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Abstract
The tumor microenvironment provides multiple cues that may be exploited to improve the efficacy
of established chemotherapeutics; furthermore, polypeptides are uniquely situated to capitalize on
these signals. Peptides provide: 1) a rich repertoire of biologically specific interactions to draw upon;
2) environmentally-responsive phase behaviors, which may be tuned to respond to signatures of
disease; 3) opportunities to direct self-assembly; 4) control over routes of biodegradation; 5) the
option to seamlessly combine functionalities into a single polymer via a one-step biosynthesis. As
development of cancer-targeted nanocarriers expands, peptides provide a unique source of functional
units that may target disease. This review explores potential microenvironmental physiology
indicative of tumors and peptides that have demonstrated an ability to target and deliver to these
signals.
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1. Introduction
According to the American Cancer Society, 7.6 million people died from cancer in the world
during 2007 [1] , and about 565,650 Americans were expected to die of cancer [1] . Cancer is
the second most common cause of death in the US, exceeded only by heart disease [1] . The
sustained prevalence of cancer continues to motivate the development of new therapies.
Significant research efforts have been directed towards targeting cancer drugs to tumors using
specialized drug carriers, and peptides have become an important component of these targeting
approaches. The contents of this review address the current status of peptide-mediated targeting
of drug carriers.

It is likely that drug carriers will play an increasing role in the treatment of cancer. Cancer
treatment is multi-pronged, consisting of surgery, radiation, and drug-mediated chemotherapy,
which varies depending on the nature of the tumor [1]. Among these three modalities,
improvements to chemotherapy offer some of the most exciting opportunities to develop new
approaches. Most traditional chemotherapeutic agents have a therapeutic index close to one,
and they cause concentration dependent toxicity in non-cancerous tissues [2]. The mechanism
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of dose-limiting toxicity varies from drug to drug. For example, the administration of
doxorubicin (DOX) is limited by cardiomyopathy that arises from oxidative stress [3]. In mice
free DOX has a therapeutic index of 1.2; however, this has not prevented its widespread use
over the past 4 decades [4]. In contrast, neuropathy and neutropenia are the dose-limiting
toxicities for patients treated with paclitaxel, a microtubule stabilizing agent [5]. Presumably,
the differences in mechanisms of action and toxicity between chemotherapeutic agents will
significantly impact the optimization of the drug carrier strategy.

In addition, the concentration dependent cytotoxicity of these chemotherapeutics typically
makes them unsuitable for administration routes that produce high local concentrations, such
as oral, transdermal, or subcutaneous administration. To circumvent this localized toxicity near
the site of administration, many of these agents are delivered via intravenous administration
[6]. After systemic administration only a small percentage of the administered drug reaches
the target site [7]; furthermore, encapsulation of chemotherapeutics inside drug carriers can
increase this percentage. For example, liposomal DOX accumulation in tumors is 3 to 15 fold
higher than for free drug [8]. Ultimately chemotherapeutics continue to produce dose-limiting
toxicity by their interaction with healthy tissues, diminishing their clinical efficacy;
furthermore, a major rationale for the development of nanoparticulate carriers has been to
reduce drug exposure to normal tissues.

Without a mechanism for releasing drug, carrier encapsulation is typically insufficient to
generate useful anti-tumor responses. To improve the therapeutic index, carriers must have an
optimal rate and mechanism of in vivo drug release. For many carrier systems, the tumor drug
concentration depends upon the mechanism of encapsulation/attachment, as well as the
physicochemical properties of the drug. Most drugs differ in their rates of systemic and local
clearance; therefore, each drug must be evaluated on a case by case basis [9]. With regards to
the rate of drug release, these carriers may fall into three possible regimes: 1) release is too
fast; 2) release is too slow; and 3) release is perfectly balanced [10]. If the release of a drug
from a carrier is too rapid, then the drug may clear to the bloodstream prior to reaching the
tumor. While negligible rates of release of drug into the blood can be tolerated, rapid and
untargeted drug release is not a desirable property for a reliable delivery system. Under this
scenario, the carrier is unable to prevent exposure at sites of toxicity, and may be unable to
promote selective tumor accumulation beyond that of free drug. Under the second scenario,
where the drug release rate is too slow, the local clearance of drug could be faster than release
of free drug. The resulting concentration of drug available in the tumor may then be sub-
therapeutic, even though the total concentration of encapsulated drug in the tumor may be high
[9,10]. In the third scenario the rate of drug release from the carrier is perfectly balanced to
yield both optimal tumor accumulation and localized release; however, this balance is difficult
to achieve.

Various nanocarrier systems have been explored that approach optimal rates of tumor
accumulation and availability [11]. Formulations including Doxil™ (lipid-mediated) and
Abraxane™ (peptide-mediated) have partially overcome these barriers, and have been
translated to the clinical setting [12–15]. Falling short of its promise, a substantial limitation
of the liposomal formulation appears to be that it has a suboptimal rate of drug release in the
tumor [16]. Here we describe a range of mechanisms for controlling localized accumulation
and drug release; furthermore, we summarize peptides with potentially useful behaviors that
may enhance delivery to the tumor microenvironment.

2. Mechanisms of peptide-mediated tumor targeting
Environmentally responsive delivery systems make use of tumor pathology to trigger release
of therapeutic agents at the target site. The tumor microenvironment has been widely studied,
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generating a host of biomarkers suitable for targeted delivery [17–19]. The list of potential
biomarkers is extensive; however, it is likely that only a subset of biomarkers can be engineered
into suitable triggers for targeted drug delivery. The list of potential biomarkers provided by
the tumor microenvironment can be broadly classified into physical or molecular triggers.
Physical triggers are activated by the nature of the tumor microenvironment. For example, the
tumor microenvironment contains regions of reduced pH [17] and increased oxidative potential
[18,20], and increased vascular wall permeability. On the other hand molecular triggers include
the target molecules that are upregulated in the tumor vasculature or within the tumor cells.
These targets include vascular endothelial growth factor, integrins, matrix metalloproteases
and tumor necrosis factors [19]. Antibodies against these biomarkers have been successful in
tumor treatment studies [21], which have prompted more research into pathways associated
with these markers. Another example of a biomarker in the tumor microenvironment is the
upregulation of secreted phospholipase A2 [22]. Phospholipase A2 is involved in the
production of prostagladins [22]. Phospholipase A2 mediates carcinogenesis by two pathways:
release of arachidonic acid, which produces carcinogenic metabolites; and release of
lysophospholipids, including lysophosphatidic acids (LPA) that induce cell growth [23]. Both
physical and molecular biomarkers such as these are being explored to develop an array of new
nanocarriers [24,25].

These microenvironmental biomarkers are being actively explored for the ability to produce
environmentally responsive drug release in the tumor. One approach has been to develop
environmentally sensitive polymers, including peptides that respond to tumor
microenvironment with targeted delivery of drug [26,27]. Such approaches are intended to
either increase the accumulation of drug carrier in the tumor or increase the release of active
drugs from carriers that have already trafficked to the tumor. Continued study of the tumor
microenvironment is expected to reveal new cues, which may be useful for controlled drug
release. The remainder of this review focuses on targeting mechanisms employed in current
research and plausible roles played by peptides/proteins.

2.1 Enhanced permeability and retention
Some of the most frequently applied mechanisms of tumor targeting utilize the properties of
the tumor vasculature. The tumor neovasculature is ‘chaotic’ in nature, consisting of various
loops, dead ends, and openings that lead directly into the perivascular space [28]. These
openings provide a passive mechanism for targeting macromolecular or nanoparticulate
entrapment within the tumor. Additionally, lack of lymphatic drainage prevents drug/carrier
clearance from tumors. The combination of these two factors is commonly referred to as the
enhanced permeability and retention (EPR) effect [29] (Fig. 1). To obtain nutrients and oxygen,
solid tumors grow around existing blood vessels and produce new blood vessels to interconnect
with the existing vasculature, through a process known as angiogenesis. These new vessels are
characterized by high permeability and a haphazard arrangement [29,30]. Systemically
administered carriers must pass through this dense arrangement of vessels to reach the cells of
solid tumors. While tumors do recruit a blood supply, they fail to develop functional lymphatic
drainage [28]. One of the primary functions of the lymphatic system is to provide a route for
the clearance of extravascular proteins, particulates, and white blood cells. Without a lymphatic
system, macromolecules and nanoparticulates that extravasate through the ‘leaky’ tumor
vasculature accumulate to form a ‘depot’ in the perivascular space. The pore sizes of some
typical tumor blood vessels have been estimated to have diameters around 400–600nm [31].
Experiments have shown that carriers with a diameter of less than around 100 nm [32,33] are
ideal to target the tumor vasculature via EPR. Thus appropriately sized particles that pass
through the tumor can accumulate locally, which sustains the total drug concentration
compared to the parent small molecule. This approach is relatively specific for tumor tissue,
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in addition to other tissues with permeable endothelia, even though it does not require any
specific molecular interactions to drive accumulation.

EPR targeting suffers from several limitations, in that it provides no mechanism for generating
the active drug once the carrier localizes to the tumor and that vascular perfusion is not uniform
either between or within tumors [34]. For some drug formulations, such as Doxil™ [13], the
rate of nonspecific drug release is balanced enough to reduce tumor mass; however, the activity
of novel EPR-targeted formulations should be specifically optimized to address the drug
diffusion and permeability in the tumor and in the cell [30]. For carriers that target via the EPR
effect, the tumor microenvironment must play a critical role in mediating release from the
carrier. Typically mechanisms for achieving drug release are designed into the carrier, which
include cleavable linkers, cell targeting ligands, or permeabilizing agents, many of which are
derived from polymers and peptides. Peptides in particular provide a wealth of rational
strategies for increasing the efficiency of drug delivery.

2.2 Ligand-mediated targeting
Peptides and proteins can be used to target delivery of anticancer agents via intracellular or
extracellular release. These strategies typically benefit from passive EPR targeting prior to
initiation of targeted interactions. Similar to free drug, extracellular release is influenced by
cancer drug resistance mediated by: 1) activation of the P-gp proteins [35]; 2) activation of
glutathione detoxification system [36]; and 3) by alterations in the genes and the proteins
involved with apoptosis, such as p53 and Bcl-2 [37]. To circumvent this barrier, peptides can
also mediate the intracellular delivery of drugs via targeting receptors at the cell surface (Table
1). For receptor targeting strategies, including transferrin [38–40], folate [41–48] and
epidermal growth factor receptors [49–51], the EPR mediated accumulation of carrier is
followed by improved internalization of the carriers into target cells, a mechanism known as
receptor-mediated endocytosis (RME). Using RME strategies, tumors can be selectively
targeted by increased localization of the carrier to the tumor and also by enhancement of
internalization (Fig. 2) [25]. Conjugation of drugs to these carriers can in turn facilitate
significant intracellular drug concentrations. Both imaging and chemotherapeutic agents have
been targeted to tumors via RME [43–45,52].

Receptor-mediated peptide strategies have been extensively studied. Peptides have been used
either to directly trigger drug release or to direct the carrier to increase specificity and
internalization. This can be achieved by: 1) conjugating the ligand to carrier/drug; 2)
conjugating an antibody against the receptor to the carrier/drug; and 3) using cell penetrating
peptides [53] to promote nonspecific binding and internalization. For covalently attached
drugs, it is important to incorporate a cleavable bond between the drug and carrier to facilitate
drug-release. One recently successful linkage used in polymeric drug-delivery is the hydrazone
bond, which demonstrates release and anti-tumor efficacy in a range of models [54]. One
example of this hydrazone strategy is the antibody conjugated formulation Mylotarg™, which
is a calicheamicin hydrazide derivative attached to the oxidized carbohydrates of the anti-CD33
antibody for the treatment of acute myeloid leukemia [54]. Ketal and disulfide linkages have
also shown appreciable efficacy in intracellular drug delivery [55,56].

Albumin was one of the first proteins to be used as a drug carrier for a variety of drugs, including
anticancer agents [57]. Albumin has a wide range of applications due to its versatility in binding
to hydrophobic drugs. The first drug conjugate to be evaluated was methotrexate. Though the
methotrexate-albumin conjugate was not successful clinically [58] it prompted further research
in albumin bound therapy, which culminated in the success of albumin bound paclitaxel,
Abraxane™. Although paclitaxel is not chemically conjugated to albumin, the hydrophobic
binding affinity of the protein to drug is sufficient to be useful as a drug carrier. In the clinic,
Abraxane™ was shown to have a higher anti-tumor activity than paclitaxel [59]. Abraxane™
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targets the tumor by a combination of the EPR effect and albumin binding to Gp60 receptor
[57] . This enhances the intratumoral concentration of drug and therefore increases the efficacy
of the system. Another significant improvement of Abraxane™ over paclitaxel is the reduced
incidence of hypersensitivity related to the use of harsh surfactant vehicles, such as Cremophor-
EL™, which is unnecessary for the albumin-drug complexes [12].

Extensive work on transferrin-mediated targeting was done by Tanaka and coworkers [40].
Transferrin undergoes receptor-mediated endocytosis in a broad range of cells; furthermore,
when Mitomycin C is conjugated to transferrin, the resulting conjugate demonstrates unaltered
receptor binding properties. The mechanism of internalization is the same for normal and
cancer cells; however, cancer cells achieved a higher concentration of drug in the tumors due
to increased surface expression of the transferrin receptor [38]. Similarly, for liposomes
decorated with transferrin, there was a higher concentration of drug observed in the tumor cells,
which significantly improved efficacy in a rat tumor model [60]. Another avenue to utilize the
transferrin trafficking pathways was demonstrated using anti-transferrin receptor antibodies
[61,62]. The anti-transferrin receptor strategy boosted the accumulation of drug in the tumor
two-fold compared to control liposomes. Fluorescence experiments suggested that these
antibodies internalize into cells similar to transferrin via receptor-mediated endocytosis [62].

The folate receptor has also been a useful target in the development of anticancer peptide
strategies. Conjugation of drug molecules to folic acid or other ligands specific to the folate
receptor can increase the localization and internalization of the conjugate [42]. This effect has
been demonstrated with cargo varying in size from small molecule drugs to liposomes. One of
the first folate conjugated systems included a protein toxin called momordin [43]. The folate-
momordin conjugate was shown to be specific to tumor cells [44]. Another early folate drug
carrier system was developed using a folate-phosphatidyl ethanolamine lipid conjugate [47].
The lipid anchored the folate directly to a liposome surface, and these targeted vesicles had
higher cellular uptake and higher cytotoxicity than the nontargeted drug, DOX. The folate
targeting strategy has been extended to enzymes [48], DNA [46] and other non-lipid delivery
systems.

Epidermal growth factor receptor (EGFR/HER2) expression is frequently upregulated in tumor
cells [49]. A successful antibody against HER2 has been clinically approved, Herceptin™
[63], which has been used to increase specificity of gelatin/albumin nanocarriers [50]. For this
strategy, avidin is directly conjugated to the drug carrier, which is subsequently modified by
biotinylated HER2 [50]. The authors reportedly attached 370 antibodies onto the surface of
each carrier [50]. The internalization of the carrier depends strongly on the concentration of
HER2 receptors on the cell surface; furthermore, these HER2 receptor targeted carriers
demonstrated enhanced binding and internalization compared to an untargeted control [50].
An alternative use for the anti-HER2 receptor antibodies has been the modification of DOX
carrying liposomes [64]. Interestingly, these antibody-grafted liposomes showed higher
internalization inside cells (6-fold) but did not substantially increase the amount in the tumor
vasculature [65]. A simpler alternative to antibody targeting is to exploit short peptides with
HER2 receptor binding, such as the GE11 peptide (Table 1) [51]. GE11 modified liposomes
showed efficient transfection of cells, and increased cytotoxicity when compared to either free
DOX or unmodified DOX liposomes [49].

Even short peptide motifs are capable of directing tumor targeting to specific membrane
receptors. The RGD (Arg-Gly-Asp) peptide is one of the most widely studied motifs. RGD is
recognized by integrins that promote endocytosis of the polymer or particulate presenting the
peptide. The RGD motif has been used widely to target tumor cells with therapeutic drugs/
proteins/liposomes/imaging agents [66]. For example, RGD conjugates have been used to
target the synthetic polymer hydroxypropyl methacrylamide (HPMA) specifically to tumor
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epithelial cells [67]. An RGD-HPMA conjugate had 3.7 times higher tumor localization than
compared to a control peptide conjugate [67]. Alternatively, liposomes designed with the RGD
motif can decrease tumor growth; however, off-target interactions in the liver and spleen were
observed [68]. Also incorporation of RGD lipopeptides in the liposomes formulation reduced
the circulation time drastically [68]. More recently, other short motifs have been identified that
promote receptor-mediated uptake including NGR (Asn-Gly-Arg) and GSL (Gly-Ser-Leu).
These short motifs are tumor specific because their specific targets are upregulated in the tumor
vasculature and not to the same extent in normal tissues [69]. The NGR, RGD, and GSL motifs
can home in to cancers in vivo [70]. The NGR motif has two distinct homing mechanisms:
binding to aminopeptidase N (CD13) which is a membrane bound matrix metalloproteinase;
and binding to vascular integrins [71]. A major advantage of using these short peptide motifs
is that they home in to the tumor vasculature, which is less dependent on the variability of
receptors expressed directly on the tumor cell surface [69,70].

A related approach where peptides have contributed to drug targeting is in the use of enzymes
that direct tissue or cell specific cleavage of active drug. For many drugs, the carrier-drug
conjugate is inactive, and release is a prerequisite for activity. From a practical perspective
drug cleavage should not occur during circulation in the plasma. One elegant solution is to use
the proteolytic capacity confined within lysosomes. To gain access to these compartments, the
nanocarriers must be taken into cells and internalized to lysosomes, such as through RME.
Once in the lysosome, there are multiple enzymes that can mediate degradation; however, the
most frequently discussed is cathepsin B [58,72,73]. Other interesting enzyme targets include
matrix metalloproteases (MMP’s). 26 different kinds of MMP’s exist [74], and studies on
MMP-9 specific release studies have shown encouraging results [75,76]. MMP-9 and MMP-2
are therapeutically relevant, both being upregulated in glioblastoma multiforme [77,78]. It is
also interesting to note that MMP-2 and MMP-9 have common substrates specificities derived
from collagen [79]. A consensus sequence has been observed, GPQGaAGQR where a =
Leucine, Isoleucine, or Valine [76]. By conjugating this peptide to a lipid anchor, enzyme-
dependent liposome rupture has been demonstrated [76]. Hence, by incorporating appropriate
peptides into a linkage between carrier and drug, it is possible to develop rapid release in the
presence of target enzymes without appreciably contributing to drug loss during circulation in
the central blood compartment.

2.3 Temperature-mediated targeting
Thermo-responsive polymers respond to their surrounding temperature by altering their
physicochemical properties; furthermore, as more advanced methods for achieving local-
regional deposition of heat become available these polymers are becoming attractive targeting
options to direct tumor-specific delivery. Peptides make excellent candidates for thermo-
responsive polymer, and there have been exciting advances in the development of thermally
responsive peptides that confer temperature dependence onto drug carriers [27,80]. This section
deals with the application of hyperthermia as well as the use of thermally sensitive peptides as
triggers in drug release (Fig 3).

2.3.1 Application of hyperthermia—To synergize with current hyperthermia research,
thermo-responsive drug carriers should be able to respond to mild hyperthermia conditions
between about 37 and 42 °C [81] . Sustained temperatures above this range induce protein
denaturation and cell death without the need for chemotherapy; however, the application of
high temperature is often limited by the need to spare critical anatomical structures. In contrast,
mild hyperthermia produces effects that complement drug delivery. For example, tumor cells
are more sensitive to hyperthermia-induced damage [82,83]. Also, hyperthermia increases
vascular perfusion and permeability, which contributes to improved passive targeting and anti-
tumor effect [81] . Tumors can be heated either by direct or indirect heating [81] . Under direct
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heating, energy is distributed via conduction and convection [81] . Due to the efficiency of
thermal homeostasis, this approach is only suitable to a limited penetration depth [81] . To
achieve deep tissue penetration, indirect heating is used to deposit energy via radiating waves
from either ultrasonic or electromagnetic sources. Whole body hyperthermia can be induced
by administration of pyrogens; however, pyrogenic hyperthermia is perhaps undesirable
compared to the other routes of localized heating [81] . One promising heat application
technology permits both localized heating and deep tissue penetration and is based upon high
intensity focused ultrasound (HIFU) [84]. HIFU is a noninvasive procedure that can be used
to induce mild hyperthermia or tumor ablation (70 °C). While HIFU can heat deep seated
tumors, ultrasonic waves have two main drawbacks: 1) they are unable to safely penetrate gas
phases, which leads to inefficient heating in the lung and bowel; and 2) they are strongly
absorbed in bone, which can damage the skeletal tissue [84]. Despite these caveats, ultrasound
heating can be used as an adjuvant to nanocarrier chemotherapy [80]. One alternative method
to achieve indirect heating method is to use strong magnetic fields in order to heat iron oxide
carriers [85]. Nanocarriers composed from both lipids [16,80] or peptides [27,86] have been
observed to increase exposure of the tumor to the cytotoxic agent. For example, lipids that
undergo sol-gel phase transitions including DPPC [87] as well as polymers that display Lower
Critical Solution Temperature (LCST) are being developed for thermo-responsive delivery
[88] and a few interesting examples have been summarized in the next section. Recent reviews
[81,89] have summarized the application of hyperthermia in more detail and will make
interesting reading.

2.3.2 Temperature mediated release—Hyperthermia-based strategies are under
investigation that explore both polymer-drug conjugates or thermo-sensitive particulates that
encapsulate drugs (Table 2). Some significant research into temperature-sensitive targeting
focuses on peptides that undergo unique biophysical behavior, and in several cases these
peptides can be reduced to repetitive amino acid sequences (Table 2). This section focuses
exclusively on the properties of some temperature dependent peptides. The most widely studied
thermally-responsive peptides are elastin-like polypeptides (ELPs), collagen, leucine zippers,
and silk [89]. Each of these peptides display temperature dependent phase transitions, with
some being reversible and others irreversible. In most cases, the thermal sensitivity of these
peptides can be modulated by varying: 1) the MW of the peptide; 2) the identity of specific
amino acid residues; and 3) the concentration [90]. Leucine zippers are heptameric repeats of
[abcdefg]n that form α-helical structures, which can self-assemble (Table 2) [91,92]. Leucine
zippers are stable at low temperatures, and dissociate under heating at a temperature that
depends on their specific peptide sequence. These zippers could potentially be used in delivery
strategies that drive assembly of particulate drug carriers that trap the drug in a carrier until
release. Also, leucine zippers can be used as switchable hydrogels, which serve as matrices for
controlled release under elevated temperatures [93,94].

Another class of thermally responsive peptides, the ELPs, are biologically inspired from human
tropoelastin [95]. ELPs are pentameric repeats of [aPGbG]n that exhibit a first order phase
transition from a water soluble phase to a two phase system. In vivo ELPs are sensitive to
hyperthermia; furthermore, the ELP phase behavior is reversible. The phase transition
temperature can be manipulated by modifying the guest residue in the a and b positions (Table
2). The trend is that substitution at the b guest residue with increasingly hydrophobic amino
acids results in a lowering of the phase transition temperatures [89,95]. Functionally, ELPs
have a wide range of applications: 1) they form temperature sensitive drug conjugates that
promote tumor accumulation upon cycling the tumor temperature around the phase transition
[27]; 2) ELP block copolymers can assemble nanoparticles that may encapsulate drugs (Fig.
3A) [96]; and 3) ELP tags can be used to purify fusion proteins [89]. Dreher and coworkers
demonstrated that ELPs have a 2 fold increase in tumor concentration under local hyperthermia
[27]. ELP-DOX conjugates also have demonstrated cellular uptake into low pH compartments,
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which is enhanced by the thermally triggered phase transition (Fig. 3B) [97]. The cytotoxicity
of the ELP-DOX conjugate was also found to be nearly equivalent to free DOX. It was proposed
by both Dreher [27] and Bidwell [98,99] that the mechanism of cytotoxicity differs from that
of free DOX because the conjugate does not localize into the nucleus as rapidly as free DOX.

Another strategy has been developed that combines a ligand-mediated approach with a
thermally responsive ELP [99]. This system employs a cell penetrating peptide derived from
the HIV transacting transcriptional activator (TAT) to promote cellular uptake. TAT is an 86
amino acid peptide that enters cells when introduced to the surrounding media; furthermore, a
short peptide from TAT is necessary and sufficient to impart this behavior to other proteins
via a non-specific uptake mechanism (Table 1) [53]. An ELP linker is included between the
DOX and TAT that confers thermal sensitivity to the conjugate. The optimized conjugate had
a transition temperature of 40 °C. Incorporation of TAT increased the binding by 3-fold at 37
°C and by 6-fold at 42 °C, as compared to the same conjugate without TAT. Cytotoxicity
followed a trend similar to that observed for uptake, suggesting that hyperthermia-responsive
peptides may synergize with other peptide-ligand approaches.

Other examples of temperature sensitive peptides have been derived from silk and collagen
repetitive motifs. Silk-like polypeptides (SLPs) are repeats of [GAGAGS]n [92], though
[GA]n, and [AA]n are capable of similar behavior. SLPs form irreversible, aggregates on
exposure to elevated temperatures, which can be used for designing depot systems for drug
release (Table 2). The properties of these SLPs can be modulated by synthesizing block
copolymers with other motifs, such as ELPs [89]. When mixed with gelatin SLP’s form a
thermo-sensitive gel, which can be stabilized at 37 °C [100].

Collagen is a peptide polymer made from repetitive sequences that follow a trend of
[GPPOH]n [89,92]. The second and third member of the collagen triplet can be nearly any amino
acid; however, there is a strong bias for proline in the second position and hydroxyproline in
the third position (Table 2). Collagen motifs form a unique triple helical structure that
dissociates in response to heating. This process is irreversible, in that cooling of a melted
collagen peptide produces a gelatinous hydrogel via random crosslinking between neighboring
polypeptides [92]. Collagen-like peptides (CLPs) can be biosynthesized in bacteria; however,
CLP stability depends on the degree of post-translational conversion to hydroxyproline in the
peptide. Bacteria lack the required proline hydroxylase necessary to generate native collagens,
but this deficiency can be remedied using genetic engineering [92]. Both collagen and
denatured collagen are widely used in the pharmaceutical and food industries as gelling agents
[92]. Having introduced, ELPs, CLPs, and SLPs, it is worth noting that a wide array of block
copolymers have been evaluated that bring elements of two or more of these peptide families
together. The most studied combination are the SLP-ELP hybrids, which have shown potential
for use in local thermal delivery [101].

The development of hybrid polymers between peptides and synthetic polymers is also an active
area for exploration. For example, dual-temperature sensitive peptide polymers have been
synthesized by Stoica [102] that utilize N-isopropylacrylamide-co-acrylamide (NIPAAM)
conjugated to an octapeptide ‘FEFEFKFK’. The ‘FEK16’ motif forms a hydrogel at room
temperature (Table 2). This conjugate has a NIPAAM-mediated LCST at 30°C and a FEK16
induced gel melting temperature at 75 °C [103]. Due to their glutamic acid residues, both of
the above polymers are pH sensitive, and their properties can be further modified to release
the encapsulated contents in a pH dependent manner.

2.4 Redox-mediated targeting
Similar to pH mediated targeting, redox-mediated targeting can potentially be triggered
extracellularly or intracellularly. The extracellular oxidative potential is maintained by redox-
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modulating proteins including NADPH oxidase, superoxide dismutase (SOD), and thioredoxin
(TRX-SH2)/oxidized thioredoxin (TRX-SS), and free glutathione (GSH)/glutathione disulfide
(GSSG) [104,105]. These enzymes are frequently used as markers to study redox stress in
cancer. For example, TRX levels in blood are markers for oxidative stress in hepatocellular
carcinoma [106]. In contrast, the ratio of reduced glutathione to oxidized glutathione disulfide
(GSH:GSSG) is used to measure the intracellular redox state, where reduced glutathione is
abundantly available in the cell [20]. Under normal homeostasis, reactive oxygen species are
kept in check by glutathione (GSH) and superoxide dismutase (SOD) [18]. The intracellular
levels of GSH in normal tissues ranges from 1–10 mM [107] compared to that of blood plasma
which is 2µM [108]. This makes GSH a reasonably good target for intracellular delivery. In
vitro the GSH levels in tumor cells were shown to have a 7–10 fold increase in GSH
concentrations [18,109]. This combination of intracellular elevated GSH and the tumor-
associated GSH make redox triggers interesting candidates for control over peptide structure
and drug release [109,110]. Conversely SOD is frequently found at reduced concentrations in
tumors compared to normal tissues [18]. Another issue observed with high levels of GSH is
that it promotes cancer growth and resistance to chemotherapy [36]. Based on the elevated
GSH levels intracellular release of small molecules is possible by using peptides stabilized by
disulfide bonds [55]. The disulfide bond is broken down into two sulfhydryl moieties and the
GSH is oxidized to GSSG, which can be achieved either by cell surface protein disulfide
isomerase (PDI) or reductive cleavage in the cytoplasm (Fig. 4) [55]. Using non-peptide
systems, multiple groups have demonstrated that the glutathione couple has potential
anticancer application [111–116]. Also disulfide linkers can moderately increase carrier
stability [117]. Work on redox mediated polymers dates back to the 1970’s using early
polyplexes between DNA and poly(l-lysine) [118]. Polymers ranging from chitosan to poly
(ethylene imine) (PEI) have been studied for redox-mediated targeting through disulfide
linkages [118]; furthermore, redox targeting may be complementary with cystine peptide based
targeting strategies. Despite the potential for stabilizing/destabilizing peptide secondary
structures via redox targeting, relatively few studies have been reported that utilize redox
sensitive peptides with chemotherapeutic drug delivery, and this may be an area of future
opportunity.

2.5 pH-mediated targeting
pH mediated triggering may be achieved by sensitizing nanocarriers to the extracellular pH or
the endosomal/lysosomal pH. The environment around the tumor is at a lower pH than
compared to normal tissue [17]. Production of lactic acid and hydrolysis of ATP are the major
contributors to the acidic environment around the tumor [119]. In certain extracellular regions,
tumors have a lower pH (~ 6.5) than the blood (~ 7.4) [17]. Membrane ion transporters are
responsible for maintaining intracellular pH [119]; therefore, the cytoplasmic pH of tumor cells
is similar to that for normal cells. Also, similar to normal cells, the endosomal/lysosomal
compartments within tumor cells also have a low pH that can be exploited to design pH sensitive
delivery systems to release drugs (Fig. 5). Within the tumor, acidic drugs with pKa below the
environmental pH or basic drugs with pKa above the environmental pH are ionized and do not
penetrate lipid bilayers as efficiently as the uncharged species. To promote penetration across
lipid bilayers, weakly acidic drugs with pKa’s in the range of 4.5–6.5 are optimal [120].
Similarly, acidic and basic moieties can be used to promote pH dependent accumulation or
drug release from peptide conjugates and lipid nanocarriers (Fig. 5A–B). In order to achieve
pH-mediated intracellular drug delivery, the carrier must first be taken up into cells, as
described previously (Fig. 2) [121]. Cellular binding and uptake can be promoted using specific
or nonspecific ligands, including peptides (Table 1). Following internalization, trafficking to
low pH compartments can then be used to trigger drug release. The early endosome has a pH
of 6 [122]; furthermore, the pH continues to decrease during trafficking as lysosomes fuse with
the vesicles to activate proteolytic degradation [121].
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Although widely explored, extravascular acidity has been difficult to target in humans, partly
due to the buffering capacity of the blood and the inhomogeneous nature of the extravascular
pH gradient. The extravascular pH in tumors can range between 6.5 and 7.0; however, drugs
and drug carriers must diffuse on the order of 50 µm away from capillaries to reach regions
with this pH [123]. For a small molecule or drug, this penetration depth is easily achieved;
however, for macromolecules and nanoparticulate drug carriers these distances may be
unrealistic [124]. Alternatively, in regions where the extracellular pH remains normal (~7.4),
pH dependent mechanisms that respond to cellular uptake have been successful. Cells within
tumors continuously sample molecules and particles from their environment, which are often
trafficked to low pH compartments for degradation [97], and the incorporation of pH-mediated
strategies that detect cellular internalization reduces the need to target extracellular drug
release. While this review focuses on peptides, many of the peptide-mediated delivery
approaches are developed in combination with lipids or synthetic polymers; therefore, we will
briefly summarize the pH responsive behavior of non-peptide systems.

Liposomes are one class of nanocarrier that have been extensively modified with peptides and
proteins to improve the delivery of their contents. Liposomes share with many other
nanocarriers an internalization pathway that results in endosomal/lysosomal entrapment and
degradation [8]. To promote release of components into the cytoplasm, pH-sensitive liposomes
have been optimized that change phases between pH 7.4 and 5.0 [125]. One way to achieve
this is by preparing liposomes from phosphatidyl ethanolamine (PE) lipid. In the absence of a
stabilizing amphiphile, PE lipids do not form a stable lamellar phase liposome at pH 7.4, but
instead adopt a hexagonal aggregate structure [126,127]. Upon incorporation of amphiphiles,
including peptides, polymers, or charged lipids, into the bilayer PE liposomes can be stabilized
by either steric or electrostatic repulsion. Following cellular internalization and lysosomal
trafficking, the reduction in pH induces loss of stabilization that drives a transition from
lamellar to hexagonal phase and drug release [128]. The pH sensitivity of this behavior is a
function of the amphiphile identity, MW, and concentration in the bilayer. Alternatively,
Sudimack and coworkers described approaches to prepare pH sensitive liposomes that do not
rely upon hexagonal phase lipids [129]. For example, polymer-lipid conjugates can fuse with
membranes, such as the mixture of phosphatidylcholine (PC) with succinylated poly(glycidol)
[130]. These formulations made from mixtures of cationic/anionic lipid combinations were
found to be efficient vehicles for intracellular delivery. An alternative strategy to generate
anionic pH-responsive liposomes is to prepare vesicles from a mixture of diolein/cholesterol
hemisuccinate (6:4) [131]. These formulations are generally stable at physiological pH, but
aggregate and release the encapsulated contents when the pH decreases to around 5.0.
Similarly, peptides that provide steric or electrostatic stability to lipid vesicles may be useful
for promoting drug release (Fig. 5B).

pH sensitive triggering is possible with many of the peptides that are temperature sensitive,
such as ELPs, leucine zippers, and CLPs (Table 2). Similar to how temperature can drive these
polypeptides to undergo conformational changes, the protonation of acidic and basic peptide
residues can also shift the peptides from one conformation to another; therefore, many of these
peptides can also be redesigned with pH sensitivity. For example, leucine zippers are stable
coiled coil structures at low temperatures (Table 3) [89]. Substitution of an acidic group at the
e and g position influences the stability of the secondary structure, and protonation of these
residues is a dynamic way to control the stability of the complex. This property has been
exploited by Stevens [132] and Ryadnov [133], and a similar principle also applies to ELPs
[95].

The GALA peptide is another interesting pH-mediated system (Table 3). GALA is composed
of tetrameric repeats of [EALA] [134], which under physiological pH adopts a random coil
structure. When exposed to lower pHs (pH=5.7), the glutamic acid residues begin to neutralize,
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which enable the formation of α-helical structures. By incorporating GALA into a liposome,
assembly of these helical structures results in pH dependent membrane disruption (Fig. 5C)
[134]. Many variations on the GALA peptides have been developed, such as YALA and
GALAdel3E [135]. Most of these have appreciable activity of a similar magnitude; however,
they can be optimized to transition at different pHs [135]. One variation of GALA is the cationic
peptide, KALA, which has lysine in place of glutamic acid [136]. The positive charge on the
peptide interacts with oligonucleotides and also promotes membrane disruption and gene
delivery [134].

Polyhistidine blocks are a simple example of pH responsive peptides (Table 3). The poly(l-
histidine) polymers synthesized by Asayama and coworkers [137] are sensitive to the
endosomal/lysosomal pH. The polymer is poorly soluble at physiological pH, but upon
protonation in the endosomes the peptide becomes water-soluble (Fig. 5A). Modifying the poly
(l-histidine) by carboxymethyl substitution on the polymer leads to the formation of anionic
charge [138]. Coating of this polymer to the PEI/DNA complex leads to the formation of a
ternary complex that enhances gene expression by 300 fold; furthermore, this peptide can
deliver DNA to the nucleus, and can be used to inhibit cell division [138].

3. Discussion
The triggers mentioned above are being explored as parts of tumor-targeted delivery strategies.
To complicate matters, most of these peptide-mediated delivery strategies are difficult to
classify under a single strategy. Instead, these drug-carrier formulations are multifunctional,
utilizing two or more targeting strategies. Each combination of strategies has its advantages
and disadvantages. Some of the major limitations of the above mentioned strategies include:
1) decreased sensitivity of receptor to the ligand; 2) elimination of attached ligand during
circulation in vivo; 3) off-target interactions; 4) immunological response to foreign antigens;
and 5) limitation of drug-conjugate linker strategies. Using ligands to direct accumulation can
lead to off target effects since other tissues may express the receptors that bind to the specific
motif/ligand. When combined with cytotoxic chemotherapeutics, this could produce toxic
effects and even decrease the therapeutic effect of the carrier. In addition, to overcome
immunogenicity, it will become important to select peptide sequences carefully, to minimize
the number of antigenic epitopes, and perhaps to use steric shielding to reduce the immuno-
recognition where appropriate [139]. PEG shielding of protein therapeutics was shown to
markedly decrease the immunogenicity of the formulation and increase circulation times
[140]. One of the drawbacks of PEG modification is a loss of protein/peptide activity; therefore,
the potential improvements provided by polymeric modification need to be balanced with
decreases in activity [140]. One exciting possibility is that certain peptide sequences may have
some of the properties of PEG; furthermore, peptides of this nature could be integrated
seamlessly into genetically engineered constructs.

The tumor microenvironment provides multiple cues that may be exploited to improve the
efficacy of established chemotherapeutics; furthermore, polypeptides are uniquely situated to
capitalize on these signals. Peptides provide: 1) a rich repertoire of biologically specific
interactions to draw upon; 2) multiple environmentally-responsive phase behaviors that can
respond to disease signatures; 3) multiple opportunities to direct self-assembly; 4) extensive
control over routes of biodegradation; 5) the ability to seamlessly combine functionalities into
a single polymer or particle using biosynthesis. These opportunities are significant, and it is
reasonable to expect that peptides will play a major role in the development of the next
generation of environmentally responsive drug carriers.
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4. Conclusions
Peptides provide a level of molecular specificity that is naturally suited to the development of
environmentally responsive drug carriers. Most importantly, peptide secondary and tertiary
structures enable a degree of control and functionality that surpasses what is easily achievable
using lipids and nonbiological polymers. Here we have discussed some of the aspects of
peptide-mediated drug delivery and present applications where peptides can be directed by
temperature, pH, and specific biological interactions. As the development of cancer-targeted
nanocarriers continues to expand, peptides are providing these formulations with critical
functionalities necessary to target disease.
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Figure 1.
Intra tumoral vascular permeability permits entrapment of drug carriers. (A) Intact normal
vasculature. (B) Semi porous tumor vasculature. Drug carriers selectively extravasate into
tumor via pores [28]. This EPR targeting strategy provides a mechanism for extracellular drug
carrier accumulation in the tumor, which may be further augmented via peptide-mediated
targeting.
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Figure 2.
Peptide-mediated targeting via ligand/cell-surface interactions. These strategies use ligands
grafted onto the carrier/drug surface to increase the intracellular uptake of drug in target tissues
(Table 2). A ligand is presented by the carrier, which binds to a moiety on the cellular surface,
like specific receptors or nonspecific proteoglycans [141]. Surface binding may be followed
by internalization through receptor-mediated endocytosis or other uptake mechanisms. Once
internalized, the carrier or drug may be further processed via other cellular factors, such as pH
or enzymatic activity.

Aluri et al. Page 22

Adv Drug Deliv Rev. Author manuscript; available in PMC 2010 September 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Strategies for temperature-mediated peptide targeting. The application of local and regional
hyperthermia provides an opportunity to change the carrier behavior in the tumor region. (A)
Temperature-directed assembly from single peptides into multivalent nanoparticles. The
multivalency may improve the avidity for cell surface targets that promote cellular
internalization [26]. (B) For peptides that transition from soluble to aggregated states under
hyperthermia, the sustained application of heat increases the accumulation of the carrier in the
tumor vasculature. Upon return to normal temperatures, the dissolution of peptides produces
a high local concentration that drives extravascular accumulation of carrier, a ‘thermal-
pump’ [27].
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Figure 4.
Strategy for redox-mediated peptide targeting. These approaches target the intratumoral ratio
of GSH to GSSG. The disulphide bond confers redox sensitivity peptide carriers. (A) The
extracellular concentration of GSH is very low but cleavage of disulfide bonds can be facilitated
by the presence of membrane protein disulfide isomerase (PDI) which can lead to extracellular
release of drug [142]. (B) The disulfide bond is cleaved by intracellular reductive activity after
cellular uptake. A limitation of this approach is the stability of the disulfide linkage during
circulation in the bloodstream [143].
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Figure 5.
Strategies for pH-mediated peptide targeting. (A) Weakly basic peptides that protonate at endo-
lysosomal pH may promote the lysosmotrophic release of contents into the cytoplasm [144].
(B) Lipid vesicles with surface-associated peptides may be ruptured via pH dependent change
in peptide fold. Membrane disruption may release drug into endosomes, which can then traffic
into the cytoplasm. (C) Lipid vesicles with encapsulated peptides may undergo a
conformational change at endo-lysosomal pH, forming pores. These peptides may rupture the
membranes of both the carrier and endosomes, promoting cytoplasmic drug release [145,
146].
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Table 1
Receptor & protein mediated targeting peptides.

Peptides *Properties References

Transferrin and anti transferrin
antibody

Iron binding proteins found in vertebrates. Enables 2-fold increase in tissue
accumulation of non-specific antibody conjugated liposome.

[39,40,60–62]

Herceptin™/Trastuzumab Antibody against HER2. Showed increased internalization of carrier and a 6-
fold increase in internalization.

[50,64,65]

GE11 peptide Ligand for human epidermal growth factor receptor. Contains the peptide
sequence ‘YHWYGYTPQNVI.’

[49,51]

Albumin Human plasma protein soluble in water. Assists in transporting hydrophobic
molecules. Used as a carrier for anticancer therapy.

[12,57,72,147]

HIV TAT peptide The TAT protein enters cells when added exogenously. The transduction
domain responsible for this property is RKKRRQRRR,’ which can be
appended to other systems.

[148–150]

NGR peptide This motif has 2 distinct binding sites 1) Aminopeptidase N (CD13) 2) αvβ3
Integrin. Plays a major role in cell adhesion.

[69,71]

RGD peptide This motif is a recognized by integrins and is important for cell adhesion. [66–68,151]

GFLG peptide Acts as a cleavable peptide linker sensitive to proteolyses by lysosomal
cathepsin B.

[73]

ALAL peptide Acts as a cleavable peptide linker sensitive to proteolyses by lysosomal
cathepsin B.

[72]

GPQGaAGQR peptide Where a = Leucine, Isoleucine or Valine. This peptide sequence acts as a
substrate for MMP-2,9 and can be used as a linker/trigger for drug release
from polymer conjugates or drug carriers.

[76,79]

*
A=Alanine, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, N=Asparaginine, P=Proline, Q=Glutamine, R=Arginine,

T=Theronine, V=Valine, W=Tryptophan Y=Tyrosine.
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Table 2
Thermally-responsive peptides

Peptide *Motif trend Properties References

Elastin-like polypeptides [aPGbG]n
a = I , V
b ≠ P
n = 10 to 200

Reversible phase separation above
adjustable transition temperature, which
depends on concentration, length ‘n’, ‘a’
and ‘b’, ionic concentration.
Accompanied by a change from a random
coil to β-turn spiral conformation.

[89,90,95,98,152]

Leucine zippers [abcdefg]n
a-g ≠ P.
a = hydrophobic
d = L
e,g = charged
n = 5,6

Forms coiled-coil α-helical structures in
solution that disassociate upon heating to
form random coil structures.

[89,91,93]

Silk-like peptides [GAGAGS]n
n = 2 to 168

Irreversibly forms aggregates on exposure
to high temperature. Accompanied by the
formation of β-sheets.

[89,100,101]

Collagen-like peptides [Gab]n
a = often P
b = often POH

n = 100 to 500

Irreversibly dissociate on exposure to high
temperature. Form triple helices in
solution but dissociate to form fibrils on
heating.

[89,92,153]

FEK16 peptide [FEFEFKFK]2 An indirect temperature sensitive system.
Ca2+ dependent assembly of β-sheet
structures when stimulated using
temperature responsive liposomes.

[102,103]

*
A=Alanine, E=Glutamic acid, F= Phenylalanine, G=Glycine, I=Isoleucine, K= Lysine, L=Leucine, P=Proline, POH=Hydroxyproline Q= Glutamine,

S=Serine, V=valine.
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Table 3
pH-responsive peptides.

Peptides *Motif trend Properties References

Leucine zippers [abcdefg]n
a-g ≠ P.
a = hydrophobic
d = L
e,g = charged
n = 5,6

Acidic groups at ‘e’ and ‘g’ induce the
formation of a rigid coiled coil
structure at pH 4.5; but on increasing
the pH (7–11) the structure
disassembles.

[89,91,132,154]

Carboxymethyl poly(l-histidine) [HOOCH2C-His]n Cationic peptide polymer contains an
imidazole ring and carboxymethyl
group, which helps in conferring dual
functionality to the polypeptide.

[137,138]

GALA peptide WEAALAEALAE
ALAEHLAEALAE
ALEALAA

Changes conformation from a
random coil to an amphipathic α-
helix when pH is lowered from 7 to 5.

[91,134,135]

KALA peptide WEAKLAKALAK
ALAKHLAKALAK
ALKACEA

Changes conformation from a
random coil to an amphipathic α-
helix when pH is increased from 5 to
7.5.

[136]

*
A=Alanine, E=Glutamic acid, H=Histidine, K= Lysine, L=Leucine, P=Proline, W=Tryptophan.
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