to survey sampling weights,
used to weight a sample of subjects up to some broader population. In this case, the
denominator, 1 – P, weights the control group to look like the full population of treatment
group compliers and controls. The numerator, P, is then used to weight the group to look
like the sample of compliers [31]. Control group members with small values of P (low
probabilities of being a complier) will receive small weights. Control group members with
large values of P (and who thus have characteristics similar to the compliers in the treatment
group) will receive larger weights. For example, a control group member with a predicted
probability of being a complier of 0.4 (Pi = 0.4) will receive a weight of .4/.6 = 2/3. In
contrast, a control group member with a higher predicted probability of being a complier, Pi
= 0.7, will receive a larger weight, .7/.3 = 2.3, since their higher probability means that they
look more similar to the compliers and thus should be upweighted in analyses. The CACE is
then estimated using a weighted regression model with these weights. The same procedure is
used to estimate the NACE, except that the treatment group never-takers receive a weight of
1 and the control group members receive a weight of (1 – P)/P. This weighting serves to
make the control group members weight up to the group of never-takers.

In a connection to equation (1), this estimation procedure estimates the CACE considering
the part relevant to compliers from equation (1). That is,

(5)

Estimation of NACE is then separately conducted considering the part relevant to never-
takers from equation (1).

(6)

4.2 JOINT ESTIMATION METHODS
The propensity score methods have a clear two-step process of principal score estimation
and weighting or matching, followed by effect estimation using regression adjustment using
the matched samples or weights. At no point does the method require a large joint
parametric model of covariates, compliance, and outcomes. In contrast, more commonly
used principal effect estimation methods often simultaneously model compliance and
outcomes to estimate principal causal effects. We use the term “joint estimation methods” to
refer to these methods. These methods require explicit assumptions about the relationships
between compliance, outcomes, and covariates. In this paper, we employ joint estimation
methods to confirm our interpretation of PI and to better understand how propensity score
methods work in identifying principal effects.
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We will consider two joint estimation methods. The first uses the same PI assumption used
in propensity score methods. However, in the joint estimation approach, PI is neither a
required nor a widely used assumption in identifying principal effects. We considered the PI
assumption in the joint estimation approach in order to help our understanding of the 2-stage
approach. The second joint estimation method employs an alternative assumption, the
exclusion restriction (ER) [2], which has been frequently used to estimate CACE in
randomized experiments. Note that the ER assumption replaces PI in the second method,
given that we do not need both assumptions to identify principal effects. For both joint
estimation methods, we use maximum likelihood estimation using the EM algorithm (ML-
EM), treating the unknown principal stratum membership (compliance status) among
individuals assigned to the control condition as missing data. Parametric ML-EM methods
are commonly used in estimating principal effects, and therefore we will not repeat the
details of the procedures here. In particular, CACE analyses of the JOBS II data using the
ML-EM method can be found in several previous studies [10,12,13]. Other estimation
methods, such as Bayesian models, have also been used to estimate principal effects [32–
34]. Further discussion of the ER and PI assumptions (although they do not explicitly use
the term PI), as well as other possible assumptions used in estimating principal effects, can
be found in Joffe et al. [6].

Joint PI Model: First, we consider a joint estimation method version of the propensity score
methods. Focusing on the current setting, under PI, there are no differences in the potential
outcome under control between principal strata given observed covariate information (i.e.,
Yi(0) ⊥ Ci|Xi). When the outcomes are involved in identifying principal strata membership,
this assumption needs to be explicitly applied to the relationship between the outcome and
its predictors. In the outcome model shown in (1), PI is interpreted as that the relationship
between the covariates and the outcome is constant across compliance strata (λc = λn = λ)
and that there are no intercept differences between compliers and noncompliers (αc = αn = α)
under the control condition. Since the principal score approach and this joint PI method both
rely on the same assumption of principal ignorability, we expect that they will yield similar
estimated effects.

Under PI, the outcome model in (1) can be written as

(7)

Joint ER Model: In the second joint model we consider, we employ the ER, which is the
most commonly used identifying assumption in estimating CACE and is an alternative to the
PI assumption.

• Exclusion Restriction (ER): For those whose intermediate outcome (S) value does
not change in response to treatment assignment, the distributions of the potential
outcomes are independent of the treatment assignment (i.e., for units with Si(0) =
Si(1) = 0 or Si(0) = Si(1) = 1, Yi(0,Si(0)) = Yi(1,Si(1))). In our setting where there are
only two principal strata (compliers and never-takers), this restriction leads to E(Yi|
Zi,Ci = 0) = E(Yi|Ci = 0). Another expression of this assumption is that Yi ⊥ Zi|Ci =
0, meaning that there is no effect of treatment assignment for never-takers. In other
words, if treatment assignment does not affect the treatment an individual receives,
it cannot affect their outcomes (also known sometimes as the assumption of “no
direct effect” of assignment on outcomes).

In the outcome model shown in (1), ER means that γn = 0. Under the ER condition, the
outcome model in (1) can be written as
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(8)

In clinical trials, where blind, double-blind, or placebo-control conditions are possible, the
exclusion restriction is generally considered relatively benign. In other situations such as
social-behavioral intervention studies (e.g., JOBS II), the exclusion restriction is often more
questionable. The joint ER model will be used in analyzing the JOBS II data as a way of
checking sensitivity to violation of PI in the propensity score methods.

5 MONTE CARLO SIMULATIONS
The Monte Carlo simulation results presented in this study are based on 1000 replications
with a sample size of 500. We examine the bias, mean square error (MSE), and coverage of
the estimators, where coverage is defined as the proportion of replications where the true
parameter values are covered by the nominal 95% confidence interval of the parameter
estimates. Data were generated according to the randomized trial setting described in
equations (1) and (2). As in JOBS II, there are only two compliance strata, compliers and
never-takers, and compliance stratum membership is observed in the treatment condition
and unobserved in the control condition. For simplicity, one continuous covariate X is used
in the simulation study, where Xi ~ N(0, 1). The true ratio of the treatment and control
groups is 50%:50%. The true ratio of compliers and never-takers is also 50%:50%. We also
explored situations with unequal ratios of treated:control and compliers:non-compliers. With
70% or 30% treatment group members (i.e., randomization probabilities of either 0.7 or 0.3),
the results are very similar to those presented here, but with slightly higher standard errors
and coverage rates. With 70% or 30% compliers, we also found results similar to those
presented here, but with slightly improved performance for the larger group and slightly
worse performance for the smaller group. For example, when there are 30% compliers the
CACE is estimated slightly worse while the NACE is estimated slightly better, but the
overall results are very consistent with those reported here.

In equation (1), the true γc (CACE) is 0.5 and the true γn (NACE) is 0.0, which means that
the exclusion restriction holds. Readers may notice that the estimated CACE and NACE in
Tables 2-4 always sum to approximately 0.5 for each simulation setting and method. For
example, in Table 2, when the outcome means are 0.5 SD's apart and effects are estimated
using matching, the CACE is 0.281 and the NACE is 0.224. This is not a coincidence. In
this setting, the true average effect across the population is 0.25 (half of the population are
compliers, with an effect of 0.5 and the other half are non-compliers, with an effect of 0).
Thus, when estimating the effects for compliers and non-compliers, the average will still be
0.25, just as it would be 0.25 if, for example we estimated the effects separately for males
and females and then averaged them. This point, and the intuition behind it, is discussed
further in Stuart et al. [35].

The true residual variance is 1.0 for both compliers and never-takers ( ). The true
value for both γn and γc is 0.0. The covariate effect is set at the same value so that the
difference between αc and αn is the only source of deviation from PI. The true αc is always
1.0, but the true αn takes values of 1.0, 1.5, 2.0, and 3.0, reflecting differences between αc
and αn of 0.0, 0.5, 1.0, and 2.0 SD's. In equation (2), the true association between C and X
varies from 0.1 to 0.5, expressed as an odds ratio.

Tables 2, 3, and 4 present simulation results using the two propensity score methods
described earlier. The principal scores are estimated using the compliance model described
in equation (2), without involving any outcome values. Once principal scores are estimated
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for everyone, the principal effects are estimated using weighting or matching. Restrictions
such as those imposed in the joint models described in equations (7) and (8) are not
necessary in this procedure. From the joint estimation approach's point of view, this is like
estimating compliance stratum membership assuming the outcome model described in
equation (7) and then estimating principal effects using the model described in equation (1).
In other words, we expect some bias in principal effect estimates using propensity score
methods due to the discrepancy between the two models (i.e., deviation from PI). Little is
known about how large the impact of the deviation from PI is and how the strength of
association between C and X affects the method's performance.

Table 2 shows the sensitivity of the CACE and NACE estimates to the violation of PI when
the odds ratio for the association between compliance and the covariate is 0.5. The results
are slightly better in terms of bias when weighting is used instead of matching. In both
methods, when PI holds, principal effect estimates show good coverage rates with small
MSE. If similar results were obtained from real data analyses under the PI condition, we are
likely to conclude that treatment assignment had a significant positive effect on compliers
and had no effect on never-takers, which is the correct conclusion. As the deviation from PI
increases, the quality of principal effect estimates rapidly deteriorates. With a moderate
deviation from PI (0.5 SD), the coverage rates of the principal effect estimates decrease
substantially, to between 50% and 60%. However, these results do not change our inference
regarding the CACE in the sense that we would still conclude that the treatment assignment
effects are positive and significant. When αn and αc are 1 SD apart, our inference regarding
the CACE and NACE can be incorrect in that we may conclude that treatment assignment
had no effect on compliers and had a significant positive effect on never-takers. When PI is
severely violated (2 SD), the results may lead to conclusions that fully contradict the truth:
that treatment assignment had a negative effect on compliers and a positive effect on never-
takers.

Table 3 shows the sensitivity of the CACE and NACE estimates to the violation of PI when
the odds ratio of the association between compliance and the covariate is 0.3. Again the
results are slightly better in terms of bias when weighting is used instead of matching.
Again, when PI holds, principal effect estimates show good coverage rates with small MSE.
However, as the deviation from PI increases, the quality of principal effect estimates rapidly
deteriorates, but at a slower rate than when the odds ratio is 0.5.

Table 4 shows the sensitivity of the CACE and NACE estimates to the violation of PI when
the association between compliance and the covariate is extremely strong (odds ratio = 0.1).
With both matching and weighting, the results show much improved quality of principal
effect estimates than when the odds ratio was 0.5 or 0.3. This occurs because X is a stronger
predictor of compliance status and thus the principal score better predicts which control
individuals are compliers and which are never-takers. The improved performance of
weighting as compared to matching is also somewhat larger than when the odds ratio is 0.5
or 0.3. Coverage rates still quickly deteriorate as the deviation from PI increases. However,
even with a substantial deviation from PI (1 SD), we are still likely to reach conclusions that
are consistent with the truth: that treatment assignment had a positive effect on compliers
and no effect on never-takers. With a severe deviation from PI (2 SD), both methods are
likely to fail to detect the positive effect of treatment assignment on compliers. However, we
are at least unlikely to reach the opposite conclusion, that treatment assignment had a
negative effect on compliers. The results reported in Tables 2, 3, and 4 imply that principal
effect estimates obtained using propensity score methods need to be interpreted with caution
unless the association between compliance and the covariate is very strong, or we have good
reasons to believe that a substantial deviation from PI is unlikely.
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6 APPLICATION TO JOBS II
As implied in the simulation study, propensity score methods may yield biased principal
effect estimates if PI does not hold, especially if the association between compliance and the
covariate is not very strong. In practice, however, it is hard to know whether PI is very likely
or very unlikely to hold, and it is also unrealistic to expect almost perfect predictors of
principal stratum membership. Given this situation, it is not straightforward to evaluate the
quality of principal effect estimates obtained using propensity score methods. In this section,
we present principal effect estimation results focusing on two outcomes (sense of mastery
and depression) from JOBS II. With both outcome measures, ER approximately holds
according to propensity score methods, which leads to an interesting situation where we can
examine the deviation from PI assuming that ER holds. We utilize the fact that, under the
ER condition, the principal effect for compliers (CACE) can be identified using the joint ER
model.

Tables 5 and 6 show the principal effect estimation results using propensity score methods
as well as the two joint estimation methods described earlier. For the propensity score
methods we used the MatchIt package [36] for the R statistical software package [37]. For
ML-EM estimation of principal effects using the JOBS II data, we used the Mplus program
version 5.1 [38]. The baseline covariates presented in Table 1 are used in estimating the
principal effects: depression, mastery, economic hardship (econ), age, motivation, grade,
and gender. All 7 covariates are used in propensity score methods to estimate the principal
scores and in estimating the outcome model. All 7 covariates are also used in modeling
compliance and the outcome in the joint estimation methods. However, in practice,
compliance and the outcome often have different predictors. The 2-stage methods and the
joint estimation methods both work well with different sets of covariate predictors for
compliance and the outcome. Note that having good predictive covariates of compliance is
more critical when modeling both compliance and the outcome than when modeling the
outcome only.

For the outcome model, we report only the covariates that are significant predictors of the
outcome according to any of the 4 analysis methods. Unlike in the Monte Carlo simulations
presented in the previous section, the effect of covariates may vary across principal strata in
real data analyses. As an approximate way of maintaining the interpretation of αc and αn as
outcome means instead of as intercepts, we centered covariates at their observed means.

Table 5 shows the estimated effects on sense of mastery six months after the intervention.
Sense of mastery was one of the outcomes hypothesized to be affected by the intervention,
and it may also be related to later outcomes such as reemployment [39]. Among the seven
covariates, baseline sense of mastery was a significant predictor of later sense of mastery in
all 4 methods. All 4 methods indicate a positive impact of treatment assignment for
compliers and little impact for never-takers on sense of mastery. The estimates of CACE and
NACE based on the joint PI method are very similar to those from the propensity score
methods, confirming that the joint PI method is comparable to propensity score methods
under the setting we consider in Equations (1) and (2). The differences between the two
approaches may increase as we deviate from this setting (e.g., deviation from normality,
nonlinear relationship between Y and X).

A particularly interesting feature is how the methods can be used to inform each other, and
in particular the validity of the underlying assumptions. The principal score approaches
assume PI and allow us to estimate the NACE, which informs how well the ER holds. The
joint estimation ER approach, on the other hand, assumes ER, and allows us to examine how
likely PI is to hold. According to the propensity score methods, ER approximately holds,
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with NACE estimates not statistically significant and close to zero. According to the joint
ER model, there is a minor deviation from PI. That is, αn (3.606) and αc (3.543) are about
0.13 SD apart (based on SD pooled across the treatment and control conditions). This likely
explains why similar principal effect estimates are obtained across methods assuming PI and
ER: both assumptions seem reasonable for this outcome.

Table 6 shows the principal effect estimation results when the level of depression six months
after the intervention is the outcome. Among the mental health problems associated with job
loss, depressive symptoms are the most commonly reported [40]. Among the 7 covariates,
baseline sense of mastery, economic hardship, and motivation were each significant
predictors of depression in at least one of the methods. In all 4 methods, the results indicate
a positive impact (i.e., lower depression rates) of treatment assignment for compliers and
little impact for never-takers on depression. However, the size of the CACE is somewhat
different depending on whether PI or ER is assumed. Again, according to propensity score
methods (which assumes PI), ER approximately holds when depression is the outcome. We
utilized this information in the joint ER model. However, unlike for sense of mastery, the
results for depression show a larger deviation from PI. According to the joint ER model,
there is a moderate deviation from PI. That is, αn (1.961) and αc (2.360) are about 0.55 SD
apart, which explains the noticeable, although not dramatic, differences in the principal
effect estimates across the methods assuming PI and ER. In JOBS II, depression was
measured with a subscale of 11 items based on the Hopkins Symptom Checklist [41] such as
crying easily and feeling no interest in things. The 11-item scale required respondents to
indicate on a five-point scale how much they experienced each item (1=not at all, 2=a little
bit, 3=moderately, 4=quite a bit, 5=extremely). The overall mean of the depression score at
the 6 month followup is 1.99 and SD is 0.73. Given this distribution, a 1 SD difference is
less than a one unit difference in the 5-point scale. In other words, a 0.5 SD to 1.0 SD
difference in the depression score across compliers and never-takers seems to be within the
practically possible range of deviation from PI.

The impact of violating PI we find here is consistent with the results we obtained in our
simulation study. In Table 6, the size of CACE when using the joint ER method (–0.485) is
about 1.5 times of the size of CACE when using the propensity weighting method (–0.331).
In Table 3 (which is comparable to JOBS II in terms of the association between C and X),
the true CACE (0.500) is about 1.6 times of the average size of CACE (0.322) when
estimated using the propensity weighting method with a moderate deviation from PI (0.5
SD).

7 CONCLUSIONS
The Monte Carlo simulations presented here showed that, when principal ignorability holds,
propensity score methods provide valid principal causal effect estimates regardless of the
level of association between principal stratum membership and covariates. However as the
deviation from principal ignorability increases, the quality of principal effect estimates
rapidly deteriorates. Depending on how principal ignorability is violated, principal effects
can not only be underestimated, but also can be overestimated. In general, principal effect
estimates are quite sensitive to deviation from principal ignorability. A stronger association
between principal stratum membership and covariates somewhat alleviates this sensitivity.
However, noticeable benefit does not show until association between principal stratum
membership and covariates is extremely strong. These results suggest that principal effect
estimates obtained using propensity score methods need to be interpreted with caution
unless the association between compliance and the covariate is very strong, or we have good
reasons to believe that a substantial deviation from principal ignorability is unlikely.

Jo and Stuart Page 13

Stat Med. Author manuscript; available in PMC 2010 October 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In analyzing the JOBS II data, we employed both propensity score methods and more
commonly used joint estimation methods. The two approaches are closely related, although
how they handle missing principal stratum information is different. One benefit of
considering both types of methods is that the two approaches can be used together to
improve sensitivity analysis strategies in the sense of testing each other's assumptions.
According to the combined information from propensity score methods and joint estimation
methods, principal ignorability approximately holds with the sense of mastery outcome, and
is moderately violated with the depression outcome. The ER appears to hold for both
outcomes. In this example, the association between principal stratum membership and
covariates is fairly strong. Under these conditions, applying propensity score methods seems
reasonable, although the results should be cautiously interpreted considering the possible
ranges of bias due to deviation from principal ignorability. However, JOBS II may not be a
typical example in terms of the degree of deviation from principal ignorability. In some real
data applications, principal ignorability may be more severely violated. We also utilized the
fact that the exclusion restriction approximately holds in JOBS II according to the
propensity score methods. This made it easy in our analyses to connect the propensity score
and joint estimation methods. In other real data applications, this may not be the case.
Further research is warranted to guide efficient methods of sensitivity analysis for
propensity score methods in the principal stratification context.

This work prompts discussion of areas for future work. One is the complication of missing
data. For simplicity we used simple case-wise deletion to illustrate these methods.
Unfortunately, incorporating missing data into propensity score methods is not
straightforward and is an area with relatively little work (the few papers in this area include
D'Agostino et al. [42] and Song et al. [43]). It is more straightforward to take missing data
into account in the joint estimation methods. Another important direction for future work is
investigation of other matching methods. A wide variety of matching methods exist [22],
and should be investigated to determine if some approaches may work better (or worse) in
particular settings. For example, 1:1 matching without replacement was not possible in the
JOBS II data because the number of control individuals was smaller than the number of
treatment group compliers (and thus one control match could not be found for each
treatment group complier). We used full matching as an alternative. Full matching has the
benefit that the full control group is used and no controls are discarded, but it is possible that
in other data analyses 1:1 matching may in fact be preferable. More work is needed to
identify when different matching approaches are most effective.

This work can also inform the design of future trials, in particular highlighting the need for
good predictors of compliance behavior when there is interest in estimating the CACE. This
may involve collecting data on variables not normally thought of in study design, such as the
motivation variable collected in JOBS II, or other variables that may capture how di cult it is
for individuals to participate in the treatment (such as whether they own a car, live on a bus
route, have child care, etc.). In the early stages of the study, researchers should consider the
types of effects that they are interested in estimating, and determine which variables may
help them predict the necessary behaviors, such as compliance. For example, the simulations
shown here show the importance of having strong predictors of compliance when estimating
the CACE.
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Table 1

JOBS II: Logistic Regression of Compliance on Baseline Covariates in the Treatment Condition (compliers
vs. never-takers)

Parameter Estimate SE

Intercept –1.756 1.846

Depression –0.384 0.455

Mastery –0.572 0.271

Economic hardship –0.315 0.163

Age 0.064 0.015

Motivation 1.330 0.314

Grade 0.278 0.070

Female –0.471 0.283
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