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Abstract
The achievements in both preclinical and clinical pain research over the past four decades have led
to significant progresses in clinical pain management. However, pain research still faces enormous
challenges and there remain many obstacles in the treatment of clinical pain, particularly chronic
pain. Translational pain research needs to involve a number of important areas including a) bridging
the gap between pain research and clinical pain management, b) developing objective pain assessment
tools, c) analyzing current theories of pain mechanisms and their relevance to clinical pain, d)
exploring new tools for both preclinical and clinical pain research, and e) coordinating research
efforts among basic scientists, clinical investigators, and pain medicine practitioners. These issues
are discussed in this article in light of the achievements and challenges of translational pain research.

Introduction
Pain medicine is one of few medical specialties that rely heavily on individual self-reporting
to make a clinical diagnosis. Although modern diagnostic tools are available to assess
pathological conditions, pain is historically considered as a subjective experience that has
enormous individual variation. Indeed, current pain management strategies, especially for
chronic pain, are based largely on empirical approaches that are insufficient due to a number
of clinical challenges including a) mismatch between subjective pain complaint and
pathological condition, b) individual variation and multidimensional features of pain, and c)
clinical challenges and confounding factors.

Mismatch between pain complaint and pathological condition
In the clinical setting, an individual’s self-reporting of pain often does not correlate well with
the severity of pathological condition because a) pain can result from seemingly trivial tissue
damage (e.g., Complex Regional Pain Syndrome Type I), b) duration of chronic pain often
outlasts that of the original insult, c) there may be an over-focus on common causes of clinical
pain and there exists limited knowledge on the underlying mechanisms of many clinical pain
conditions, and d) transition from acute to chronic pain may be associated with changes in the
brain morphology and influenced by an individual’s genetic predisposition 3, 31, 103.
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Individual variation and multi-dimensional features of pain
Pain is highly individualized with respect to the intensity, quality, and clinical comorbidity
such as depression and post-traumatic stress disorder 16, 86, 103. Moreover, a painful experience
has multi-dimensions including sensory discriminative, cognitive, autonomic and affective
responses and has gender and cultural differences 15, 25, 51, 96. To date, no single clinical tool
captures all dimensions of pain objectively, causing undertreatment of pain in some cases and
inappropriate treatment in others.

Clinical challenges and confounding factors
For example, patients with fibromyalgia often complain of pain at multiple body sites with
accompanying depression and personal distress. Pain medicine practitioners often have to make
empirical choices from various treatment modalities such as interventional procedures (e.g.,
nerve block), analgesics, antidepressants, anxiolytics, psychological coping, and social
support. In many cases, formulating an effective treatment plan becomes a process of repeated
trials and errors, frustrating both patients and clinical practitioners. Moreover, issues related
to potential secondary gains (e.g., lawsuit over motor vehicle accident or dispute over work-
related injury) and unwanted consequences from medications (e.g., addiction to opioid
analgesics) challenge the clinical validity of self-reporting of pain as both a diagnostic and
prognostic tool.

Given these unique challenges of clinical pain, translational pain research has emerged as an
important field that promotes coordinated bi-directional research approaches between bedside
and bench in order to bridge the gap between pain research and clinical pain management.
Translational pain research needs to make real progresses in several major areas including a)
understanding limitations of current preclinical and clinical pain research, b) developing
objective and clinically meaningful pain assessment tools, and c) planning long-term strategies
and exploring new research tools to guide both preclinical and clinical pain research. These
issues will be discussed in this article in the context of the achievements and challenges of
translational pain research.

What have been translated over decades?
The achievements in preclinical and clinical pain research over the past four decades have led
to significant progresses in clinical pain management. These achievements may be summarized
in four general areas: a) theories of pain mechanisms, b) new additions in the armamentarium
of pain medications, c) new modalities of interventional pain management, and d) potential
targets for new drug development.

Prior and current theories of pain mechanisms
Contemporary pain research has been inspired by prior and current theories of pain mechanisms
such as Gate Control Theory 18, 55, 56, 80, 81, 84, 87, 94, 98. Over years, the concept of
neuroplasticity that the nervous system responds to tissue damage with active changes has
stimulated extensive research to understand the cellular and molecular mechanisms of
peripheral and central sensitization 5, 6, 17, 19, 20, 24, 36, 37, 43, 62, 78, 97, 104, 132, 135, 138, 141,
146. Investigations into new pain mechanisms have indeed played a vital role in guiding
innovative translational efforts in pain medicine. For instance, evidence for ectopic discharges
at the dorsal root ganglion after nerve injury 30 and the discovery of new sodium channel
subtypes 95 led to clinical trials of various sodium channel blockers and the introduction of a
clinical intravenous lidocaine test 71. Similarly, new findings from an ever growing number of
signal transduction pathways contributory to peripheral and central sensitization have resulted
in many attempts of new drug development targeting the nociceptive pathways at the
transcriptional, translational, and/or post-translational level 33, 34, 54, 66, 75, 77, 92, 93, 95, 116,
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117, 119, 127, 128, 130, 134, 138, 140, 142, 143. An important aspect of contemporary pain research
is that pain is no longer considered to be a passive response of tissue damage but an active
process that involves plastic changes at both the system and cellular level, although how these
plastic changes contribute to hyperalgesia or allodynia in the clinical setting remains largely
unclear.

New additions in clinical pain management
There have been many important improvements in clinical pain management including new
tools in acute pain treatment, new drug delivery systems, and a few new pain medications.

1. Clinical management of acute pain including postoperative pain has been dramatically
improved. For example, patient-controlled analgesia (PCA), either intravenous or
epidural, has provided an effective tool to manage postoperative pain. Introducing
PCA into daily clinical practice would not have been possible without extensive
preclinical and clinical research on the pharmacology of systemic and spinal
analgesics 9, 63, 111, 139, 140, 141. By comparison, clinical management of chronic pain
remains difficult, particularly pathological pain such as that from injury to the nervous
system.

2. Perhaps the most notable advancement in pain medicine are those emerging new drug
delivery systems that have extended the use of analgesics beyond conventional (e.g.,
oral, intravenous, intramuscular) drug delivery routes. As listed in Table 1, new drug
delivery systems include, but are not limited to, transdermal, transmucosal, topical,
intranasal, and neuraxial (intrathecal/epidural) administration of opioid analgesics,
local anesthetics, and non-steroidal anti-inflammatory drugs 9, 27, 28, 50, 63, 89, 109,
111, 112, 114, 139, 140, 141. In many cases, these new drug delivery systems provide
more comfort for patients, fewer side effects, and a quicker onset of pain relief than
conventional drug delivery methods. In addition, new drug formulae such as extended
versus immediate release opioid analgesics allow clinicians to tailor the pain treatment
for various clinical pain patterns (e.g., constant versus episodic) with different drug
combinations. These new drug delivery systems are invented to meet clinical needs,
which is inspired by the better understanding of pain mechanisms through preclinical
and clinical research.

3. The list of pain medications currently in clinical use has been expanded, when
compared to that of several decades ago (Table 1). New additions in the
armamentarium of pain medications may be divided into three groups. (a) Most of
these new additions are those medications already in use for other clinical conditions
including broad (e.g., tricyclic antidepressants) or selective serotonin and/or
norepinephrine reuptake inhibitors and central-acting alpha2 adrenoreceptor agonists
68, 108. Additional examples include anticonvulsants such as gabapentin, which were
initially developed for the seizure treatment and now widely used for pain
management 72. (b) There is a significant expansion of opioid analgesics along with
innovative drug delivery systems 9, 27, 63, 111, 112, 114, 139, 140, 141, 139. (c) Only a
few new agents have been brought into clinical practice, including cyclooxygenase-2
(COX-2) inhibitors (anti-inflammatory drugs), triptans (anti-migraine agents),
tramadol (an analgesic with mixed mechanisms of action), and selective calcium
channel blocker 2, 29, 46, 61, 125. Unfortunately, the majority of these new agents have
only limited clinical utility due to their adverse effects such as cardiovascular side
effects (e.g., COX-2 inhibitors) and neurotoxicity (e.g., selective calcium channel
blocker) 2, 12, 83.
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New modalities of interventional pain management
Innovation in new medical technologies has led to a substantial improvement in interventional
pain management. While the extent of their clinical utility is debatable, interventional
procedures (e.g., epidural steroid injection) are undoubtedly an integral part of contemporary
pain medicine. Several new modalities of interventional procedures, including sympathetic
block, spinal cord stimulation, and implanted intrathecal pump for spinal drug delivery, become
available owing to the success in preclinical and clinical pain research. Recently, deep brain
stimulation, commonly used to treat motor disorders, has been tried as a possible clinical tool
for managing intractable neuropathic pain 121.

Potential targets for new drug development
Despite few success stories, extensive efforts are being made for new drug development. The
readers are directed to the references cited in Table 2 with regard to more than a dozen potential
targets of new drug development. These potential targets are identified through preclinical
research, some of which have gone through extensive clinical trials. In general, many of these
pipeline drugs need to clear huge hurdles such as their small therapeutic window and severe
adverse effects. Moreover, many of these potential drugs target redundant cellular sites (e.g.,
receptors and kinases within a cellular cascade) of the nociceptive pathways, which often lack
the specificity (nociception specific) at both the cellular and system level.

The scope of translational pain research
Despite the above-mentioned achievements, pain research still faces enormous challenges and
there remain many obstacles in the treatment of clinical pain, particularly chronic pain. There
clearly is an urgent need for clinically meaningful translational pain research 22, 69.
Traditionally, translational research is regarded as a process of bringing bench findings to
clinical application. Translational pain research, however, will require coordinated bi-
directional approaches between bedside and bench because of the subjective nature of pain
experiences.

Translational pain research needs to involve the following areas. (1) Current theories or
concepts of pain mechanisms need to be critically reviewed and analyzed to provide a new
roadmap of contemporary pain research. Preclinical research should move beyond studying
the mechanisms of nociception to include investigations into the brain processing of pain
perception and its related motor, autonomic and psychological responses. For instance, it would
be of significance to compare the similarities and differences in the cellular process between
the spinal cord and various brain regions in response to peripheral nociceptive input. (2)
Differences and similarities between animal and human experimental pain models and their
relationship with clinical pain conditions should be compared and the limitations of these
models are appropriately recognized. Experimental “pain” models, particularly preclinical
models, are the foundation of pain research. Their relevance to clinical pain should be
constantly revisited. (3) Limitations of preclinical and clinical pain assessment tools have been
well recognized. As such, developing innovative objective pain assessment and monitoring
tools should be a top priority of translational pain research. (4) Current strategies of new drug
development need to be evaluated and perhaps overhauled. Specific considerations should be
given to understand the limitation of pharmacological interventions targeting similar cellular
and intracellular mechanisms that may or may not be specific to the processing of nociception
and pain. (5) Dialogues between researchers and clinical practitioners must be strengthened as
an important part of translational pain research. Some of these issues will be further discussed
in the remaining of this article.
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Recognizing the gap between current pain mechanisms and clinical pain
For decades, preclinical research has focused on the cellular and molecular mechanisms of
peripheral and central sensitization induced by tissue damage. Although overwhelming
evidence supports the notion that neuroplasticity in the form of cellular and molecular changes
occurs at both peripheral and central loci after tissue damage (see above references), it is unclear
whether the concept of neuroplasticity is sufficient to explain the chronicity and diversity of
clinical pain phenomenon.

1. Pathological pain can result from trivial tissue damage [e.g., complex regional pain
syndrome (CRPS) type I] and often lasts far beyond the duration of the original impact
38, 99, 103. How does trivial tissue damage produce lasting neuroplastic changes
leading to persistent clinical pain? What are the mechanisms underlying the transition
from acute to chronic pain? If neuroplasticity is a collective outcome of many initial
changes after tissue damage, how does neuroplasticity become sustained at months
and years after the initial injury?

2. The intensity of clinical pain such as CRPS is comparable with that of physiological
(experimental) pain (e.g., response to transient heat stimulation) 100, 103. That is,
pathological pain (e.g., following peripheral nerve injury) is not necessarily more
painful than physiological pain if judged by pain intensity alone. By contrast, words
used to describe pathological pain (e.g., burning, nagging, diffuse, debilitating)
indicate changes in pain quality as well as emotional and affective pain responses
79. If so, what is the biological basis of such differences between physiological and
pathological pain? A relationship has yet to be established between biochemical and
molecular changes (often being focused at the spinal level) after tissue damage and a
persistent clinical pain state that reflects more on changes in pain perception than the
nociceptive processing.

3. Clinical pain is often characterized as spontaneous pain, which refers to the type of
pain that occurs in the absence of overt peripheral stimulation 16, 103. Moreover,
clinical pain is highly dynamic in the intensity, timing, duration, location, quality, and
sensory modality. Patients often describe their chronic pain as having ‘good days and
bad days’. In many cases, allodynia can become hyperalgesia, and vise versa, in the
same affected skin area 38, 99, 103. If so, does the concept of neuroplastic changes
after tissue damage adequately predict and explain such diversities of clinical pain
patterns?

4. An intriguing hypothesis based on the concept of neuroplasticity and central
sensitization is the idea of preemptive analgesia 26, 58, 137. A considerable number of
clinical studies have been conducted to test this hypothesis and the outcome has been
inconsistent 69, 113, 144. By comparison, most preclinical studies report effective
treatments from comparable doses of the same test compounds. Where does this gap
come from? Is the preclinical information lost in translation or is there a deficiency
in the conceptual framework that guides these clinical studies? More discussion on
these issues will be provided below.

Translational pain research can make major differences by providing timely and critical
feedbacks to both researchers and clinicians, through critically analyzing current theories of
pain mechanisms and research approaches. A system, similar to that used to assess the validity
of clinical trials, should be established to examine the relevance of preclinical research to
clinical pain. This system should also track the success and failure of translational efforts such
as clinical trials and provide the post-market analysis of any new pain medication or treatment
modality. To this end, translational pain research could function as a “think tank” to 1) avoid
the behavior of “cluster research” that leads to repetitive research themes and 2) guide clinical
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research before a major drug development effort is launched through costly and far too often
disappointing clinical trials.

Issues related to translation from bedside to bench
The subjective nature of pain experiences makes it difficult, if not impossible, to produce
experimental “pain” in animals. Indeed, mimicking clinical pain conditions using animal
models is the most challenging first step of translational pain research. Several issues are
worthwhile considering.

Experimental “pain” models
Arguably, animal ‘pain’ models only produce conditions of tissue damage (nociception) but
not necessarily all dimensions of clinical pain (a subjective experience). Even if animal models
do duplicate clinical pain experiences like humans, there is a lack of effective assessment tools
(e.g., a well-designed operant assessment paradigm) to detect different dimensions of pain
experiences in animals. Therefore, the successful intervention of nociception demonstrated in
animal models may or may not predict a similar outcome for clinical pain, because animal
models of tissue damage (e.g., nerve injury) do not necessarily duplicate multi-dimensions of
clinical pain. Although in many cases blocking nociception is a necessary step in clinical pain
management, it is often not a sufficient step for the treatment of many chronic pain conditions.
In this regard, a distinction between pain and nociception must be clearly made in preclinical
and clinical research, as it is not just a semantic issue. The deficiency of animal ‘pain’ models
makes the translation from bench to bedside rather unpredictable. A step in the right direction
would be to include those assessment parameters that may reflect the perception of nociception
in experimental animals, such as spontaneous pain behaviors and operant pain paradigms 73,
85.

Spontaneous versus stimulus-induced pain
Spontaneous pain is a salient feature of clinical pain. But, is this type of clinical pain really
spontaneous? What is the generator of spontaneous pain, especially for those pain conditions
(e.g., CRPS type I) that appear to be absent of overt tissue injury? Does testing the nociceptive
response (e.g., stimulus-evoked response) in animal models capture this important feature of
clinical pain? Observation of spontaneous pain behaviors and operant pain assessment
paradigms are not commonly used in preclinical research, presumably because these methods
are time-consuming and difficult to quantify and the results are just as difficult to interpret.
After all, if clinicians could not validate whether a patient is indeed having pain, how could
one tell what a rodent is feeling about nociception? However, those behavioral tests that almost
exclusively focus on stimulus-induced responses do deepen the deficiency in preclinical pain
research and complicate the translation from bench to bedside. For example, despite the fact
that thermal hyperalgesia is hardly a clinical issue, testing thermal hyperalgesia is the most
commonly used behavioral endpoint in preclinical research. As such, those pharmacological
interventions that appear to be effective in preventing or reversing thermal hyperalgesia in
animal “pain” models are often prematurely and perhaps erroneously used to launch a multi-
million dollar new drug development program. If so, one might also wonder whether a strategy
of new drug development aimed at blocking thermal hyperalgesia alone using TRPV1
antagonists would have a broad clinical implication.

Acute versus chronic (pathological) pain
One of the examples of acute pain is uncomplicated and temporary postoperative pain. In many
cases, acute pain can be effectively managed with analgesics (e.g., epidural, oral or
intravenous). By contrast, pathological pain such as neuropathic pain (e.g., post-herpetic
neuralgia, CRPS I or CRPS II) often presents a prolonged time course and remains very difficult
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to treat. Over years, preclinical research has focused on these immediate (within days or weeks)
cellular and molecular changes following nerve injury. Are these changes in nociceptive
responses truly responsible for a persistent pain state that is present at weeks, months or even
years after the initial injury? That is, is the initiating nociceptive barrage sufficient to trigger
a long-lasting pain state or is a persistent, low-level nociceptor discharge required to sustain
these changes? Is chronic pain a continuum of a prolonged acute nociceptive state or a result
of recurrent acute pain (e.g., chronic lower back pain due to repeated lumbar disk herniation)?
Translational research should be positioned to explore the relationship between these initial
responses to tissue damage and a chronic pain state that is more likely to involve changes in
the perception of nociception.

Constructive dialogue in the field
Translational pain research requires constructive dialogues among basic scientists, pain
practitioners, pharmaceutical chemists, and patients as well as collaborations among various
clinical disciplines including anesthesiology/pain medicine, orthopedic surgery and
neurosurgery, physical medicine and rehabilitation, neurology, rheumatology, palliative care,
oncology, psychology, and psychiatry/addiction medicine. To date, only a few academic
institutions have launched translational pain research programs, many of which are focused on
promoting clinical trials. Clearly, more efforts need to be made to facilitate such dialogues.

Issues related to translation from bench to bedside
A failed clinical trial could be due to the flawed (conceptual or technical) preclinical
information, a poor clinical study design, and/or the reality that human biology differs from
that of non-humans. If clinical trials fail because the bench information is lost in the process
of translation, what factors may turn a potentially successful clinical trial into a failed one?
The following text will use N-methyl-D-aspartate (NMDA) receptor antagonists as an example
to discuss several common issues related to this topic.

Preclinical research strongly supports a critical role of the NMDA receptor in the mechanisms
of pathological pain, because investigational (AP-5, MK-801) or clinically available (ketamine,
amantadine) NMDA receptor antagonists have been repeatedly shown to be effective in
preventing or reversing hyperalgesia in animal models of inflammation or nerve injury 21, 32,
35, 74, 137. These reproducible preclinical findings have led to a large number of clinical studies
(both randomized studies and case observations) to examine the clinical utility of NMDA
receptor antagonists 113. However, clinical outcomes from these studies are substantially
inconsistent (see selected examples in Table 3). Besides the lack of selective NMDA receptor
antagonists, the following issues may have contributed to the discrepancy between the
preclinical and clinical findings.

Experimental conditions
Preclinical studies demonstrate that NMDA receptors play a pivotal role in the mechanisms of
central sensitization 35, 74, 122. In general, preclinical studies consistently show that NMDA
receptors are not involved in physiological “pain” such as that following transient noxious
stimulation without persistent tissue damage because blocking NMDA receptors does not
change the baseline nociceptive response to nociceptive stimulation 70. If so, NMDA receptor
antagonists would be expected to reduce hyperalgesia (returning the nociceptive threshold to
the baseline) but not to produce analgesia (raising the nociceptive threshold above the baseline).
With this in mind, those positive versus negative clinical studies listed in Table 3 appear to be
largely correspondent to the etiology of pain conditions in these clinical studies. Negative
outcome studies are often associated with acute postoperative pain conditions whereas positive
outcome studies with neuropathic pain conditions (e.g., hyperalgesia). Therefore, a meaningful
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translation process through clinical studies should begin with careful choices of appropriate
clinical pain conditions that are consistent with the conditions examined in preclinical models.

Pharmacokinetic and pharmacodynamic issues
A detailed discussion on the role of pharmacokinetic (PK) and pharmacodynamic (PD) issues
in translational research is beyond the scope of this article. However, differences in dose
regimens (e.g., half-life, bioavailability) between animal and human studies may be a critical
contributing factor to the outcome of a clinical study. For example, animal studies suggest that
tonic activation of NMDA receptors after tissue injury is initiated and maintained by peripheral
nociceptive input 49. As such, the continuous presence of an NMDA receptor antagonist is
required to block the development of hyperalgesia in animal models 73, 105. As shown in Table
3, those negative outcome studies often used a single dose regimen whereas a multi-dose
regimen was used in these positive outcome studies. In some cases, the doses for an agent used
in animal studies may not be achievable in human studies due to side effects. Therefore, a
potential mismatch in the PK/PD issues between animal and human studies should be carefully
considered in designing clinical studies in order to identify the critical period of potential
contributions to clinical pain conditions from a certain cellular response (e.g., activation of
NMDA receptors).

Pain assessment tools
A withdrawal response to thermal or mechanical stimulation is the most commonly used
preclinical tool to assess nociceptive behavior, whereas a self-reporting system (visual analog
or numerical pain scales) is used to assess pain in clinical studies. This mismatch has significant
implications in translational research because different assessment tools evaluate different
aspects of a pain condition. A stimulus-based withdrawal response primarily reflects a spinally
mediated process of nociception, whereas a self-reporting system provides information of pain
experiences (the perception of nociception that must involve the brain). Neither a withdrawal
response nor a self-reporting system is optimal for the pain assessment. However, when two
different assessment tools are used in preclinical versus clinical studies, two very different
study endpoints requiring different neural structures and processes are being compared,
multiplying the unpredictability of clinical studies.

Comorbidity, gender and genetic difference, and secondary gains
Chronic pain often exists with clinical comorbidity such as depression and is confounded by
many clinical factors (e.g., issues related to secondary gains). A recent study shows that
mechanical allodynia is exacerbated in rats with depressive behaviors 145, suggesting that
comorbidity could influence nociception and its behavioral assessment in animal studies as
well. Moreover, most preclinical studies do not take into consideration the gender difference
whereas clinical data clearly show differences in pain perception between male and female
subjects 123. There are also concerns regarding the pharmacogenetic influence on clinical
responses to a drug therapy 44. If clinical trials are conducted under a “pure” clinical condition
(a limited age range, gender selection, lack of comorbidity, a selective range of pain scores),
how could a new drug be expected to help pain patients who happen to be outside the 95%
limit of inclusion criteria of such clinical trials? A related issue is that placebo responders and
non-responders could further confound the clinical trial outcome, which leads to the next topic
on searching for objective clinical pain assessment tools.

Searching for objective pain assessment tools
The lack of objective clinical pain assessment tools makes it difficult to conduct clinical studies,
provide valid clinical diagnosis, and adequately evaluate treatment outcomes. Therefore,
searching for objective pain assessment tools is a fundamentally important challenge of pain
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research. To date, clinical pain assessment tools remain subjective and unreliable. Due to the
scope of this article, only a brief discussion is provided for each assessment tool in the following
text.

Self-reporting of pain
Currently, this is the only tool used to assess clinical pain conditions. Patients report pain
intensity (sometimes pain affect as well) on a numerical or visual analog scale (e.g., 0–10) or
through identifying facial or other drawings. These systems are obviously subjective with
enormous individual variations 39. Recently, the Joint Commission (formerly the Joint
Commission on Accreditation of Healthcare Organizations) declared pain as a fifth vital sign
(as opposed to a symptom). While other vital signs (heart rate, blood pressure, temperature,
and respiration rate) are objectively measurable, pain is measured in subjective terms (i.e., pain
score). Another problem with self-reporting systems is that they are seldom given an anchor
or reference point for the scale, if such an anchor or reference point can be practically
established. As such, self-reporting systems may be useful for within-subject comparisons
(e.g., before or after a treatment) but woefully inadequate for between-subject comparisons.

Quantitative sensory testing (QST)
QST is mainly used in clinical pain research to examine pain threshold and tolerance in response
to a calibrated stimulus (e.g., thermal stimulation at 43 °C vs. 46 °C), which somewhat mimics
behavioral testing in animal studies. Although the stimulus intensity is quantitative, the
response to stimulation is still reported in a subjective term. Moreover, such responses do not
adequately differentiate between the intensity and affective dimension of pain.

Sympathetically mediated response
This method detects changes in sympathetically mediated responses to pain such as changes
in heart rate and skin impedance 118. However, the information obtained using this technique
captures only secondary responses to pain but not pain perception per se. This method is also
subject to confounding factors (e.g., anxiety) and its sensitivity and specificity are clearly
diminished in chronic pain conditions.

Neuroimaging
Neuroimaging methods, such as fMRI and PET, have provided significant information on the
brain processing of pain 3, 7, 25, 96, 120 and proposed to be used to aid clinical diagnosis of pain
(as pain markers) and new drug development 11, 22. Technically, fMRI and PET images do not
provide the real-time dynamic response of pain; whereas electroencephalography (EEG) alone
has limited spatial resolution. Other neurophysiological tools such as
magnetoencephalography in combination with anatomic MRI or fMRI as well as biomarkers
for nociception may be better situated to obtain both temporal and spatial information of clinical
pain 102.

Biomarkers and genetic information
Can biological markers such as the waxing and waning of a cellular element (e.g., cytokine)
and/or genetic information be used as objective indicators of clinical pain? Can such markers
be used to predict transitions from acute to chronic pain? Research in this area has just begun
and more information will become available, although it appears unlikely that either biological
markers or genetic information alone would be sufficient to diagnose or predict a clinical pain
condition. Steps need to be taken to differentiate these markers as “by-standers” and “causal
players” in the mechanisms of pathological pain. Moreover, a critical distinction needs to be
made between biomarkers for nociception after tissue damage (e.g., change in proinflammatory
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cytokines) and potential markers for clinical pain experiences (e.g., cortical neurophysiological
responses).

Mechanism-based pain phenotyping
A decade ago, a group of scientists in the pain field proposed to link clinical pain to the
underlying cellular mechanisms (i.e., mechanism-based pain classification) and to use this
approach to improving clinical pain treatment 136. Although this concept has its merit, the
clinical reality remains far removed from this tantalizing idea for several reasons: a) multiple
cellular mechanisms are often responsible for a single clinical pain phenotype, b) multiple
clinical pain phenotypes often dynamically present in a same patient, c) currently available
pain medications are hardly specific for any particular cellular mechanism, and d) there is a
lack of objective pain assessment tool to evaluate the effectiveness, or lack thereof, of a given
treatment regimen.

In summary, searching for objective pain assessment tools should be considered as one of the
top priorities of translational pain research. Indeed, the above discussion raises more questions
than solutions, but the need for strengthening this research area is well recognized. The success
in this area will help a) reform current empirical clinical pain management approaches, b)
revolutionize clinical and basic science pain research, c) formulate new drug development
strategies, and d) differentiate clinical pain from confounding factors (e.g., drug addiction).

Perspectives
As translational pain research makes its progress, its scope is likely to be further revised and
expanded. After nearly five decades of extensive basic science and clinical pain research,
clinical pain management still faces enormous challenges. There are many disconnections
between the overflow of information from basic science research and the effectiveness of
clinical treatment of chronic pain. Currently, translational pain research is still at the stage of
identifying critical issues to be addressed and exploring new research tools. However,
translational pain research can be expected to play a pivotal role in advancing pain medicine.
The ultimate goal of translational pain research is to maximize the yield from both preclinical
and clinical studies, thereby shortening the transition period from research to clinical
application.
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Table 1
New Additions of Pain Medications

Tricyclic antidepressants

Selective norepinephrine or serotonin reuptake inhibitors

Cyclooxygenase-2 inhibitors

Topical analgesics (e.g., Lidocaine patch; Non- steroid anti-inflammatory drug patch)

Alpha-2 receptor agonist (Tizanadine)

Transdermal opioid (Fentanyl patch)

Fentanyl HCL patient-controlled transdermal system

Transdermal buprenorphine

Intrathecal drugs (e.g., Ziconotide)

Triptans (5-HT receptor agonists)

Opioid receptor agonist/SNRI/SSRI combination (e.g., Tramadol)

Sublingual opioid

α2-δ Ca2+ subunit blocker (Gabapentin/pregabalin)

Anticonvulsants

Others (e.g., Topiramate)
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Table 2
Potential Targets for New Drug Development

Site of action Effect Reference

Transient receptor potential channel Antagonist 10, 59, 91, 106

Cannabinoid receptor (CB1, CB2) Agonist 1, 4, 8, 13, 53, 65

Potassium channels Blocker 52, 88

Voltage-gated calcium channel Blocker 2, 12, 83

Voltage-gated sodium channel Blocker 42, 110, 133

Purinergic P2 receptor Antagonist 14, 23

Nerve growth factor Inhibitor 57, 129

Chemokine Inhibitor 47

Proinflammatory Cytokine Inhibitor 107, 127

Glutamate receptor Antagonist 45, 90

Nicotinic acetylcholine receptor Antagonist 60

Neurokinin receptor Antagonist 67

Opioid/NMDA receptor antagonist Combination 131

Catecholamine modulator 45

Adenosine receptor Agonist 115
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Table 3
A Partial list of Clinical Studies Using NMDA Receptor Antagonists

Clin. Model Drug Dose Regimen Outcome References

Hysterectomy Ama 200 mg, iv, pre-op Negative 48

Knee Dex 200 mg, po, pre-op Negative 124

Abdominal Dex 120 mg, im, pre-op Negative 58

Hysterectomy Dex 27 mg, po, peri-op Negative 76

CNP Ket > 100 mg/d, po Positive 41

PHN Dex 125 mg/d, po Positive 64

PHN Ket 0.15 mg/kg/hr × 7 d Positive 40

NCP Ket 400 mg/day, sc Positive 82

NCP Ama 200 mg/3 hr, iv Positive 101

Legends: Knee: knee surgery; Abdominal: abdominal surgery; CNP: chronic neuropathic pain; PHN: postherpetic neuralgia; NCP: neuropathic cancer
pain; Ama: amantadine; Dex: dextromethorphan; Ket: ketamine; Pre-op: pre-operative; Peri-op: peri-operative; PO: oral; iv: intravenous; sc: subcutaneous;
im: intramuscular.
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