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Abstract
Bipolar disorder (BD) is a major medical and social burden, whose cause, pathophysiology and
treatment are not agreed on. It is characterized by recurrent periods of mania and depression (Bipolar
I) or of hypomania and depression (Bipolar II). Its inheritance is polygenic, with evidence of a
neurotransmission imbalance and disease progression. Patients often take multiple agents
concurrently, with incomplete therapeutic success, particularly with regard to depression. Suicide is
common. Of the hypotheses regarding the action of mood stabilizers in BD, the “arachidonic acid
(AA) cascade” hypothesis is presented in detail in this review. It is based on evidence that chronic
administration of lithium, carbamazepine, sodium valproate, or lamotrigine to rats downregulated
AA turnover in brain phospholipids, formation of prostaglandin E2, and/or expression of AA-cascade
enzymes, including cytosolic phospholipase A2, cyclooxygenase-2 and/or acyl-CoA synthetase. The
changes were selective for AA, since brain docosahexaenoic or palmitic acid metabolism, when
measured, was unaffected, and topiramate, ineffective in BD, did not modify the rat brain AA cascade.
Downregulation of the cascade by the mood stabilizers corresponded to inhibition of AA
neurotransmission via dopaminergic D2-like and glutamatergic NMDA receptors. Unlike the mood
stabilizers, antidepressants that increase switching of bipolar depression to mania upregulated the rat
brain AA cascade. These observations suggest that the brain AA cascade is a common target of mood
stabilizers, and that bipolar symptoms, particularly mania, are associated with an upregulated cascade
and excess AA signaling via D2-like and NMDA receptors. This review presents ways to test these
suggestions.

Keywords
bipolar disorder; brain; lithium; valproic; carbamazepine; lamotrigine; arachidonic acid;
phospholipase A2; mood stabilizer; antidepressant; antipsychotic; mania; depression; rat; kinetics

2. Introduction
2.1. General background

Bipolar disorder (BD) is a major medical, social and economic burden worldwide, and its
treatment represents a critical as yet unfulfilled challenge for psychiatry. The estimated lifetime
cost of BD in the United States ranges from $11,720 for patients with a single manic episode,
to $624,785 for patients with nonresponsive/chronic episodes (Begley et al., 2001). Symptoms

*Corresponding author: Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bldg.
9, Rm. 1S128; 9000 Rockville Pike, Bethesda, MD 20892. sir@helix.nih.gov, Tel: 301 496 1765; Fax: 301 402 0074.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Brain Res Rev. Author manuscript; available in PMC 2010 October 1.

Published in final edited form as:
Brain Res Rev. 2009 October ; 61(2): 185–209. doi:10.1016/j.brainresrev.2009.06.003.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



appear on average at 22 years of age (Goodwin and Jamison, 2007), but the disease often is
not diagnosed until 10 years later, with treatment delayed for an additional 10 years (Ghaemi,
2001). Even with intensive treatment in academic centers, BD therapy is inadequate and
patients remain symptomatic for half of the year on average (Post et al., 1996).

BD is characterized by recurrent changes in mood. Bipolar I consists of cycles of mania and
depression, Bipolar II of cycles of hypomania and depression. With rapid cycling (four or more
episodes of depression or mania/hypomania or mixed episodes within a year), the disease has
a poorer prognosis (Belmaker, 2004; DSM-IV, 1994). In Bipolar I, which afflicts 1.2 to 1.5%
of the adult US population (Narrow et al., 2002), depression is 3-times more common than
mania (Judd et al., 2002).

BD patients frequently have multiple medical illnesses in addition to their profound mood
disturbances (Evans et al., 2005). Smoking and substance abuse are common (Begley et al.,
2001). Obesity and diabetes often are caused by therapy. Sleep apnea and obsessive compulsive
disorder can confound the presentation. The suicide rate is 5-17 fold higher than in the general
population, attaining a lifetime risk of 10% to 20% (Bostwick and Pankratz, 2000).

There is no agreed upon neuropathology or pathophysiology of BD, and a generally accepted
behavioral animal model for the disease does not exist (Cryan and Slattery, 2007; Kato et al.,
2007). Some consider BD and unipolar major depressive disorder as part of an overlapping
spectrum (Judd and Akiskal, 2003). However, in this review they will be treated as separate
entities. BD and unipolar depression differ in their responsiveness to antidepressants (Ghaemi
et al., 2004; Sachs et al., 2000), their clinical history including the presence of manic or
hypomanic episodes in BD, clinical characteristics of depression (Benazzi, 2007), and family
history. BD has a heritability of 86-90%, while major depression has a heritability of 48-75%
(McGuffin et al., 2003). Over an 11-year follow-up period, however, 9% of unipolar depressed
patients were diagnosed later as Bipolar II and 4% as Bipolar 1 because of the later appearance
of hypomanic or manic episodes (Akiskal et al., 1995).

2.2. Heritability and genetics
More than two-thirds of BD probands have at least one close affected relative or a relative with
unipolar major depression. Concordance rates in monozygotic and dizygotic twins are 40%
and < 10%, respectively (Cardno et al., 1999; Kieseppa et al., 2004). Familial factors can
determine responsiveness to lithium, the drug of choice for the disease (Alda, 1999; Grof et
al., 2002).

A recent genome-wide association study with replication, involving 550,000 single nucleotide
polymorphisms, implicated 88 different risk alleles in BD (Baum et al., 2008) (Figure 1),
consistent with a polygenic threshold inheritance (Falconer, 1967). A combination of more
than 15 of any of these alleles significantly increased the risk for BD above the risk in the
general population, whereas a combination of any 19 increased the risk 3.8-fold. Multiple risk
alleles also were identified in other whole genome scans (Schumacher et al., 2005; Sklar et al.,
2008; Wellcome Trust, 2007; Wigg et al., 2008; Willour et al., 2003). Comparisons showed,
however, that the studies had poor replication of positive findings, typical of measurements
having multiple poor sensitivity items and suggesting additional artifacts (Crow, 2007; Sklar
et al., 2008). This limitation of this “bottom-up” approach makes it difficult to identify
dysfunctional brain metabolic cascades characteristic of BD.

Gene linkage and candidate gene association studies also have identified risk alleles for BD,
but such studies compared to whole genome scans are considered underpowered and capable
of revealing only part of the genetic disturbance (Baum et al., 2008). Many identified alleles
are related to neurotransmission (Kato, 2007). They include the serotonergic (5-
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hydroxytryptamine, 5-HT) 5-HT2A receptor (Bonnier et al., 2002), the serotonin reuptake
transporter (5-HTT) (Lasky-Su et al., 2005), the dopamine D2 receptor (Massat et al., 2002),
the dopamine reuptake transporter (DAT) (Greenwood et al., 2006; Horschitz et al., 2005), N-
methyl-D-aspartate (NMDA) receptor subunits (Martucci et al., 2006), G protein receptor
kinase-3 (GRK-3) (Barrett et al., 2003), the L-type voltage-dependent calcium channel alpha
1C subunit (CACNA1C) (Sklar et al., 2008), and the ©-aminobutyric acid receptor (Craddock
et al., 2008).

3. Proposed mechanisms of bipolar disorder
3.1. Neurotransmission imbalance

Clinical responses of BD patients to different centrally acting drugs have suggested that BD
symptoms arise from an imbalance of neurotransmission, consisting of excessive dopaminergic
and glutamatergic transmission and reduced cholinergic muscarinic transmission (Bunney and
Garland-Bunney, 1987; Bymaster and Felder, 2002; Janowsky and Overstreet, 1995; Post et
al., 1980). Thus, drugs that inhibit dopaminergic transmission, such as olanzapine and
haloperidol, have an antimanic action in the disease (Bhana and Perry, 2001; Bymaster and
Felder, 2002). In contrast, drugs that stimulate dopamine synthesis (levodopa), bind to
dopamine receptors (bromocriptine), or reduce dopamine reuptake (amphetamine), can
precipitate mania (Fisher et al., 1991; Peet and Peters, 1995; Sultzer and Cummings, 1989).
The cholinesterase inhibitor, physostigmine, and the cholinergic agonist, RS86, have mood-
depressing effects in bipolar mania, as well as in schizophrenic and healthy subjects (Berger
et al., 1989). Consistent with increased glutamate signaling in BD, memantine (1-amino-3,5-
dimethyl-adamantane), an NMDA receptor antagonist approved for treating moderate to severe
Alzheimer disease (FDA, 2009), was found beneficial in bipolar depression (Davis et al.,
1978; Janowsky and Overstreet, 1995; Teng and Demetrio, 2006), and Riluzole (2-amino-6-
trifluoromethoxybenzothiazole), an inhibitor of glutamate release, was reported effective in
combination with lithium in an open label trial in BD patients (Zarate et al., 2005).

3.2. Disease progression
Symptom worsening, cognitive decline and progressive brain atrophy have been reported in
BD patients, suggesting disease progression. Cycles of mania and depression are reported to
increase in frequency with disease duration, and to have shorter inter-episode intervals
(Goodwin and Jamison, 2007; Kessing, 1999; Post, 1990). One study found that cognitive
deficits were present regardless of mood state, with executive functioning, episodic memory,
and sustained concentration most consistently impaired (Osuji and Cullum, 2005). Structural
magnetic resonance (MR) imaging demonstrated significant thinning of the cortical mantle,
widening of cortical sulci and dilatation of the lateral cerebral ventricles in BD patients, with
evidence of atrophy progression depending on symptom recurrence (Coyle et al., 2006; Lyoo
et al., 2006; Strakowski et al., 2002). Whether atrophy is a trait marker is not certain, since BD
relatives, unlike relatives of schizophrenic patients, did not demonstrate brain atrophy in one
study (McDonald et al., 2006). Atrophy, cognitive decline and symptom worsening also have
been noted in schizophrenic patients (DeLisi, 2008; Nesvag et al., 2008).

3.2.1. Neuroinflammation and excitotoxicity—Neuroinflammation and excitotoxicity
may contribute to progressive atrophy and disease worsening in BD. High levels of C-reactive
protein and of pro-inflammatory cytokines have been identified in plasma from BD patients,
suggesting a generalized inflammatory process. Postmortem frontal cortex from BD patients
demonstrated elevated protein and mRNA levels of a number of inflammatory markers,
interleukin (IL)-1β, the IL-1 receptor, inducible nitric oxide synthase, glial fibrillary acidic
protein, and myeloid differentiation primary response gene 88 (Rao et al., In press), as well as
apoptotic markers (Kim et al., 2008). MR spectroscopy demonstrated an elevated brain
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glutamate/glutamine ratio in adults with BD (Michael et al., 2003). Fewer NMDA receptors
and reduced mRNA levels of NMDA receptor subunits NR1, NR2A and NR3A were reported
on postmortem (Kim et al., 2007b), and densities of NMDA receptor-associated post-synaptic
proteins, PSD-95 and SAP102, were reduced (Beneyto et al., 2007). These differences imply
excess NMDA receptor function associated with excitotoxicity (Gascon et al., 2005).

4. Treatment of bipolar disorder
There is a clear need for improved treatment of BD. Currently approved agents used as
monotherapy do not produce long-term responses in the majority of patients, and patient
compliance is difficult to achieve (Post et al., 1996). For example, in a collated analysis of
2300 patients with acute mania who were given a placebo or any of 8 recognized “effective”
agents as monotherapy, patients treated with only one agent experienced 45-60% positive
symptom responses, compared with a 30% positive response to placebo (Bowden et al.,
2005b). Without factoring in inadequate dosage and noncompliance in this study, only half of
the already low fraction of drug responders may have had a “veritable” drug response.

BD patients often are treated with more than one agent in various doses and for various times,
using combinations of mood stabilizers, antipsychotics, antidepressants and hypnotic
benzodiazepines (Bowden, 2003). This approach is called “rational polypharmacy” (Post et
al., 1996; Sachs, 1996), but often reduces to adding a drug for a specific symptom as it appears.

4.1. Mood stabilizers and atypical antipsychotics
FDA-approved agents (Figure 2) for treating Bipolar I include the “mood-stabilizers”1 lithium
(as carbonate or citrate salt, approved for mania and maintenance therapy), divalproex
(Depakote®, containing sodium valproate and valproic acid (2-propylpentanoic acid) in 1:1
molar ratio; approved for mania), carbamazepine (Tegretol®, 5-carbamoyl-5H-dibenz[b,f]
azepine, approved for mania), and lamotrigine (Lamictal®, 6-(2,3-dichlorophenyl)-1,2,4-
triazine-3,5-diamine, approved as prophylactic treatment of Bipolar I to delay time to
occurrence of the different mood episodes) (Bowden et al., 2005b;FDA, 2009;Fountoulakis et
al., 2008;Ketter et al., 2005). Topiramate (Topomax®, 2,3:4,5-Di-O-isopropylidene-β-D-
fructopyranose sulfamate), an anticonvulsant suggested from initial observations to be
effective in BD, was later found ineffective in four double blind trials (Kushner et al., 2006);
it is discussed below in comparative studies with approved mood stabilizers.

Outcome comparisons among FDA-approved mood stabilizers as monotherapy have been
reported (Bowden, 2003; Fountoulakis et al., 2008). For example, patients with mania
accompanied by two or more depressive symptoms had greater improvement with valproate
than with lithium, whereas patients with mania alone had equivalent responses of the order of
30-40% (Bowden, 1995; Swann et al., 1997). Valproate or lithium in acute mania and in
maintenance studies was more effective than carbamazepine, with which recurrence occurred
50% more often (Kleindienst and Greil, 2000; Lerer et al., 1987; Vasudev et al., 2000).

Atypical antipsychotic agents that are FDA-approved for acute mania in BD are olanzapine
(Zyprexia®), aripiprazole (Abilify®), chlorpromazine (Clozaril®), risperidone (Risperdal®),
quetiapine (Seroquel®), and ziprasidone (Geodon®) (Bowden et al., 2005b; FDA, 2009; Ketter

1This term was introduced into the psychiatric vocabulary some 20 years ago, based on observations that lithium offered antimanic as
well as antidepressant action. It was extended to the anticonvulsants, valproic acid, carbamazepine and lamotrigine, yet the first two have
little efficacy against depression and lamotrigine shows little efficacy against mania Sobo, S., 1999. Mood stabilizers and mood swings:
In search of a definition. Psychiatric times. 16.. The term “mood stabilizer” has since been modified to identify medication that decreases
vulnerability to subsequent episodes of mania or depression and does not exacerbate the current episode or maintenance phase of treatment.
Sachs, G.S., 1996. Bipolar mood disorder: practical strategies for acute and maintenance phase treatment. J Clin Psychopharmacol. 16,
32S-47S.
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et al., 2005). In addition, quetiapine is approved for bipolar depression and maintenance therapy
adjunctive to lithium or divalproex, and aripiprazole and olanzapine are approved for
maintenance monotherapy in Bipolar I.

The atypical antipsychotics have a high affinity as antagonists for dopamine D2 receptors, and
many also have high affinities as antagonists for serotonergic 5-HT2 receptors. Some also have
affinities for adrenergic, histamine H1 and muscarinic M1 receptors (Kapur and Remington,
2001). No one drug has a clear advantage over the others for treating mania, but as a group
they are less likely than conventional antipsychotics to cause troubling extrapyramidal
symptoms (Bowden et al., 2005b; Ketter et al., 2005; Simpson, 2005; Yatham, 2005). The
atypical antipsychotics are especially useful for rapidly dampening hyperactive motoric
symptoms in bipolar mania, before lithium's effects are expressed (Bhana and Perry, 2001;
Lieberman and Goodwin, 2004; Post and Calabrese, 2004).

4.2. Antidepressants and switching to mania
The treatment of bipolar mania with mood stabilizers has achieved some success, but treating
the three-times more common bipolar depression remains problematic (Fountoulakis et al.,
2005). Lamotrigine is of some help, as is fluoxetine (a selective serotonin reuptake inhibitor,
SSRI) with olanzapine added, and quetiapine recently was approved as monotherapy (Section
4.1). Paroxetine and bupropion were not found useful as adjunctive therapy with mood
stabilizers in bipolar depression (Bowden et al., 2005b; Sachs et al., 2007).

Some antidepressants increase the likelihood of “switching” to mania in depressed bipolar
patients, when used as monotherapy or with mood stabilizers (Calabrese et al., 1999a; Post et
al., 2006). Elevated switch rates are reported with broad spectrum tricyclic antidepressants that
inhibit reuptake of norepinephrine and serotonin (Kleindienst and Greil, 2000), SSRIs and
monoamine oxidase inhibitors, but not with bupropion, a norepinephrine and dopamine
reuptake inhibitor and nicotinic antagonist (Leverich et al., 2006; Post et al., 2006). Switch
rates are reduced if an antimanic mood stabilizer is given with the antidepressant (31.6% versus
84.2%) (Ghaemi et al., 2004).

4.3. Treatment side effects
4.3.1. Lithium in healthy volunteers—When administered to healthy volunteers, lithium
caused lethargy, dysphoria, a loss of interest in interacting with others, mental confusion (Judd
et al., 1977a), slowed performance on cognitive and motor tests (Judd et al., 1977b), and altered
circadian rhythm, the most common effect being a delay in the phase of measured rhythms
relative to an entraining light-dark cycle (Klemfuss, 1992). Lthium increased auditory and
visual evoked responses in healthy volunteers (Hegerl et al., 1990; Ulrich et al., 1990).

4.3.2. Boxed warnings—Lithium, divalproex and carbamazepine have boxed warnings
because of safety concerns. Lithium can be nephrotoxic and neurotoxic, whereas divalproex
can produce hepatic and teratogenic effects and contribute to pancreatitis. Carbamazepine may
produce adverse hematological effects. As a class, atypical antipsychotics have a boxed
warning for sudden death in elderly patients. They increase risk for hyperglycemia, diabetes,
and cardiovascular dysfunction, and often produce severe weight gain and sedation (Bowden
et al., 2005b; Ketter et al., 2005; Simpson, 2005).

4.3.3. Potential neurotoxicity—In animal and cell models, mood stabilizers and
antipsychotic agents used in BD were shown to be neuroprotective through a number of
processes, including the reduction of apoptosis and stimulation of brain neurotrophic and
growth factors (Section 8.) (Chang et al., 2009; Chen et al., 1999; Chuang, 2005; Gould et al.,
2004b; Lieberman et al., 2008; Lu et al., 2004). Thus, neuroprotection may underlie some of
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their action, especially in view of evidence for apoptosis, neuroinflammation and excitotoxicity
in the postmortem BD brain (Kim et al., 2008; Rao et al., In press).

On the other hand, as long-term therapy, mood stabilizers as well as antipsychotics may have
neurotoxic effects. For example, chronic lithium administration caused neuronal apoptosis in
rat brain (Gomez-Sintes and Lucas, 2008), and chronic exposure to atypical antipsychotics
produced oxidative brain damage (Martins et al., 2008; Terry et al., 2003). Twelve to 27 months
of exposure of macaque monkeys to haloperidol or olanzapine at therapeutically equivalent
plasma concentrations caused widespread brain shrinkage and reduced astrocyte numbers in
parietal gray matter (Dorph-Petersen et al., 2005; Konopaske et al., 2008).

5. The brain arachidonic acid cascade
“How can we argue that we are treating [...bipolar disorder...] at a fundamental,
etiological level of the illness when we don't know what the chemical problem is,
when our best guesses about how various mood stabilizers work are that they work
differently from each other, and when we don't know how these proposed mechanisms
might or might not be related?”

S. Sobo (Sobo, 1999)

We have yet to convert the disparate data about BD and the agents approved to treat it into a
coherent understanding of disease mechanisms and drug targets. The limited efficacy of each
of the approved mood stabilizers as monotherapy in bipolar mania (Bowden et al., 2005a;
Ketter et al., 2001), the limited treatment of bipolar depression (Sachs et al., 2007), the many
untoward side effects of approved agents, and the high morbidity, suicide rate and cost to
society of BD, render understanding the disease and designing more appropriate treatments for
it of the highest priority.

Many hypotheses have been proposed for the mechanisms of action of agents approved for
treating BD, particularly the mood stabilizers. One, the “arachidonic acid (AA, 20:4n-6)
cascade hypothesis,” asserts that these agents commonly alleviate BD symptoms, particularly
bipolar mania, by downregulating brain AA metabolism (Chang et al., 1996; Chang et al.,
1999; Rao et al., 2008; Rapoport and Bosetti, 2002). This hypothesis is elaborated in this
review. Other hypotheses are considered briefly in Section 12. below.

5.1. Roles of arachidonic acid in brain
AA is an n-6 (omega-6) polyunsaturated fatty acid (PUFA) that is esterified predominantly in
the stereospecifically numbered (sn)-2 position of brain membrane phospholipids, as is the n-3
PUFA, docosahexaenoic acid (DHA, 22:6n-3). Both PUFAs are derived from the diet, directly
or by hepatic elongation of their nutritionally essential precursors, linoleic acid (18:2n-6) or
α-linolenic acid (18:3n-3), respectively, since vertebrates cannot synthesize them or their
precursors de novo from 2-carbon fragments, and the brain's elongation capacity is
inconsequential (Demar et al., 2005; Holman, 1986; Igarashi et al., 2007).

When released by a phospholipase A2 (PLA2) from a phospholipid, AA and its eicosanoid
metabolites have multiple biological effects, many of which are modulated by released DHA
and its metabolites (Bazan, 2007; Contreras and Rapoport, 2002; Farooqui et al., 2007;
Fitzpatrick and Soberman, 2001; Serhan, 2006; Shimizu and Wolfe, 1990). AA and its
metabolites can influence multiple processes within brain (Piomelli, 1995), including
neurotransmission (Axelrod, 1990; DeGeorge et al., 1991; Rapoport, 2003), membrane
excitability (Xiao and Li, 1999), long term potentiation (McGahon et al., 1997), gene
transcription (Sellmayer et al., 1997), membrane fluidity (Bazan, 2005), neurite outgrowth
(Ikemoto et al., 1997), cerebral blood flow (Stefanovic et al., 2006), sleep, memory and
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behavior (Chen and Bazan, 2005; Fitzpatrick and Soberman, 2001; Huang et al., 2007). Many
AA metabolites are considered to be pro-inflammatory, whereas DHA and its metabolites are
considered anti-inflammatory (Bazan, 2007; Farooqui et al., 2007; Serhan, 2006). AA is
released from synaptic membrane phospholipids during normal neurotransmission (Jones et
al., 1996), whereas higher quantities are released, together with other fatty acids, during
pathological processes such as neuroinflammation, excitotoxicity, ischemia, and convulsions.
These high quantities of AA and of concurrently formed lyosphopholipids can cause neuronal
damage by multiple mechanisms (Bazan et al., 1981; Chang et al., 2009; Contreras and
Rapoport, 2002; Farooqui et al., 2007; Rabin et al., 1998; Rao et al., 2007c; Rao et al.,
2007d; Rosenberger et al., 2004).

5.2. Receptors coupled to phospholipase A2 enzymes
Three major PLA2 enzyme classes in the mammalian brain mediate receptor-initiated release
of AA or DHA as second messengers (Burke and Dennis, 2009): (1) AA-selective cytosolic
cPLA2 (85 kDa, Type IVA), which requires < 1 mM Ca2+ and phosphatidylinositol-4,5-
biphosphate for translocation to the membrane plus phosphorylation for its activation (Clark
et al., 1991); (2) secretory sPLA2 (14 kDa, Type IIA), which requires a much higher Ca2+

concentration (20 mM) for activation; and (3) DHA-selective “Ca2+-independent” iPLA2 (88
kDa, Type VIA), which is considered “Ca2+-independent” from in vitro studies (Strokin et al.,
2003), but can be activated by Ca2+ derived from intracellular stores such as the endoplasmic
reticulum (Nowatzke et al., 1998; Rosa and Rapoport, 2009). cPLA2, which co-localizes with
and is coupled to cyclooxygenase (COX)-2 at post-synaptic sites, co-evolved with COX-2.
iPLA2 also is found at post-synaptic sites, as well as in astrocytes (Kaufmann et al., 1996; Ong
et al., 1999; Ong et al., 2005; Sun et al., 2005; Tay et al., 1995). sPLA2 participates in
neurotransmitter release from axonal terminals (Matsuzawa et al., 1996).

Table 1 identifies receptors that are coupled to activation of cPLA2 and/or sPLA2, so as to
release AA from membrane phospholipids. Coupling occurs by complex mechanisms as yet
incompletely understood, and can involve a G-protein, entry of extracellular Ca2+ into the cell
(to activate cPLA2), or release of Ca2+ from intracellular stores (Balsinde et al., 1998;Clark et
al., 1991;Ertley et al., 2007;Nowatzke et al., 1998;Rosa and Rapoport, 2009;Takano et al.,
2000). Post-synaptic neuroreceptors mediate AA release during neurotransmission or, with
excess glutamate availability, during excitotoxicity, whereas astrocytic cytokine receptors
mediate AA release during neuroinflammation (Axelrod, 1990;Basselin et al.,
2006a;DeGeorge et al., 1991;Rao et al., 2007e;Rapoport, 2003;Rosenberger et al., 2004).

5.3. Quantifying brain fatty acid turnover
Figure 3 illustrates an outline of the brain AA cascade, when initiated by neuroreceptor-
mediated activation of PLA2 at the post-synaptic membrane (Fitzpatrick and Soberman,
2001;Jones et al., 1996;Rapoport, 2001;Robinson et al., 1992;Shimizu and Wolfe, 1990).
Comparable DHA and palmitic acid cascades have been described (Rapoport et al.,
2007;Robinson et al., 1992;Sun and MacQuarrie, 1989). In unanesthetized rats, it has been
shown that after AA is released from synaptic membrane phospholipid, a small fraction (about
4%) is rapidly metabolized to n-6 eicosanoids by COX, lipoxygenase (LOX) or cytochrome
P450 epoxygenase enzymes. The remainder is recycled into membrane phospholipid via the
brain arachidonoyl-CoA pool, with the help of acyl-CoA synthetase and acyltransferase
enzymes and the consumption of 2 ATPs, or is lost by β-oxidation and other pathways. Since
AA cannot be synthesized de novo in vertebrates, and its circulating precursor, linoleic acid,
is almost entirely oxidized after entering the brain, the AA lost by metabolism is replaced by
unesterified plasma AA, at a rate Jin (Eq. 2, Footnote 2) (DeMar et al., 2006a;Rapoport et al.,
2001).
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The kinetics of the brain AA, DHA and palmitic acid cascades have been quantified in
unanesthetized rodents by infusing the respective radiolabel intravenously for 5 min, so as to
rapidly produce a constant plasma specific activity. At 5 min, the brain is exposed to high
energy microwave radiation to stop enzyme activity, and then is subjected to chemical and
radiotracer analyses. The resultant data are used to calculate coefficients of incorporation k*,
rates of incorporation Jin, half-lives and turnover rates of the unlabeled fatty acid in whole
brain and in individual brain phospholipids, by operational equations obtained from a kinetic
model (Robinson et al., 1992).2 Regional values of k* and Jin also can be imaged by freezing
rather than microwaving the brain, sectioning it in a cryostat, and subjecting the sections to
quantitative autoradiography to determine regional radioactivity (Eqs. 1 and 2 in Footnote 2).

6. Mood stabilizers downregulate global brain arachidonic acid cascade
6.1. Global turnover rates

To compare central drug effects in rodents and humans, appropriate dose regiments should be
chosen so as to produce clinically relevant plasma concentrations, since peripheral
pharmacokinetics often differ between species. Table 2 summarizes reported clinical plasma
therapeutic concentrations of the four FDA-approved mood stabilizers, and experimental
plasma concentrations that have been used in rodent studies.

Turnover rates of AA, DHA and palmitic acid in brain phospholipids, as well as values of λ
(Footnote 2) were measured in unanesthetized rats that had been fed a lithium-free diet for 6
weeks, or a LiCl-containing diet that produced a therapeutically relevant plasma lithium
concentration (Table 2). As shown in Table 3, each of the three fatty acids had high turnover
rates in rats on the control diet, consistent with their participation in active signaling processes
that consume ATP (Purdon and Rapoport, 1998). Chronic lithium reduced AA turnover in
brain phospholipids by about 80%, without significantly affecting DHA or palmitate turnover
(Chang et al., 1996;Chang et al., 1999;Rapoport and Bosetti, 2002). In later studies, chronic
sodium valproate and carbamazepine also were shown to reduce AA turnover without altering
DHA turnover. In contrast, neither lamotrigine nor topiramate affected turnover of either fatty
acid (Table 4), although lamotrigine did reduce AA incorporation coefficients k* in rat brain
(Table 5 below) (Lee et al., 2008a).

2A fatty acid incorporation coefficient k* is calculated as radioactivity in brain phospholipid at time of death , divided by

integrated plasma radioactivity  to T, where t is time after beginning labeled fatty acid infusion,

(1)

The rate of incorporation of the unlabeled fatty acid from plasma into brain phospholipid equals,

(2)

and the turnover rate equals

(3)

where λis the steady-state ratio of brain fatty acid-CoA specific activity to plasma fatty acid specific activity. λrepresents the flux of the
fatty acid released from phospholipid into brain fatty acid-CoA, compared with the flux of plasma derived-AA (Figure 3).
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6.2. Effects on cascade enzymes
6.2.1. Phospholipases A2 and Acyl-CoA synthetase—Consistent with their reducing
AA but not DHA turnover in rat brain phospholipids, chronic lithium and carbamazepine
downregulated brain mRNA, protein and activity levels of AA-selective cPLA2, without
altering expression of sPLA2 or DHA-selective iPLA2 (Table 4). Reduced expression of
cPLA2 was associated with a reduced brain AA-CoA concentration, the sequential product of
AA hydrolysis from phospholipid by the enzyme (Figure 3). Lithium's downregulation of
cPLA2 was accompanied by reduced binding activity of subunits of a cPLA2 transcription
factor, activator protein (AP)-2, which was attributed to decreased brain protein kinase (PK)
Cα, PKCε and AA-dependent PKC activities (Rao et al., 2005). Chronic carbamazepine
decreased AP-2 DNA-binding and cAMP-dependent PKA activity, as well as AP-2
phosphorylation (Rao et al., 2007b). Chronic sodium valproate did not alter expression of any
of the three PLA2 enzymes or of AP-2 (Bosetti et al., 2003;Chang et al., 2001;Rao et al.,
2005), but non-competitively inhibited a microsomal acyl-CoA synthetase that is selective for
AA conversion to arachidonoyl-CoA (Figure 3) (Bazinet et al., 2006b). Chronic lamotrigine
and topiramate did not change brain expression of cPLA2, sPLA2 or iPLA2 (Ghelardoni et al.,
2005;Lee et al., 2008a).

6.2.2. Downstream oxidative enzymes—Once released from brain phospholipid,
unesterified AA can be oxidized to bioactive eicosanoids (Figure 3) (Fitzpatrick and Soberman,
2001). Prostaglandin (PG) G2 is formed in first step in this oxidation, and then is converted to
PGH2 by COX enzymes,. PGD2, PGE2, PGF2α and PGI2 may be produced from PGH2 via PG
synthases, thromboxanes (TX) (e.g. TXB2) via TX synthases. In normal brain, PGE2 is
produced preferentially via COX-2, TXB2 via COX-1 (Basselin et al., 2007c;Bosetti et al.,
2004). Epoxyeicosatrienoic acids and hydroxyeicosatetraenoic acids also are formed via
cytochrome P450 epoxygenase, whereas hydroxyperoxyeicosatetraenoic acids, leading to
leukotrienes, hydroxyeicosatetraenoic acids, lipoxins and hepoxilins are produced via
lipoxygenases (LOXs) and other enzymes (Bosetti, 2007).

The mood stabilizers approved for BD target many downstream AA metabolic processes. In
unanesthetized rats, chronic lithium significantly reduced brain protein and activity of COX-2,
as well as PGE2 concentration (Bosetti et al., 2002a), without changing expression of COX-1,
5-LOX, cytochrome P450 epoxygenase or microsomal PGE synthase-1 (mPGES-1)
(Weerasinghe et al., 2004) (Table 4). Chronic lithium also elevated brain 17-OH-DHA, a
precursor of anti-inflammatory resolvins and neuroprotectins derived from DHA via 12- and
15-LOX, in a rat model of neuroinflammation (Basselin et al., Unpublished observations;
Serhan, 2006). Chronic carbamazepine reduced COX activity without changing the COX-1 or
COX-2 protein level, and reduced brain concentrations of PGE2 and TXB2. Protein levels of
5-LOX and cytochrome P450 epoxygenase, and the concentration of the 5-LOX product,
leukotriene B4 (LTB4), also were unaltered (Basselin et al., 2007a; Ghelardoni et al., 2004).
Chronic sodium valproate reduced brain mRNA, protein and activity levels of both COX-1
and COX-2, and brain concentrations of TXB2 and PGE2, their respective preferred metabolites
(Basselin et al., 2008a; Bosetti et al., 2003). Protein levels of 5-LOX and of cytochrome P450
epoxygenase and the concentration of LTB4 were unchanged. DNA binding activity of nuclear
factor (NF)-κB, a COX-2 transcription factor, was decreased in relation to a decreased level
of its p50 subunit (Rao et al., 2007a). Chronic lamotrigine decreased COX-2 protein and mRNA
(Lee et al., 2008a), consistent with a reduction in k* for AA (Table 5 below) (Lee et al.,
2007a), whereas chronic topiramate did not significantly change any measured marker
(Ghelardoni et al., 2004; Ghelardoni et al., 2005).
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7. Mood stabilizers may correct neurotransmission imbalance involving
arachidonic acid
7.1. Neuroreceptor specificity

The fundamental assumption of neuropsychopharmacology is that cognition and behavior
depend on neurotransmission involving different neurotransmitters, neurotransmitter
transporters, neuroreceptors and second messengers (Cooper et al., 2003). Responses of BD
patients to drugs other than mood stabilizers that act at specific neuroreceptors have suggested
that bipolar symptoms arise from excessive dopaminergic and glutamatergic transmission,
reduced cholinergic transmission, and disturbed serotonergic transmission (Section 3.1.). If
this proposed neurotransmission imbalance involves AA, then mood stabilizers might be
effective in BD by correcting the imbalance. This possibility was tested by using quantitative
autoradiography to image regional brain AA signaling in unanesthetized rats that had been
treated chronically with a clinically relevant dose of mood stabilizer and then acutely
administered an agonist to relevant cPLA2-coupled neuroreceptors (Table 1), including
cholinergic muscarinic M1,3,5, serotonergic 5-HT2A/2C, dopaminergic D2-like (D2, D3, D4) and
glutamatergic NMDA receptors.

Results of one such study are illustrated in Figure 5, which presents color-coded
autoradiographs of coronal brain sections from rats that had been injected i.p. acutely with
NMDA (50 mg/kg) or vehicle, after being fed a LiCl-containing or control diet for 6 weeks
(Basselin et al., 2006a). NMDA widely increased AA incorporation coefficients k* (Footnote
2, Eq. 1) in rats fed the control diet, but not in rats pretreated with the NMDA receptor
antagonist, MK-801, or fed LiCl. MK-801 itself reduced k* for AA by 30% on average.

Results from such imaging studies, summarized in Table 5, indicate that chronic mood
stabilizers could correct the proposed neurotransmission imbalance of BD, if the imbalance
involved AA as a second messenger. Chronic lithium, carbamazepine and valproate each
blocked the k* increments caused by acute NMDA (Basselin et al., 2006a;Basselin et al.,
2007a;Basselin et al., 2008b), and chronic lithium and carbamazepine blocked k* increments
to the D2-like receptor agonist, quinpirole (Basselin et al., 2005a;Basselin et al., 2008b). These
actions on D2-like and NMDA receptor signaling may be related to colocalization of the
receptors in prefrontal cortex, striatum, and nucleus accumbens (Ikeda et al., 2003;Liu et al.,
2006;Tarazi and Baldessarini, 1999;Tseng and O'Donnell, 2004). In addition, chronic lithium
blocked responses to the 5-HT2A/2C receptor agonist (+/−)-1-(2,5-dimethoxy-4-iodophenyl)-2-
aminopropane hydrochloride (DOI) in auditory and visual rat brain regions (Basselin et al.,
2005b). Consistent with the imbalance hypothesis and with evidence that lithium reduces the
convulsive threshold to cholinomimetics (Ormandy et al., 1991), chronic lithium augmented
k* responses to the nonspecific muscarinic agonist, arecoline (Basselin et al., 2003). When
measured, the direction of the changes in brain PGE2 and/or TXB2 concentrations following
an agonist in rats treated with mood stabilizers corresponded to the direction of the changes in
k* for AA.

Neither chronic carbamazepine nor valproate produced consistent changes in baseline (resting)
k* for AA. On the other hand, chronic lithium increased baseline k* in rat auditory and visual
cortical cortices, inferior and superior colliculi, and geniculate bodies (Basselin et al., 2003;
Basselin et al., 2006b) (Table 5), as it did glucose metabolism in these areas (Basselin et al.,
2006c). These effects may be related to lithium's ability to potentiate auditory and visual evoked
responses in humans (Hegerl et al., 1990). Lithium's potentiation of M1,3,5 receptor signaling
and suppression of D2-like receptor signaling involving AA in rat brain (Table 5) may explain
the tremors and occasional extrapyramidal symptoms that it causes in patients (Ghadirian et
al., 1996).
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When measured by whole brain analysis rather than with quantitative autoradiography, chronic
lamotrigine significantly decreased k* for AA into brain phospholipids by about 15% (Lee et
al., 2007a) (Table 5).

7.1.1. Reconciling neurotransmitter-specific effects with global brain effects—
Downregulation of the global brain AA cascade by the mood stabilizers (Section 6.) may
largely represent downregulation of the cPLA2 activation and AA turnover associated with
glutamatergic (e.g. NMDA) receptor signaling, since most brain synapses are excitatory and
glutamatergic (Attwell and Laughlin, 2001; Raichle and Gusnard, 2002). Consistent with this
interpretation, the NMDA receptor antagonist MK-801 reduced global AA incorporation by
30% in unanesthetized rats (Figure 5), whereas acutely administered antagonists to M1,3,5
receptors (atropine), D2-like receptors (butaclamol, raclopride) or 5-HT2A/2C receptors
(mianserin) did not markedly decrease baseline AA incorporation into rat brain (Bhattacharjee
et al., 2008; DeGeorge et al., 1991; Hayakawa et al., 2001; Qu et al., 2003).

7.2. Targeting neuroreceptors and their coupling machinery
Suppression of the AA cascade by mood stabilizers may occur at multiple levels:
neuroreceptors, their coupling to cPLA2, AA cascade enzyme activities, or gene transcription
(Figure 4). Thus, in addition to reducing expression of cPLA2 and activity of COX-2, mood
stabilizers can directly modify NMDA receptor mechanisms. Lithium reduced NMDA
receptor-mediated Ca2+ influx into cells by inhibiting NR2 phosphorylation (Hashimoto et al.,
2003). Sodium valproate inhibited PKA and PKC, which phosphorylate the NMDA receptor
(Du et al., 2004). It also reduced rat brain expression of NMDA receptor-interacting proteins,
postsynaptic density protein PSD-95 and type II Ca2+/calmodulin-dependent protein kinase
beta subunit (Bosetti et al., 2005), and inhibited histone deacetylase, which can deacetylate
histones on the gene for the NMDA receptor transcription factor, specificity protein-1 (Sp1)
(Bai and Kusiak, 1995;Phiel et al., 2001). Sodium valproate blocked induction of Fos and
binding activity of AP-1 DNA, which modulates transcription of NMDA receptor subunit,
NR2B (Qiang and Ticku, 2005), and it altered NMDA receptor levels in hippocampal neurons
(Caldeira et al., 2007).

With regard to G-protein coupled receptors, chronic lithium reduced brain levels of the Gαi1
and Gαi2 subunits of the inhibitory Gα protein that couples D2-like receptors to cPLA2 (Sidhu
and Niznik, 2000), and guanosine-5'-triphosphate (GTP) binding to these subunits (Wang and
Friedman, 1999). Chronic carbamazepine reduced D2 receptor density, D2-like receptor
coupled Gαo/i, and D2-like receptor phosphorylation (Beutler et al., 2005; Montezinho et al.,
2006). Chronic lithium and carbamazepine but not valproate increased levels in rat brain of
GRK3, which is involved in homologous desensitization of agonist-activated G-protein
coupled receptors (Ertley et al., 2007). GRK3 but not GRK4 is reduced in the postmortem BD
brain (Rao et al., 2009).

8. Arachidonic acid cascade and neuroprotection
Mood stabilizers have been shown to be neuroprotective in animal and cellular models of
neurodegeneration, excitotoxicity, stroke-ischemia-hypoxia, stress-induced neuronal loss,
neuroinflammation, and immunological damage (Section 4.3.3.) (Chang et al., 2009; Chen et
al., 1999; Chuang, 2004; Lee et al., 2000). Part of this neuroprotection might be due to
suppression of an upregulated brain AA cascade, which can cause cell damage and behavioral
changes (Basselin et al., 2007a; Basselin et al., 2007b; Bazan et al., 1995; Bosetti, 2007), or
stimulation of formation of anti-inflammatory DHA metabolites (Basselin et al., Unpublished
observations) (Section 6.2.2.). Chronic lithium attenuated upregulated AA metabolism in a rat
model of neuroinflammation, as did chronic lithium, valproate and carbamazepine in a model
of acute NMDA-induced excitotoxicity (Table 5) (Basselin et al., 2006a; Basselin et al.,
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2007b). The ability of each of the four approved mood stabilizers to increase rat brain
expression of brain derived neurotrophic factor (BDNF) and of the anti-apoptotic factor, B-
cell lymphoma-2 (Bcl-2), which are reduced in the BD brain (Dean et al., 2006), also may
contribute to their neuroprotective action (Chang et al., 2009; Garrido et al., 2003; Rao et al.,
2007d). These effects may be mediated by AA (Chang et al., 2009; Rao et al., 2007d).

9. Antidepressants, switching and the arachidonic acid cascade
Certain antidepressants, when given to BD depressed patients, increase the tendency to
“switch” to mania (Section 4.1.). This limits therapy for bipolar depression, perhaps unduly
in view of the controversy concerning “switching.” Increased switch rates are reported for
imipramine and fluoxetine, but not for bupropion (Calabrese et al., 1999b; Leverich et al.,
2006; Post et al., 2006).

These differences in switch rates correlate with the antidepressant effects on the rat brain AA
cascade. Thus, chronic fluoxetine and imipramine, which increase switching, when given to
rats to produce a therapeutically relevant plasma concentration (Table 6), increased AA
turnover in brain phospholipids; brain cPLA2 expression (activity, protein, mRNA, and
phosphorylation), and expression of the cPLA2 transcription factor subunit, AP-2α (Lee et al.,
2007b;Lee et al., 2008;Rao et al., 2006). Chronic bupropion, which doesn't increase switching,
did not alter any of these markers (Table 7).

10. Animal models with an upregulated AA cascade
There is no generally accepted behavioral animal model for BD (Cryan and Slattery, 2007;
Kato et al., 2007). Nevertheless, as FDA-approved mood stabilizers have shown to
downregulate parameters of the brain AA cascade in normal rats, animal models having a
pathologically upregulated brain AA cascade may help in drug discovery and in considering
mechanisms relevant to BD. Table 8 characterizes five such models.

In one rat model, chronic administration of a subconvulsive dose (25 mg/kg i.p. daily for 21
days) of NMDA increased brain markers of excitotoxicity and neuroinflammation (Chang et
al., 2008; Rao et al., 2007e), selectively upregulated AA turnover in brain phospholipid, and
elevated expression of cPLA2 and AP-2. In a second rat model, 6 days of
intracerebroventricular infusion of low dose lipopolysaccharide (0.5-1.0 ng/h) (Basselin et al.,
2007b; Lee et al., 2004; Rosenberger et al., 2004) increased AA turnover and cPLA2 and
sPLA2 activities in brain, whereas behavior was disturbed when measured after 1 month of
infusion (Richardson et al., 2005). The brain AA cascade also was upregulated by feeding rats
an n-3 PUFA deficient diet for 15 weeks. This dietary regimen decreased brain DHA by 30%
and increased brain docosapentaenoic acid (DPA, 22:5n-6), an AA elongation product, by an
equivalent amount. AA turnover was unaffected, whereas DPA turnover was increased
(Contreras et al., 2001; Igarashi, 2009; Rao et al., 2007c). BDNF, cAMP response element
binding protein (CREB) transcription factor activity, phosphorylated CREB (important in
learning and memory) and p38 mitogen-activated protein kinase were reduced in brain (Rao
et al., 2007d), and the rats showed aggression, depression and increased locomotion on
behavioral tests (DeMar et al., 2006b).

Two genetic mouse models also show upregulated AA incorporation into brain phospholipid.
The COX-2 knockout mouse, which lacks the COX-2 gene from birth, also has increased
cPLA2, sPLA2, and COX-1 expression in brain. The 5-HTT knockout mouse demonstrates
BD-like behavioral disturbances (Murphy and Lesch, 2008) and increased brain cPLA2 activity
(Basselin et al., 2009). Regional AA incorporation into brain is elevated by 20-70% in both
heterozygous and homozygous knockouts (Figure 7), due to tonic activation of cPLA2-coupled
5-HT2A/2C receptors by elevated synaptic 5-HT concentrations. The 5-HTT+/− mouse is
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considered a model for humans having a short (S) compared with long (L) allele of the 5-
HTT promoter, who are at increased risk for BD and other psychiatric diseases (Murphy and
Lesch, 2008).

11. The arachidonic acid cascade in bipolar disorder patients
A small case-control trial reported increased serum PLA2 activity in BD patients (Noponen et
al., 1993). Genetic mapping identified involvement of the sPLA2 gene (Jacobsen et al.,
1999), but this was not replicated (Meira-Lima et al., 2003), cPLA2 was not implicated in other
analyses (Dikeos et al., 2006; Pae et al., 2004). One study reported decreased cytosolic PGES
in postmortem frontal and temporal cortices from BD patients, but not in patients medicated
prior to death (Maida et al., 2006).

The postmortem BD compared with control frontal cortex is reported to have increased mRNA
and protein levels of cPLA2, sPLA2 and COX-2 (but not of iPLA2), and increased AP-2 and
NF-κB levels (Rao et al., 2007b), changes opposite in direction to those produced by mood
stabilizers in the rat brain (Table 4). These changes are accompanied by elevated expression
of markers of apoptosis, neuroinflammation and excitotoxicity (Kim et al., 2007a; Kim et al.,
2008; Rao et al., In press), and may be caused by or related to these pathological processes
(Chang et al., 2008; Dinarello, 1988; Rao et al., 2007e; Rosenberger et al., 2004) (Section
3.2).

Dietary n-3 PUFA deprivation in rats can upregulate brain AA metabolic markers and disturb
AA - DHA interactions (Table 8) (Contreras and Rapoport, 2002;Igarashi, 2009;Rao et al.,
2007c). Thus, reports that subjects on a diet low in DHA-containing marine products had an
increased prevalence of BD (Noaghiul and Hibbeln, 2003), that dietary n-3 PUFA
supplementation ameliorated BD symptoms (Frangou et al., 2006;Ross et al., 2007;Stoll et al.,
1999), and that the DHA concentration in the postmortem BD brain was reduced by 30%
(McNamara et al., 2008;Schwarz et al., 2008), would be consistent with an association between
BD and an upregulated or otherwise dysfunctional brain AA cascade. However, other reports
have not confirmed a positive effect of dietary n-3 PUFA supplementation or a decreased brain
DHA in the postmortem brain from BD patients (Igarashi et al., Submitted; Keck et al.,
2006) or suicide victims (Lalovic et al., 2007). The issue is far from settled.

12. Other proposed mechanisms of action of mood stabilizers
Many brain targets other than the AA cascade have been proposed for mood stabilizers. These
include enzymes in which lithium competes for a magnesium binding site (e.g., inositol
monophosphatase, inositol polyphosphate 1-phosphatase, glycogen synthase kinase-3
(GSK-3), fructose 1,6-bisphosphatase, bisphosphate nucleotidase, phosphoglucomutase);
valproate-inhibitable enzymes (succinate semialdehyde dehydrogenase, succinate
semialdehyde reductase, histone deacetylase); specific targets of carbamazepine (sodium
channels, adenosine receptors, adenylate cyclase); signaling pathways involving PKC, cyclic
AMP, or myo-inositol; synaptic mechanisms involving glutamate, GABA, G-proteins and
GRKs (Du et al., 2007; Ertley et al., 2007; Li et al., 2002; Manji and Lenox, 2000); processes
modulating apoptosis and neuroprotection, including the expression of brain growth and
neurotrophic factors (Chen et al., 1999; Chuang, 2005; Gould et al., 2004b); and calcium
currents and voltage gated sodium channels (Farber et al., 2002; Stefani et al., 1996). When
given chronically to rodents, mood stabilizers altered brain mRNA levels of genes related to
ion channel formation and transport, G-protein signaling, lipid, glucose and amino acid
metabolism, transcription and translation, the phosphatidylinositide cycle, protein kinases,
phosphatases, and apoptosis (Bosetti et al., 2002b; Bosetti et al., 2005; Chetcuti et al., 2006;
McQuillin et al., 2007).
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Among hypotheses regarding the action of mood stabilizers, the “myo-inositol depletion
hypothesis” and the “GSK-3 inhibition hypothesis” continue to be explored experimentally
and tested in the clinic (Eden Evins et al., 2006; Rowe et al., 2007). Ultimately, of course,
which hypothesis if any is valid and could be used for drug discovery in BD will be determined
empirically. Compared to the “AA cascade hypothesis,” however, neither the myo-inositol nor
the GSK-3 inhibition hypothesis identifies one common action of each of the four FDA-
approved mood stabilizers.

The “myo-inositol depletion hypothesis” is that the phosphatidylinositide cycle, which
participates in neurotransmission and is initiated by the activation of phospholipase C, is the
target of lithium (Berridge et al., 1982; Berridge et al., 1989; Hokin and Dixon, 1993; Lenox
and Hahn, 2000). To maintain a normal cycle, the brain must resynthesize myo-inositol, which
does not readily cross the blood-brain barrier (Barchas et al., 1994). In the cycle, inositol-1,4,5-
trisphosphate is serially dephosphorylated to form myo-inositol, the last dephosphorylation
step being mediated by inositol monophosphatase. Lithium is postulated to reduce myo-inositol
formation within the cycle by inhibiting inositol monophosphatase, thereby interfering with
phospholipase C-mediated neurotransmission events (Berridge et al., 1982; Berridge et al.,
1989; Hokin and Dixon, 1993; Lenox and Hahn, 2000). Limitations to the “myoinositol
depletion hypothesis” have been thoroughly summarized (Atack, 1996). The hypothesis does
not appear to apply to carbamazepine or valproate. While lithium inhibited partially purified
inositol monophosphatase activity in the low millimolar range, carbamazepine stimulated the
enzyme starting in the low micromolar range, and valproate neither stimulated nor inhibited
the enzyme over a wide concentration range (Vadnal and Parthasarathy, 1995) (see Table 2).

GSK-3 also is considered a target of mood stabilizers (Gould and Manji, 2005; Schloesser et
al., 2008). GSK-3 modulates the Wnt and insulin signaling pathways, as well as neurotrophic
signaling involving phosphoinositide-3 kinase, generally through downregulation (Jope,
2003). While data indicate a lithium action on GSK-3 at a therapeutically relevant
concentration, this is not the case for valproate or carbamazepine. Thus, in primary neocortical
neurons, GSK-3 was inhibited by 1 mM lithium but not by valproate up to a concentration >
100 mM, or by carbamazepine even at 0.5 mM (Di Daniel et al., 2006; Ryves et al., 2005),
much higher concentrations than their respective therapeutic concentrations (Table 2).
Nevertheless, chronic sodium valproate and lithium, but not carbamazepine, increased rat
frontal cortex β-catenin, indirectly suggesting GSK-3 pathway modulating activity (Gould et
al., 2004a).

13. Discussion
Following the discovery in 1949 of lithium's efficacy in BD (Cade, 1949), divalproex and
carbamazepine were approved by the FDA for bipolar mania, and lamotrigine was approved
for delaying the appearance of the different mood states. Lithium and divalproex also are
recommended for maintenance therapy. Atypical antipsychotics are especially useful for acute
mania. One, quetiapine, is approved for bipolar depression and maintenance therapy adjunctive
to lithium or divalproex, and aripiprazole and olanzapine are approved for maintenance
monotherapy in Bipolar I. Depression is 3 times more common than mania in BD, but
depression is generally inadequately treated. Some antidepressants if administered as
monotherapy or with mood stabilizers increase “switching” to mania.

Multiple risk alleles, each with a small individual contribution, are consistent with a polygenic
threshold inheritance of BD. To date, however, genetic findings have shown poor replication
and have not consistently identified defective brain cascades as likely therapeutic targets. In
contrast, a “top down” approach based on identifying a common mechanism of action of agents
that have been shown in controlled clinical trials to work or not to work in BD has been more
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informative, and is the focus of this review. Two hypotheses that have been generated by this
approach are the “myo-inositol depletion” and “GSK-3 targeting” hypotheses. While each
might explain lithium's mechanism of action, neither convincingly accounts for the actions of
the other mood stabilizers or, moreover, why some antidepressants enhance switching from
bipolar depression to mania.

The “AA cascade hypothesis,” which is closely considered in this review, identifies a common
target of the four approved mood stabilizers as the brain AA cascade, and tentatively explains
why some antidepressants increase switching of bipolar depression to mania. This hypothesis
was derived largely from studies in unanesthetized rats chronically administered FDA-
approved mood stabilizers, as well as the clinically-proven ineffective topiramate for
comparison. Lithium, carbamazepine and sodium valproate were shown to downregulate AA
turnover in brain phospholipids, without changing DHA or palmitic acid turnover. Lamotrigine
reduced AA incorporation coefficients k* in brain phospholipids. The effect on AA turnover
of lithium and carbamazepine was ascribed to reduced expression of AA-selective cPLA2 and
of its AP-2 transcription factor, whereas valproate's effect was ascribed to its inhibition of an
AA-selective microsomal acyl-CoA synthetase. Each of the four agents depressed rat brain
COX-2 expression and, when measured, the concentration of the COX-2 - derived AA
metabolite, PGE2. Topiramate, which had been proposed as a mood stabilizer based on initial
trials, but later failed Phase III trials, did not alter any brain AA cascade marker. Thus, the AA
cascade hypothesis corresponds to proven clinical efficacy of the tested drugs.

The AA cascade hypothesis is consistent with evidence that BD symptoms arise from excessive
dopaminergic and glutamatergic but reduced cholinergic signaling, provided that the signaling
uses AA as a second messenger. Thus, imaging in unanesthetized rats showed that lithium
upregulated muscarinic cholinergic M1,3,5 receptor signaling involving AA; lithium and
carbamazepine blocked D2-like receptor-initiated AA signaling; and lithium, valproate and
carbamazepine each blocked NMDA receptor-initiated AA signaling (Table 5). The NMDA
effects may explain much of the global effects of the mood stabilizers on the AA cascade, since
most brain synapses are excitatory and glutamatergic (Attwell and Laughlin, 2001;Raichle and
Gusnard, 2002).

More research is needed to examine disease progression and deterioration in BD, which only
recently is being addressed. Progression may be a trait feature, but it also may be determined
by factors such as diet, substance abuse, obesity, and bipolar disorder drugs. Postmortem
studies indicate the presence of neuroinflammation, excitotoxicity and apoptosis in the BD
brain, processes that can underlie progression (Kim et al., 2007a; Kim et al., 2008; Rao et al.,
In press). Chronic administration of atypical antipsychotics has been shown to cause atrophy
and astrocyte loss in monkey brain, and chronic lithium produced neuronal death in rat brain
(Section 4.3.). On the other hand, mood stabilizers and antipsychotics have been reported to
be neuroprotective in animal models of neuroinflammation and excitotoxicity, in some cases
by downregulating the brain AA cascade.

Observations that mood stabilizers selectivity downregulate the rat brain AA cascade at
therapeutically relevant plasma concentrations, and that antidepressants that increase switching
of bipolar depression to mania upregulate the cascade, suggest that an upregulated brain AA
cascade contributes to BD symptoms, particularly bipolar mania. Cascade-suppressing drugs,
as well as dietary n-3 PUFA supplementation (Section 11.) might be used to test the relation
between disturbed behavior and disturbed AA metabolism in animal models with disturbances
of both behavior and AA metabolism (Table 8). Additionally, cascade parameters can be
measured in such pathological models, as well as in the normal rat, to screen for new and
potentially clinically relevant therapeutic agents for BD. Based on this review and prior
suggestions (Chang et al., 1996;Chang et al., 1999;Rapoport and Bosetti, 2002), one would
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predict efficacy in BD from NMDA transmission modifiers, inhibitors of cPLA2 or of COX-2
synthetase, such as non-steroidal anti-inflammatory agents including COX inhibitors and
aspirin (which can acetylate COX-2 to form specific anti-inflammatory derivatives of AA and
DHA) (Breitner, 2003;Farooqui et al., 2006;Ketterer et al., 1996;Rapoport and Bosetti,
2002;Serhan, 2006; Stolk et al., Submitted for publication), other promoters of brain DHA
conversion to resolvins and neuroprotectins (Basselin et al., Unpublished observations;Serhan,
2006) including dietary n-3 PUFA supplementation, and inhibitors of AA-selective acyl-CoA
synthetase, including valproate-like compounds (Bazinet et al., 2006b;Bialer and Yagen,
2007). These predictions could be tested by direct clinical trials or by analyzing relevant
databases (Stolk et al., Submitted for publication).

In addition, the presence of an upregulated brain AA cascade in BD patients could be tested
for directly by imaging regional brain AA incorporation parameters (k* and Jin) during manic,
euthymic and depressive phases of the disease, with the help of positron emission tomography.
Increased AA incorporation associated with neuroinflammation has been measured in this way
in patients with Alzheimer disease (Esposito et al., 2007; Esposito et al., 2008; Giovacchini et
al., 2004).
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1.1. Abbreviations
AA, arachidonic acid
AMPA, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
AP, activator protein
BD, bipolar disorder
BDNF, brain derived neurotrophic factor
Bcl-2, B-cell lymphoma-2
COX, cyclooxygenase
CREB, cAMP response element binding protein
DAT, dopamine reuptake transporter
DHA, docosahexaenoic acid
DOI, (+/−)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride
FABP, fatty acid binding protein
GRE, glucocorticoid response element
GRK, G-protein receptor kinase
GSK, glycogen synthase kinase
5-HT, 5-hydroxytryptamine (serotonin)
5-HTT, serotonin reuptake transporter
IL, interleukin
5-LOX, 5-lipoxygenase
LTB4, leukotriene B4
MR, magnetic resonance
NMDA, N-methyl-D-aspartic acid
NF-κB, nuclear factor kappa B
NR, NMDA receptor
PEA, polyoma enhancer activator
PGE2, prostaglandin E2
PK, protein kinase
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mPGES, microsomal prostaglandin E synthase
PLA2, phospholipase A2
cPLA2, cytosolic PLA2
iPLA2, calcium-independent PLA2
sPLA2, secretory PLA2
PUFA, polyunsaturated fatty acid
sn, stereospecifically numbered
SSRI, selective serotonin reuptake inhibitor
TX, thromboxane
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Figure 1. Prevalence ratio of bipolar disorder increases with risk allele burden
A combination of more than any 15 of risk alleles significantly increases the risk for BD above
the risk (1.0) in the general population, whereas a combination of any 19 increases the risk 3.8
fold. From (Baum et al., 2008).
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Figure 2.
Chemical structures of FDA-approved mood stabilizers
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Figure 3. Model of brain arachidonic acid cascade initiated at synapse
AA is liberated from the stereospecifically numbered (sn)-2 position of a phospholipid by
activation (star) of phospholipase A2 (PLA2). A fraction is converted to bioactive eicosanoid,
while the remainder diffuses to the endoplasmic reticulum bound to a fatty acid binding protein
(FABP). There, it is converted to arachidonoyl-CoA by acyl-CoA synthetase with the
consumption of 2 ATPs, then re-esterified into an available lysophospholipid by
acyltransferase, or β-oxidized in mitochondria. AA in the endoplasmic reticulum exchanges
freely with unesterified unbound AA in plasma, into which labeled AA (AA*) has been infused.
Other metabolic pathways are not shown. Jin, the rate of incorporation of unesterified unlabeled
AA into brain, equals the net rate of loss by metabolism, since AA cannot be synthesized de
novo in brain. Adapted from (Rapoport and Bosetti, 2002).
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Figure 4. Mood stabilizers downregulate the rat brain arachidonic acid cascade during
neurotransmission at different levels
The first level is at the neuroreceptor itself, the second its coupling mechanism with cPLA2.
cPLA2 also can be transcriptionally downregulated by drug action on its transcription factor,
AP-2 (lithium and carbamazepine), whereas reincorporation of AA can be slowed by drug
inhibition of an AA-selective acyl-CoA synthetase (valproate). These effects are correlated
with reduced turnover of AA in membrane phospholipids. Drugs also can inhibit formation of
PGE2 and/or TXB2 by downregulating activity and/or transcription of COX-2 (and expression
of NF-κB) and COX-1 respectively. See Text and Table 4 for detailed effects. Adapted from
(Rao et al., 2008).
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Figure 5. MK-801 and chronic lithium block NMDA stimulation of arachidonic acid signal in rat
brain
AA incorporation coefficients k* in autoradiographs of coronal brain sections. Two left
columns: rats on a control diet, that had been injected i.p. with saline or 50 mg/kg NMDA.
Two central columns: rats on a control diet injected with MK-801 or NMDA following
MK-801; Two right columns: rats on a LiCl diet injected with saline or NMDA. NMDA
increased k* in rats on the control diet, but not in rats pretreated with MK-801 or in rats fed
the LiCl diet. Fr 8 and 10, frontal cortex 8 and 10; Mot, Som, motor and somatosensory cortex;
Acg, anterior cingulate cortex; CPu, caudate putamen; Hipp, hippocampus. From (Basselin et
al., 2006a).
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Figure 6. Coronal autoradiographs of brain showing effects of 5-HTT genotype on regional
arachidonic acid incorporation coefficients k* in mice
Acg, anterior cingulate cortex; Aud, auditory cortex; CPu, caudate-putamen; Hipp,
hippocampus; IPC, interpeduncular nucleus; Mot, motor cortex; SN, substantia nigra; Thal,
thalamus; Vis, visual cortex. Adapted from (Basselin et al., 2009).
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Table 1
Receptors coupled to PLA2 activation and arachidonic acid signaling

Neuroreceptors Subtype1

–Coupled via G-proteins

Cholinergic muscarinic M1,3,5(Bayon et al., 1997; DeGeorge et al., 1991)

Dopaminergic D2-like(Bhattacharjee et al., 2005; Vial and Piomelli, 1995)

Serotonergic 5-HT2A/2C(Felder et al., 1990; Qu et al., 2003)

Adrenergic β2(Pavoine et al., 1999)

Bradykinin β2(Prado et al., 2002)

Metabotropic glutamatergic mGlur1α(Nitsch et al., 1997)

–Ionotropic, coupled via Ca2+

NMDA(Basselin et al., 2006a; Weichel et al., 1999)

AMPA(Gaudreault et al., 2004)

Astrocytic Receptors Subtype2

TNFα(Luschen et al., 2000)

IL-1β(Dinarello, 1988)

Purigenic 2Y2(Sun et al., 2005)

1
References mainly for cPLA2

2
Activation of both cPLA2 and sPLA2

Brain Res Rev. Author manuscript; available in PMC 2010 October 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Rapoport et al. Page 40

Table 2
Therapeutic concentration ranges of FDA-approved mood stabilizers and topiramate, and concentrations used in
experimental rat studies

Drug Therapeutic plasma concentrations in patients Plasma concentrations achieved in rat infusion studies

mM

Lithium 0.6-1.2(Camus et al., 2003; Eilers, 1995) 0.73(Bosetti et al., 2002b; Chang et al., 1996)

Carbamazepine 0.017 - 0.051(Bialer et al., 1998; Eilers, 1995) 0.053(Ghelardoni et al., 2005)

Valproate 0.20 - 1.5(Bowden et al., 1994; Eilers, 1995; Jacobsen, 1993) 0.21(Chang et al., 2001)

Lamotrigine 0.02 - 0.03(Doose et al., 2003) 0.04(Hassel et al., 2001; Lee et al., 2007a)

Topiramate1 0.010 to 0.050(Doose and Streeter, 2002) 0.018(Ghelardoni et al., 2005)

1
Failed phase III trials(Kushner et al., 2006)
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Table 3
Chronic lithium administration selectively reduces arachidonic acid turnover in rat brain phospholipids

Fatty Acid λ Turnover Rate (% per hour)

PtdIns PtdCho PtdEtn

Arachidonic Acid (20:4n-6)

    Control 0.04±0.00 15.3±0.4 18.3±0.6 1.1±0.1

    Lithium 0.18±0.02#,** 2.6±0.1** 5.0±0.3** 0.2±0.0**

Docosahexaenoic Acid (22:6n-3)

    Control 0.03±0.00 17.7±1.7 3.1±0.4 1.2±0.1

    Lithium 0.03±0.00 31.0±9.0 4.5±1.2 1.6±0.4

Palmitic Acid (16:0)

    Control 0.02±00 29.1±2.6 7.0±0.4 4.1±0.4

    Lithium 0.02±00 26.0±1.2 5.1±0.3* 3.5±0.1

1After (Chang et al., 1996; Chang et al., 1999; Rapoport and Bosetti, 2002)

Differs from control mean ± SEM (n = 5-6)

LiCl or control diet was fed for 6 weeks, giving brain lithium concentration of 0.73 ± 0.03 mM.

See Footnote 2 for definitions of λ and turnover rate.

PtdIns, phosphatidylinositol; PtdCho, cholineglycerophospholipid; PtdEtn, ethanolamineglycerophospholipid;

*
p < 0.05

**
p ± 0.01

#
An elevation in λ (Footnote 2) indicates that less AA is being provided by release from phospholipid than entry from plasma.
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Table 4
Baseline changes in whole brain arachidonic acid cascade markers after chronic administration of each of four mood
stabilizers to rats

Target Lithium Carbamazepine Sodium valproate Lamotrigine

Fatty acid kinetics

AA turnover in phospholipids ↓(Chang et al., 1996;
Rapoport and Bosetti, 2002)

↓(Bazinet et al., 2006a) ↓(Chang et al., 2001) Nc(Lee et al.,
2007a)

AA-CoA concentration ↓(Chang et al., 1999) ↓(Bazinet et al., 2006a) Nc(Chang et al., 2001) Nc(Lee et al.,
2007a)

AA incorporation coefficient k* Nc(Basselin et al., 2005b) Nc(Bazinet et al., 2006a) ↑(Chang et al., 2001) ↓(Lee et al., 2007a)

DHA turnover in phospholipids Nc(Chang et al., 1999) Nc(Bazinet et al., 2006a) Nc(Bazinet et al., 2005) ?

17-OH-DHA concentration ↑(Basselin et al.,
Unpublished observations)

? ? ?

Palmitate turnover in phospholipids Nc(Chang et al., 1999) ? ? ?

Enzymes

cPLA2 IVA ↓(Rintala et al., 1999;
Weerasinghe et al., 2004)

↓(Ghelardoni et al., 2004) Nc(Bosetti et al., 2003; Chang et
al., 2001)

Nc(Lee et al.,
2008a)

SPLA2 IIA Nc(Weerasinghe et al., 2004) Nc(Ghelardoni et al., 2004) Nc(Bosetti et al., 2003) Nc(Lee et al.,
2008a)

iPLA2 VIA Nc(Bosetti et al., 2002a;
Rintala et al., 1999)

Nc(Ghelardoni et al., 2004) Nc(Bosetti et al., 2003) Nc(Lee et al.,
2008a)

Acyl-CoA synthetase ? ? ↓(Bazinet et al., 2006b) ?

COX-1 Nc(Bosetti et al., 2002a) Nc(Ghelardoni et al., 2004) ↓(Bosetti et al., 2003) Nc(Lee et al.,
2008a)

COX-2
↓(Bosetti et al., 2002a)

↓(Ghelardoni et al., 2004) ↓(Bosetti et al., 2003; Rao et al.,
2007a)

↓(Lee et al., 2008a)

5-LOX Nc(Weerasinghe et al., 2004) Nc(Ghelardoni et al., 2004) Nc(Bosetti et al., 2003) ?

Cytochrome P450 epoxygenase Nc(Weerasinghe et al., 2004) Nc(Ghelardoni et al., 2004) Nc(Bosetti et al., 2003) ?

mPGES-1 Nc(Weerasinghe et al., 2004) ? ? ?

Eicosanoids

PGE2 ↓(Basselin et al., 2007b;
Bosetti et al., 2002a)

↓(Basselin et al., 2007a;
Ghelardoni et al., 2004)

↓(Basselin et al., 2008a; Bosetti et
al., 2003)

?

TXB2 (Basselin et al., 2007b) Nc or ↓(Basselin et al., 2007a;
Ghelardoni et al., 2004)

Nc(Bosetti et al., 2003) ?

Leukotriene B4 ? Nc(Ghelardoni et al., 2004) Nc(Bosetti et al., 2003) ?

Transcription Factors

AP-2 ↓(Rao et al., 2005) ↓(Rao et al., 2007b) Nc(Rao et al., 2007a) ?

AP-1 ↑(Ozaki and Chuang, 1997;
Rao et al., 2005)

Nc(Rao et al., 2007b) ↑(Chen et al., 1997; Rao et al.,
2007a)

?

GRE Nc(Rao et al., 2005) Nc(Rao et al., 2007b) Nc(Rao et al., 2007a) ?

PEA3 Nc(Rao et al., 2005) Nc(Rao et al., 2007b) Nc(Rao et al., 2007a) ?

NF-κB Nc(Rao et al., 2005) Nc(Rao et al., 2007b) ↓(Rao et al., 2007a) ?
Abbreviations: AP, activator protein; GRE, glucocorticoid response element; Nc, no significant change; NF-κB, nuclear factor-kappa B; PEA, polyoma

enhancer activator; cPLA2, cytosolic phospholipase A2; sPLA2, secretory PLA2; iPLA2, Ca2+-independent PLA2; COX, cyclooxygenase; LOX,
lipoxygenase; mPGES, microsomal prostaglandin E synthase
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Table 6
Therapeutic plasma concentrations of antidepressants, and concentrations used in experimental rat studies

Antidepressant Clinical plasma concentrations Plasma concentrations in rat infusion studies

mg/L

Fluoxetine1 150-500(Wille et al., 2008) 314(Durand et al., 1999; Lee et al., 2007b)

Imipramine2 45-150(Wille et al., 2008) 100 - 600(Daniel et al., 1981; Lee et al., 2007b)

Bupropion3 25-100(Wille et al., 2008) 289 (max)(Lee et al., 2008 ; Suckow et al., 1986)

1
N-Methyl-g-[4-(trifluoromethyl)phenoxy]benzenepropanamine.

2
(5-[3-(dimethylamino) propyl] -10,11-dihydro-5H-dibenz [b,f]-azepine monohydrochloride).

3
(±)-2-(tertbutylamino)-1-(3-chlorophenyl)propan-1-one
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Table 7
Brain arachidonic acid cascade markers following chronic administration of each of three antidepressants to rats

Target Fluoxetine Imipramine Bupropion

Fatty acid kinetics

Arachidonic acid turnover in brain
phospholipid

↑(Lee et al., 2007b) ↑(Lee et al., 2008 ) Nc(Lee et al., 2008 )

Enzymes

CPLA2 IVA ↑(Lee et al., 2007b; Rao et al., 2006) ↑(Lee et al., 2008 ) Nc(Lee et al., 2008 )

SPLA2 IIA Nc(Lee et al., 2007b; Rao et al., 2006) Nc(Lee et al., 2008 ) Nc(Lee et al., 2008 )

iPLA2 VIA Nc(Lee et al., 2007b; Rao et al., 2006) Nc(Lee et al., 2008 ) Nc(Lee et al., 2008 )

COX-1 Nc(Lee et al., 2007b) Nc(Lee et al., 2008 ) Nc(Lee et al., 2008 )

COX-2 Nc(Lee et al., 2007b) Nc(Lee et al., 2008 ) Nc(Lee et al., 2008 )

Eicosanoids

PGE2 Nc(Lee et al., 2007b) Nc(Lee et al., 2008 ) Nc(Lee et al., 2008 )

Transcription Factors

AP-2 Nc(Rao et al., 2006) ↑ (AP-2α but not AP-2β)(Lee et al., 2008 )
↓(Damberg et al., 2000)

Nc(Lee et al., 2008 )

AP-1 Nc(Rao et al., 2006) Nc(Tamura et al., 2002) ?

GRE Nc(Rao et al., 2006) ? ?

PEA3 Nc(Frechilla et al., 1998; Rao et al., 2006) ? ?

NF-κB Nc(Rao et al., 2006) Nc(Lee et al., 2008 ) Nc(Rao et al., 2007a)

RNA stabilizing protein ↑(Rao et al., 2006) ? ?
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