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Effective representation and characterization of biosyn-
thetic pathways of glycosylation can be facilitated by math-
ematical modeling. This paper describes the expansion of
a previously developed detailed model for N-linked glyco-
sylation with the further application of the model to an-
alyze MALDI-TOF mass spectra of human N-glycans in
terms of underlying cellular enzyme activities. The glyco-
sylation reaction network is automatically generated by the
model, based on the reaction specificities of the glycosy-
lation enzymes. The use of a molecular mass cutoff and
a network pruning method typically limits the model size
to about 10,000 glycan structures. This allows prediction
of the complete glycan profile and its abundances for any
set of assumed enzyme concentrations and reaction rate pa-
rameters. A synthetic mass spectrum from model-calculated
glycan profiles is obtained and enzyme concentrations are
adjusted to bring the theoretically calculated mass spectrum
into agreement with experiment. The result of this process
is a complete characterization of a measured glycan mass
spectrum containing hundreds of masses in terms of the
activities of 19 enzymes. In addition, a complete annota-
tion of the mass spectrum in terms of glycan structure is
produced, including the proportions of isomers within each
peak. The method was applied to mass spectrometric data of
normal human monocytes and monocytic leukemia (THP1)
cells to derive glycosyltransferase activity changes underly-
ing the differences in glycan structure between the normal
and diseased cells. Model predictions could lead to a bet-
ter understanding of the changes associated with disease
states, identification of disease-associated biomarkers, and
bioengineered glycan modifications.
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Introduction

Glycans are highly variable and structurally diverse sugar chains
that, when attached to membrane proteins and lipids, are a dom-
inant feature of the mammalian cell surface. In contrast to pro-
tein structures, glycan structures are not directly encoded in the
genome. Instead, the structure of secreted and membrane-bound
glycans is determined during their assembly in the endoplasmic
reticulum and the Golgi apparatus by a controlled sequence of
glycosyltransferase and glycosidase processing reactions. In this
paper, we have put forth a modeling methodology that enables
the prediction of N-glycan mass spectrum data based on the
activities and levels of processing enzymes distributed within
mammalian cells. The many glycan structures found in cells are
defined as a result of the enzyme activities, concentrations, and
localization, and substrate and cofactor concentrations at the
site of synthesis. In many diseases, including cancer, the dis-
tribution of glycan structures often differs from that of normal
cells, leading to the possibility that disease-specific glycan struc-
tures exist and that these differences can be used for diagnostic
and therapeutic purposes (Sell 1990). The ability to interpret
these differences between normal and diseased states based on
changes in the intracellular processing events and enzyme ac-
tivities is especially intriguing. Development of glycan-based
clinical procedures has been hindered by the difficulty of an-
alyzing the thousands of oligosaccharide structures found on
cells, which are usually present in minute quantities that make
structural characterization a formidable challenge; this prob-
lem is compounded by the lack of a template for glycan struc-
tures that would allow their amplification by PCR-type methods.
In recent years, however, new high-throughput and emerging
glycomic technologies have been developed that are begin-
ning to provide rapid advances in unraveling this complexity
(Campbell and Yarema 2005; Packer et al. 2008). In particular,
considerable effort has been put forth toward analytical methods
to identify complex glycan structures and toward databases that
relate these analytical measurements to known glycan structures
and their properties. Some bioinformatics work has focused on
the automatic annotation of mass spectra, involving the puta-
tive identification of glycan structures responsible for each of
the measured peaks (von der Lieth et al. 2006; Goldberg et al.
2007). This type of analysis should be very useful for identi-
fying glycan biomarkers that differentiate between healthy and
diseased cells.

A more ambitious goal is to relate the observed mass spec-
trometric measurements to the underlying cellular enzymatic
processes that cause them. This relationship could be used to
interpret changes that occur in glycan structure associated with
diseases in terms of alterations in the enzyme activities or lev-
els. The goals of spectrum annotation and analysis of cellular
processing changes could then be accomplished simultaneously
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with a mathematical model that quantitatively relates differ-
ences in experimental glycan profiles to the underlying changes
in enzymatic activities.

One approach to relate glycosylation enzyme activities, or
their gene expression levels, to glycan structure is based on a
statistical analysis of the types of bonds each enzyme creates or
cleaves with the abundances of the various bond types in each
member of a large database of glycans (Kawano et al. 2005;
Suga et al. 2007). The method, takes an observed change in the
expression levels of glycosylation genes, say for normal and
malignant cells, and predicts which glycan structures are likely
to be increased or decreased by the change. While these results
are promising, they are inherently qualitative. For a quantita-
tive understanding of how changes in enzyme activities affect
the profile of glycan structures produced, a model that includes
details of the cellular processes that govern glycosylation is
needed. Toward achieving this objective, the KB2005 model
(Krambeck and Betenbaugh 2005) extended previous modeling
attempts that had been limited to small subsets of the glycan
structures (Umana and Bailey 1997) and specific enzymes such
as for sialylation (Monica et al. 1997) to comprehensively model
mammalian glycosylation at the cellular level for the first time.
The KB2005 model separated glycan processing events into
multiple zones that represented the Golgi compartments, each
of which included the repertoire of enzymes known to process
N-glycans in that compartment. The distribution of N-glycans
that emerged from each compartment depended on the specific
enzymes present, their activity levels, and the amount of co-
factors available. In all, more than 22,800 different reactions
were generated in this network from 11 enzymes capable of
producing up to 7565 different N-glycan products. Overall the
KB2005 model predicted the majority of the N-glycans known
to be produced by CHO cells.

In the current paper, the modeling framework of KB2005 has
been expanded using a general coding scheme that allows incor-
poration of many more glycosylation enzymes and structures.
Literature data were reviewed in order to add the properties of
enzymes needed for human N-glycans to those already included
in the previous model for CHO cells. In addition to the new
framework, methods for directly comparing model results with
measured mass spectra have been incorporated.

This latter capability for comparing a model-generated syn-
thetic mass spectrum to an experimental spectrum is particularly
advantageous. It eliminates the requirement to separately iden-
tify (or “annotate”) the individual peaks in the mass spectrum.
Current methods of automatic annotation are based on libraries
of known or possible glycan structures with heuristic rules for
selecting the most likely structures to explain each individual
peak (Goldberg et al. 2005). While such annotation methods are
very useful, there are often a number of alternative structures
for the same peak and unidentified peaks that cannot be as-
signed. Also, since each individual peak is analyzed separately,
structures assigned to one peak may require enzyme activities
inconsistent with those structures assigned to another peak in the
same spectrum. In this respect, a byproduct of fitting the model
to a complete measured mass spectrum is a model-predicted set
of structures that are consistent and optimized across the entire
collection of peaks in the mass spectrum and not independent
of each other.

While it is true that a single molecular mass number can
result from many different isomers, a unique feature of this

model-based method is that it matches all the peaks in the
spectrum at once with a set of enzyme activities. A wealth
of biological background information is already incorporated in
the model, including which specific isomers are produced by
the combined action of the enzymes. Adjustment of the enzyme
activities to match the mass spectrum then results in a detailed
consistent explanation of the spectrum in terms of individual
structures.

In addition to identifying glycans from mass spectrometric
data, the model includes the predictive capability to link reac-
tion networks catalyzed by intracellular glycosylation enzymes
to the final cellular complement of glycan structures. We antici-
pate that this relationship can be used to characterize differences
between normal and diseased cells in terms of enzyme activi-
ties derived from measured mass spectrometric data from each
cell type. In this way, our software suite has the potential to
identify and characterize glycan-based disease markers in the
context of cellular processing events and, especially, in terms
of glycosylating enzyme activities. The model can also be used
to predict how potential bioengineered changes in the enzyme
activity profile of the cells will affect the glycan profile.

To illustrate this approach with a specific example, we
present a case where the model parameters, specifically en-
zyme activities, were adjusted to match normal and malig-
nant human monocyte N-glycan mass-spectra obtained from
the Consortium for Functional Glycomics (CFG) website
(http://functionalglycomics.org). The shifts in enzyme activi-
ties inferred by the model from the raw mass-spectrometric data
were largely consistent with literature observations of normal
versus malignant N-glycan profiles.

Results

Reaction network generation
A new framework that is far more flexible and general than
the prototype version used in the KB2005 model was devel-
oped and implemented in the software module for the automatic
generation of glycosylation structures and reaction networks.
In the new framework, glycan structures are expressed using
a condensed version of IUPAC linear formulas (McNaught
1996), with the shortened monosaccharide codes used in the
LinearCode (Banin et al. 2002), but with a simpler branch order-
ing rule. Lowercase “a” and “b” denote α and β. The condensed
formulas are explained below in more detail under Material and
methods. Examples of some formulas are shown in Figure 1.

Using the condensed formulas, enzyme specificities are de-
noted using a string substitution methodology. The basic idea
is to express the function of an enzyme by a pair of character
strings. The first, or substrate substring, is the formula repre-
sentation of the substructure of a glycan that the enzyme can
act upon. The second, or product substring, is the formula rep-
resentation of the substructure that the substrate substructure is
transformed into by the enzyme action. Additional constraints
on the substrate that are required for the enzyme action are ex-
pressed as a set of logical tests for the presence or absence of
other substrings in the complete substrate formula. Details are
explained in Material and methods.

This new framework allows the inclusion of sufficient ad-
ditional glycosylation enzymes to generate meaningful glycan
distributions for human N-glycans. The 19 enzyme activities
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Table I. Glycosylation enzymes included in the current model

Abbreviation Name EC number Example genes

ManI α2-Mannosidase I 3.2.1.113 MAN1A1, MAN1A2, MAN1B1, MAN1C1
ManII α3/6-Mannosidase II 3.2.1.114 MAN2A1, MAN2A2
a6FucT α6-Fuc-transferase 2.4.1.68 FUT8
GnTI β2-GlcNAc-transferase I 2.4.1.101 MGAT1
GnTII β2-GlcNAc-transferase II 2.4.1.143 MGAT2
GnTIII β4-GlcNAc-transferase III 2.4.1.144 MGAT3
GnTIV β4-GlcNAc-transferase IV 2.4.1.145 MGAT4A, MGAT4B
GnTV β6-GlcNAc-transferase V 2.4.1.155 MGAT5
iGnT Blood group i β3-GlcNAc-transferase 2.4.1.149 B3GNT1, B3GNT6
b4GalT β4-Gal-transferase 2.4.1.38 B4GALT1, B4GALT2, B4GALT3
a3SiaT α3-Sialyltransferase 2.4.99.6 ST3GAL3
IGnT Blood group I β6-GlcNAc-transferase 2.4.1.150 GCNT2
a6SiaT α6-Sialyltransferase 2.4.99.1 ST6GAL1
b3GalT β3-Gal-transferase B3GALT1, B3GALT2, B3GALT5
FucTLe α3/4-Fuc-transferase III 2.4.1.65 FUT3, FUT5, FUT6
FucTH α2-Fuc-transferase, Se, H 2.4.1.69 FUT1, FUT2
a3FucT α3-Fuc-transferase 2.4.1.152 FUT4, FUT7, FUT9
GalNAcT-A Blood group A α3-GalNAc-transferase 2.4.1.40 ABO
GalT-B Blood group B α3-Gal-transferase 2.4.1.37 ABO

For enzyme details, see Schomburg et al. (2004) (http://www.brenda.uni-koeln.de/).

Fig. 1. N-Glycan starting structures in the model. M = mannose ( ), GN =
N-acetylglucosamine (�), G = glucose (�).

now present in the N-glycan model, including the original 11 in
the KB2005 model, are shown in Table I.

The model follows the glycosylation reactions that take place
in the Golgi stack of a cell assuming Michaelis–Menten kinet-
ics to express the enzymatic reaction rates. The Golgi stack is

Table III. Adjustment rules added to improve agreement between the model
and data

Index Enzyme Rule kf Km Kmd

1 ManI #M = 9 1 500 1
1 ManI #M = 8 1 2.52 1
1 ManI #M = 7 1 1.04 1

The parameters Kf , Km, and Kmd for the indicated reaction rule index are
multiplied by the adjustments when the substrate contains the adjustment rule
string shown.

assumed to be consist of four compartments corresponding to
the cis-, medial- and trans-Golgi cisternae and the trans-Golgi
network. The model begins with the two starting high-mannose
structures of 9 and 8 mannose residues shown in Figure 1A and
B, which are assumed to be generated upstream of the model
in the endoplasmic reticulum and cis-Golgi network of the cell
(Krambeck and Betenbaugh 2005). In addition, the mass spec-
trometric data discussed below indicate the presence of peaks
corresponding to a small amount of 9-mannose glycan with a
remaining glucose residue, also included in Figure 1C.

The action of the enzymes of Table I on glycan substrates
is described by one or more reaction rules for each enzyme.
As an example consider the two reaction rules for the en-
zyme mannosidase I shown in Table II. These rules encapsu-
late the reaction network developed by Herscovics (2001) for
this enzyme. (Reaction rules for all the enzymes are given in
Table VI.)

Table II. Reaction rules for mannosidase I

Enzyme Substrate Product Constraint

ManI (Ma2Ma (Ma ∼∗2Ma3(. . .Ma6)Ma6 & #G = 0
ManI (Ma3(Ma2Ma3(Ma6)Ma6) (Ma3(Ma3(Ma6)Ma6)

Based on Herscovics (2001). See Table VII for explanation of rule symbols.
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Fig. 2. Reaction network generated by mannosidase I rules of Table II acting on the starting structures of Figure 1A and B (circled). This is the same network as
given by Herscovics (2001).

Table IV. Model enzyme concentrations (μM) adjusted to match the mass
spectra of glycans from human monocytes (normal) and THP1 monocytic
leukemia cells (malignant)

Enzyme Normal Malignant Ratio Reported trend Cancer types

ManI 0.821 0.599 0.73
ManII 0.625 0.588 0.94
a6FucT 0.266 0.247 0.93
GnTI 0.260 0.306 1.18
GnTII 1.557 0.537 0.35
GnTIII 0.0089 0.0401 4.52
GnTIV 0.222 0.271 1.22
GnTV 0.099 0.184 1.85 Up Various
iGnT 3.47 2.70 0.78
b4GalT 0.196 0.339 1.73
a3SiaT 0.240 0.077 0.32
IGnT 2.23 3.58 1.61
a6SiaT 2.72 2.71 1.00 Up Colon
b3GalT 5.04 1.65 0.33
FucTLe 0.071 0.808 11.4 Up Lung
FucTH 5.47 14.4 2.63
a3FucT 7.42 19.4 2.61 Up Lung
GalNAcT-A 0.000 0.014
GalT-B 0.929 0.574 0.62 Down Bladder

The two rightmost columns of this table show reported trends in enzyme
activities for various types of cancer (Brockhausen et al. 1998).

Table V. Sugar codes used in formulas

Monosaccharide Code
D-Galactose A
N-Acetygalactosamine AN
L-Fucose F
D-Glucose G
N-Acetylglucosamine GN
D-Mannose M
N-Acetylneuraminic acid NN

In applying reaction rules to a candidate structure, the algo-
rithm first encloses the formula of the structure in parentheses.
This ensures that the terminal residue of any branch begins with
a left parenthesis. The first substrate rule of Table II, “(Ma2Ma,”
specifies that a potential substrate glycan must contain a termi-
nal mannose residue connected via an α(1,2)-linkage to another
α-mannose residue for the rule to operate. Referring to Figure
1, it can be seen that the first of the three glycans in the figure

contains three such substructures, and the second and third con-
tain two.

The corresponding product rule, “(Ma,” specifies that the ac-
tion of the rule converts the “(Ma2Ma” substructure to “(Ma,”
thus removing the terminal mannose residue. The constraint
substring in Table II specifies further conditions that the poten-
tial substrate must satisfy for the rule to operate. The rule uses
some abbreviations that have been useful in expressing reac-
tion rules. The abbreviations used are defined in Table VII. The
first part of the constraint substring of the first rule in Table II,
“∼∗2Ma3(. . .Ma6)Ma6” states that there is one particular man-
nose that will not react by this rule, the terminal mannose on the
middle branch of the first structure of Figure 1. The “∼” indi-
cates the logical “not” operator and the “&” the logical “and”.
The “∗” indicates the reaction site on the substrate and the “. . .”
any valid branch. The second part of the constraint substring of
the first rule states that the rule will not operate if there are any
glucose residues in the structure. The second rule in Table II
indicates that once all the other α(1,2) mannose residues have
been removed the nonreacting α(1,2) residue will finally react.
The reaction network generated by repeated action of these two
rules acting on the initial structures of Figure 1 is shown in
Figure 2. Further details of the rule encoding scheme are given
in Material and methods, along with Table VI, containing the
rules for all the enzymes of Table I.

Applying the rules for each enzyme in turn to the starting
structures of Figure 1A and B generates a set of reactions and
new product glycan structures. For example, applying the first
rule of Table II to the 9-mannose starting structure (Figure 1A)
gives the two structures in the second column of Figure 2 that
are shown as products from the single structure in the first col-
umn of the figure. This process is then repeated using the new
product structures as potential substrates to generate more reac-
tions and structures. For example, the third column of Figure 2
results from applying the ManI first rule of Table II to the three
structures of the second column of the figure. The second rule of
Table II is applied to the last structure of the fourth column and
results in the structure of the fifth column. The process of gen-
erating structures is repeated until either the process terminates,
as it does in Figure 2 where no new structures can be generated,
or until some other criterion is met, such as a maximum mass
cutoff.

Using all the rules in Table VI, this algorithm never termi-
nates and an infinite set of structures is theoretically possible.
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Table VI. Current reaction rules

Index Enzyme Substrate Product Constraint

1 ManI (Ma2Ma (Ma ∼∗2Ma3(. . .Ma6)Ma6 & ∼#G = 0
2 ManI (Ma3(Ma2Ma3(Ma6)Ma6) (Ma3(Ma3(Ma6)Ma6)
5 ManII (Ma3(Ma6)Ma6 (Ma6Ma6 (GNb2|Ma3 & ∼Gnbis
6 ManII (Ma6Ma6 (Ma6 (GNb2|Ma3 & ∼Gnbis
7 a6FucT GNb4GN GNb4(Fa6)GN GNb2|Ma3 & ∼Gnbis & ∼Ab
8 GnTI (Ma3(Ma3(Ma6)Ma6)Mb4 (GNb2Ma3(Ma3(Ma6)Ma6)Mb4
9 GnTII (GNb2|Ma3(Ma6)Mb4 (GNb2|Ma3(GNb2Ma6)Mb4
10 GnTIII GNb2|Ma3 GNb2|Ma3(GNb4) ∼Ab & ∼Gnbis
11 GnTIV (GNb2Ma3 (GNb2(GNb4)Ma3 ∼Gnbis
12 GnTV (GNb2Ma6 (GNb2(GNb6)Ma6 ∼Gnbis
13 iGnT (Ab4GN (GNb3Ab4GN ∼∗ Ma3|Mb4
14 b4GalT (GN (Ab4GN (∼∗GNb4)(. . .Ma6)Mb4
15 a3SiaT (Ab4GN (NNa3Ab4GN
16 IGnT (Ab4GNb3Ab (Ab4GNb3(GNb6)Ab
17 a6SiaT (Ab4GN (NNa6Ab4GN
18 b3GalT (GN (Ab3GN (∼∗GNb4)(. . .Ma6)Mb4
20 FucTLe Ab3GNb Ab3(Fa4)GNb (Ab3∗ or (Fa2Ab3∗ or (NNa3Ab3∗
21 FucTLe (. . .Ab4GNb (Fa3(. . .Ab4)GNb (∗Ab4 or (∗Fa2Ab4 or (∗NNa3Ab4
22 FucTH (Ab3GNb (Fa2Ab3GNb
23 FucTH (Ab4GNb (Fa2Ab4GNb
24 a3FucT (. . .Ab4GNb (Fa3(. . .Ab4)GNb (∗Ab4 or (∗Fa2Ab4
25 GalNAcT-A (Fa2Ab (Fa2(ANa3)Ab
26 GalT-B (Fa2Ab (Fa2(Aa3)Ab

See Table VII for definitions of symbols used in formulating rules.

However, as a practical matter, structures beyond a certain
molecular weight are of negligible abundance and will never
be observed. Thus, the process of model reaction network gen-
eration is limited to a maximum glycan molecular mass. In the
example discussed below, in which the experimentally mea-
sured mass spectrum extends to 5000, the maximum molecular
mass in the model has been set to 4000 to keep the model at a
manageable size. In addition a network “pruning” method has
been developed to use literature-derived reaction rate parame-
ters to estimate the abundance of the glycans during the network
generation phase, so that structures of probable negligible abun-
dance can be dropped. These methods result in reasonably sized
models, with about 10,000–20,000 structures.

Model equations and parameters
Reaction rates are assumed to follow Michaelis–Menten-type
kinetics with separate sites on each enzyme for a substrate
and donor cosubstrate. Many substrates can compete for the
substrate binding site on each enzyme. The rate equation for
this system is given in Material and methods as Eq. (2). The
values of the kinetic parameters for a given enzyme can vary
significantly for different substrates. This was accommodated
by selecting base values for these parameters for each reac-
tion rule and adding a set of structure-dependent adjustment
rules. Development of these parameter values and adjustments
for CHO cell enzymes are detailed in KB2005 (Krambeck and
Betenbaugh 2005). These have been supplemented with
literature-based estimates for the additional human enzymes,
as explained in Material and methods.

The Golgi compartments have been modeled as a series of
four well-mixed reactors based on an earlier glycosylation mod-
eling approach (Umana and Bailey 1997). The reaction kinetic
equations are incorporated into steady-state material balance
equations for each glycan structure in each compartment to give
the complete set of model equations. Solution methods for the

approximately 40,000 equations and unknowns are explained in
Material and methods.

In addition to reaction kinetic parameters, the model includes
a number of other parameters needed for the calculations, in-
cluding compartment residence times, enzyme distributions be-
tween compartments, compartment volumes, total glycan con-
centration, and donor cosubstrate concentrations. These were
estimated based on a variety of literature sources as explained
in Material and methods. It should be emphasized that these
numbers are intended to be reasonable initial estimates subject
to further refinement as needed.

The primary objective of the model is to relate the glycan
structure profiles produced in different types of cells to the
relative activities of the glycosylation enzymes in these cells by
adjusting only enzyme concentrations to predict changes from
one cell type to another. This minimizes the effect of poorly
known or unknown model parameters on the predictions.

Use of the model to analyze experimental MALDI mass
spectrometric data for human cells
The Consortium for Functional Glycomics (CFG) maintains a
website (http://www.functionalglycomics.org) that contains a
wealth of data on glycan structures from a variety of normal and
diseased cells. The majority of the glycan structural data from
the CFG are in the form of MALDI-TOF mass spectrometer
measurements, a method that gives singly charged mass spec-
trum peaks with very little fragmentation of the molecules (i.e.,
MALDI profiles). Identification of MALDI-TOF mass spec-
trum peaks with specific structures is a bottleneck in utilizing
these data. Currently, the spectra on the CFG site are hand-
annotated with likely structures, but there are often alterna-
tive structures for the same peak and unidentified peaks. An
automated method for peak identification has been developed
(Goldberg et al. 2005). This method does an excellent job of au-
tomatically assigning likely structures to each peak. However,
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there are often many potential structures for the same peak.
While the method gives a likelihood score for each alternative,
the amounts of these alternative structures actually present can-
not be quantified.

To overcome these limitations, we developed an integrated
software package that fully and automatically calculates all mass
spectrum isotope peaks that result from each glycan structure
in the model. Since the model predicts the amounts of all the
significant glycan structures, it is possible to combine the mass
spectra of all the model-predicted structures into an entire syn-
thetic mass spectrum and compare this with the measured mass
spectrum directly. The comparison of the measured and calcu-
lated mass spectra requires some processing of the experimental
spectrum to correct for the baseline drift and mass calibration
error and to integrate the individual peak areas. Details of the
model mass spectrum calculation and adjustments to the ex-
perimental mass spectrometric data are given in Material and
methods.

A limitation of the synthetic mass spectrum calculation arises
from differences in the response factors for different compounds
in the mass spectrometer. There is no reliable method to predict
the response factor of an individual glycan quantitatively from
the glycan’s chemical structure. The mass spectra analyzed in
this paper were obtained on samples that were first permethy-
lated, which minimizes, but does not eliminate the variability of
the response factors. On the other hand, relative changes in in-
dividual peaks of the spectra from one sample to another should
still be significant.

Based on the comparison between calculated and experimen-
tal mass spectra, a nonlinear regression algorithm is used to
adjust the enzyme concentrations in the model to bring the cal-
culated mass spectrum into agreement with the measured mass
spectrum. When good agreement is obtained, the model results
provide not only an extremely detailed annotation of the mass
spectrum peaks, including the breakdown of peaks containing
multiple structures, but also an analysis of the entire glycan
profile in terms of underlying enzyme activities. Changes in
these enzyme activities provide a compact summary of the dif-
ferences in mass spectra between different cell types, such as
normal versus diseased. Importantly, because the model tracks
each individual glycan isomer, matching the model to the mass
spectrometric data gives an estimate of the proportion of every
isomer within each mass spectrum peak.

As an example, the CFG website contains mass spectromet-
ric data for both normal human monocytes and THP1 mono-
cytic leukemia cells (http://www.functionalglycomics.org/
glycomics/publicdata/glycoprofiling.jsp). These results were
analyzed by fitting the model to both data sets through ad-
justment of the model parameters.

A comparison between model calculated and processed ex-
perimental mass spectrometric peak areas, for both normal hu-
man monocytes and monocytic leukemia (THP1) cells, is shown
in Figure 3. The figure shows all the mass spectrometric peaks
with mass numbers in the 1400–4000 range. The data actually
extend to a mass number of 5000, but the model structures were
calculated only up to a mass number of 4000 in this demon-
stration in order to limit the number of model calculations per-
formed. The approach could be readily extended to any mass
number with a corresponding increase in the model calculations
and computing time. The peaks in the experimental data lower
than 1400 do not appear to correspond to N-glycans and are

Fig. 3. Comparison of measured mass spectrum peak areas of glycans from
normal human monocytes (�) and THP1 monocytic leukemia cells ( ) with
synthetic mass spectrum peak areas calculated from the model. The values
plotted are the relative peak areas as a percentage of the total area of the
spectrum. Mass numbers from 1400 to 4000 were included. The raw data files
were downloaded from the CFG website and processed with software
developed as described in Material and methods. (http://www.
functionalglycomics.org/glycomics/publicdata/glycoprofiling.jsp).

most likely artifacts caused by reagents introduced in process-
ing the samples. It can be seen that most of the more abundant
peaks showed excellent agreement, as did many of the smaller
peaks. A relatively minor number of the smaller peaks, however,
differ significantly from the parity line in Figure 3 and could use
further optimization.

The strategy for matching the model to the data was to divide
the adjusted model parameters into two groups. The first group
of model parameters, which included total concentration levels
of each enzyme and the ratio of Man9:Man8 initial glycans en-
tering the Golgi, were adjusted separately for each data set. This
first group of adjusted parameters encapsulates the differences
between the two data sets. The second group of adjusted model
parameters were kept identical for the two data sets and served
to improve the overall agreement of the model with both data
sets. This second group of parameters was incorporated into the
model as a set of adjustment rules added to the set of literature-
based adjustment rules initially included in the model. These
additional adjustment rules are shown in Table III.

The three adjustment rules of Table III apply to reaction rule
#1 for Mannosidase I shown in Table II. Depending on the num-
ber of mannose groups present, the Km value for the reaction
is multiplied by the values shown. Since these Km adjustment
factors are greater than 1, and the Km values appear in the de-
nominator of the Michaelis–Menten reaction rate equation, the
reaction rates for the higher mannose structures are decreased
relative to the 6-mannose structure by these adjustments.

The ManI adjustments for the Man8 and Man7 structures are
consistent with in vitro measurements, but the large adjustment
for Man9 is not (Tabas and Kornfeld 1979). The large adjust-
ment for Man9 may be needed to account for the heterogeneity
of individual N-glycosylation sites on the whole mixture of gly-
coproteins in the cells. For example, it has been shown that
of the three N-glycosylation sites on t-PA (tissue plasminogen
activator), one site contains only a mixture of high-mannose
glycans while the other two sites contain only complex glycans
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Fig. 4. Comparison of model-calculated synthetic mass spectra with measured spectra for normal human monocytes and monocytic leukemia cells (THP1). The
plots show the mass range from 2500 to 3000 (full-range modeled m/z 1400–4000). Units on the y-axis are relative intensities as % of total peak area of the
spectrum in the modeled range. Mass spectrometric data are from the CFG website: http://www.functionalglycomics.org/glycomics/publicdata/glycoprofiling.jsp.

mannose, fucose, � galactose, � N-acetylglucosamine, � N-acetylgalactosamine, N-acetylneuraminic acid, ······ calculated, —— measured.

(Spellman et al. 1989). Thus, the mannosidase reactions are
dramatically slower on the high-mannose sites than on the other
sites. The very high value for the Man9 glycans indicates that
they do not react at all, suggesting that the only Man9 glycans
entering the Golgi network are on sites where they do not react.
All the Man9 glycans on other glycosylation sites have already
been converted to Man8 glycans in the endoplasmic reticulum,
upstream of the Golgi stack.

Also, the experimental mass spectra included small peaks
that result from an additional hexose residue on the initial 9-
mannose structure of Figure 1A. This is most likely a glucose
residue left over from the removal of glucose that takes place

upstream of the cis-Golgi cisterna, so the structure containing
glucose was added to the other two initial structures, as shown
in Figure 1C. Similarly to the Man9 glycan, the structure with a
residual glucose is also unreactive.

The adjusted model enzyme concentrations for the two sets
of data are listed in Table IV. The enzyme concentration ra-
tios are an estimate of the relative enzyme activity levels
for the two types of cells. To provide some perspective on
the biological relevance of the modeled output, we reasoned
that it would be instructive to compare the results reported in
Table IV with reported trends in N-glycan enzyme activity lev-
els for various types of cancer compared to normal cells of
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Fig. 5. Structures showing largest discrepancies in matching the model to the
measured mass spectra for normal monocytes and monocytic leukemia cells.
A = glactose (�), F = fucose ( ), GN = N-acetylglucosamine (�),
M = mannose ( ), NN = N-acetylneuraminic acid ( ).

the same type (Brockhausen et al. 1998). Interestingly, four of
five trends reported previously for N-glycans are seen in the
model-derived ratios of Table IV; the exception is a6SiaT (α6-
sialyltransferase) where an upward shift was reported for colon
cancer but the derived ratios show no change for leukemia. The
model also derived several unreported trends, the most signif-
icant being increases for GnTIII and FucTH and decreases for
b3GalT, a3SiaT, and GnTII.

This analysis provides a unique method of inferring enzyme
activity profiles from raw mass spectrometric data. No prelim-
inary step of identifying the peaks in the spectrum is needed.
In fact, peak identifications are automatically produced as a
byproduct of the analysis.

Details of the spectra for a portion of the mass range, from
2500 to 3000, are shown in Figure 4. In these charts, the relative
peak areas are plotted against the average m/z value of the peak.
Thus, each “peak” in the figure is actually the envelope of the
isotopic satellite peaks of a single signal. The dominant struc-
tures producing each peak are indicated by schematic structural
diagrams in the figure. Stars indicate where peaks only appear in
significant amounts in either the normal or malignant cells. The
supplementary material of this paper contains the mass range of
1500 – 4000 for both diseased and normal cells.

The main discrepancies between the model-calculated spec-
tra and experimental spectra occur at monoisotopic masses of
1835.9, 2164.1, and 2635.3. These three masses have signif-
icant signals in the experimental spectra but are predicted to
be very low by the model. The peak at 2164.1 that appears
in the normal monocyte spectrum, and may also be present
at a very low level in the THP1 cell spectrum, does not cor-
respond to any known N-glycan structure and is absent from
the model; it may be an artifact. The peak at 1835.9 corre-
sponds to three structures in the model with monosaccharide
composition F1GN4M3 (see Table V for sugar codes), the pre-
dominant one being GNb2Ma3(GNb2Ma6)Mb4GNb4(Fa6)GN
(Figure 5A). This is present in earlier compartments of the
model but is almost entirely reacted away by galactosylation

in the final compartment. Perhaps optimization of the distri-
bution of the enzymes among the compartments assumed in
Table X could remedy this discrepancy. The peak at 2635.3
is due to a number of isomers with saccharide composition
A1GN4M5NN1. These are bisected hybrid glycans, primari-
ly NNa6Ab4GNb2Ma3(GNb4)(Ma3(Ma6)Ma6)Mb4GNb4GN
(Figure 5B). In this case, the initial reaction of the hybrid pre-
cursor GN3M5 to add a bisecting GN is too slow in the model
to produce a significant amount of the final product. Perhaps
the assumed reaction rate of the GN3M5 precursor relative to
other bisecting reactions is too slow. Modified adjustment rules
could correct both of these discrepancies, but at present there is
no literature precedent to justify these adjustments.

While other methods use mass spectrometry to estimate spe-
cific chemical structures using a bioinformatics approach, the
method described here is currently the only one that predicts
the structure based on the actual chemical kinetics of enzyme
action as the glycans progress through the cellular apparatus
and then compares this prediction to experimental observations.
This technique is especially powerful because it enables users
to identify the intracellular levels of enzymes in an optimized
cellular glycosylation kinetic model based on a large number of
mass spectrometric peaks. Furthermore, from changes in peak
heights observed in different cell types, we are able to estimate
differences in enzyme activities for different cell types (e.g.,
malignant versus normal) and environments.

Discussion

Techniques for glycan structure determination from mass spec-
tra have been based on the use of libraries of known glycans,
possibly extended through enzyme addition rules, to match
an individual unknown mass spectrometric peak (Joshi et al.
2004; Goldberg et al. 2005). While standard bioinformatics
approaches are useful, they treat each peak in isolation and
neglect the complex interaction of a large number of glycosyla-
tion enzymes that together produce a complete glycan profile.
An alternative approach presented here provides a tool for both
glycan annotation and comprehensive analysis since it links
glycan structure with enzyme levels. The resultant analysis is
also comprehensive by analyzing across the full spectrum of
peaks.

Our software suite is based on the generation of a network
of reactions derived from glycosylation enzyme rules that de-
fine the biosynthetic pathways and result in prediction of glycan
structures and abundances as related to enzyme activity lev-
els. The components of the current modeling system include a
scheme and algorithm to generate glycosylation reaction net-
works, a mathematical model for the Golgi apparatus, solution
software, a synthetic mass spectrum generator, and an exper-
imental mass spectrum analyzer. The kinetic parameters and
adjustment rules for the various enzymes in the model are orig-
inally based on the literature data of enzyme kinetics obtained
in vitro with simple substrates. Applying these values to real
in vivo situations requires numerous assumptions for enzyme
concentrations and other variables in the cells of interest. While
these values are reasonable within an order-of-magnitude, the
model predictions they engender cannot be expected to fully
agree with experimental data without first tuning the model to
match the glycan profiles obtained in one or more base (control)
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cases by adjusting enzyme concentrations and other parame-
ters. Changes in parameter values from the base case needed to
match the glycan profiles of other cases can then be calculated.
Mathematical techniques to solve the model equations and ad-
just the model parameters to match data have been developed
and tested, but further improvements are possible that will al-
low larger models to be used. This will allow higher molecular
masses to be included in the model as well as more glycosylation
enzymes and less network pruning.

Model-estimated shifts in enzyme levels between normal
human monocytes and malignant monocytic leukemia cells
(THP1) directly from mass spectrometric data gave results con-
sistent with known shifts in enzyme activities for cancer. A
notable change between the normal and malignant cells was
the large increase in the FucTLe enzyme activity (α3/4-Fuc-
transferase III), the enzyme essential for synthesizing Lewis
blood group determinants that are elevated in malignant cells
(Brockhausen et al. 1998) and are associated to pancreatic can-
cer (Miyoshi et al. 2008). Enzymes involved in glycan branching
(GnTIV, GnTV, and IGnT) are also estimated by the model to
be elevated in the malignant cells, and these enzymes are also
elevated in multiple cancerous tissues (Brockhausen et al. 1998;
Dennis et al. 1999; Varki et al. 2008). The one result shown in
Table IV that is difficult to interpret in light of increased sialy-
lation often observed in cancer is the reduced levels of a3SiaT
predicted for the malignant cells. An interesting possibility is
that dramatically increased levels of sialylated O-glycans re-
ported in leukemic cells (Brockhausen et al. 1991), diverted
the activity of α3SiaT away from N-glycan processing in the
diseased cells, thereby explaining the apparent decrease in the
levels of this enzyme in the modeled results.

The capability of the model to relate activity levels of cellular
enzymes to specific glycan structures that are potential biomark-
ers of disease is a useful initial step toward understanding of the
regulatory glycosyltransferase mechanisms. Importantly, glyco-
sylation pathway generation could be used for biomarker dis-
covery. Changes in enzyme levels that lead to the production of
particular determinants, such as Lewisa/x, would be predicted to
change other structures as well. The model could also be used
to answer a large variety of diagnostic queries, such as the im-
pact of knockouts or knockins on the occurrence of particular
glycoforms or changes in glycoform distribution patterns.

The incorporation of additional enzymes to predict N-
glycosylation of human cells in the current model was possi-
ble because of the new reaction framework which facilitates
the implementation of additional enzymes and generation of
larger reaction networks than was possible with our previous
model (Krambeck and Betenbaugh 2005). Currently MALDI
mass spectrometric data can be processed by the model. Tandem
mass spectra capabilities that resolve glycan isomers would fur-
ther strengthen the model’s capabilities. In addition, the model
may be expanded to consider additional analytical capabilities
including lectin blotting in order to help interpret the complex-
ity of the glycosylation processing. In the future, the incorpora-
tion of enzymes for O-glycosylation of proteins (Brockhausen
et al. 1998), for glycosphingolipid synthesis (Varki et al. 2008),
and for glycosoaminoglycans, and human milk oligosaccha-
rides will result in an even more integrated model that can be
combined with some of these complex analytical methods for
a robust interpretation of cellular glycosylation processing in
normal and diseased cell types.

Table VII. Codes for rules

Symbol Meaning String expression

. . . Ligand Any string (possibly empty)
with all parentheses
matched.

_ Continuation Any string (possibly empty)
where every “(“ is matched
with a following “)”

| Possible branch point Empty string or (. . .).
∗ Reaction site Position of first difference

between product and
substrate strings

Gnbis Bisecting Gn Ma3(GNb4)(. . .Ma6)Mb4
# Number of
∼ Logical not
& Logical and
or Logical or

Material and methods

Reaction network generation
Glycan Structure Representation. Glycan structures are de-
scribed using short form IUPAC linear formulas (McNaught
1996) with some minor modifications. The first modification is
to order the branches at a branch point based just on the branch
locants, without regard to the lengths of the branches. In addi-
tion the sugar abbreviations have been replaced with the shorter
abbreviations of the LinearCode (Banin et al. 2002). However,
the ordering of branches based on sugar precedence, adopted in
the LinearCode, has not been used here. The sugar abbreviations
used in this work are shown in Table V. Figure 1 illustrates these
compact linear formulas for the glycan starting structures for the
model. This scheme provides linear formulas that are general,
are easily readable by humans, and are unique for each glycan
structure.

Enzyme Reaction Rules. Table I gives a list of the enzymes in-
cluded in the current model. These are sufficient to produce most
of the N-glycans present in human cells. Enzymes to add phos-
phates and sulfates to the glycans have so far been excluded. The
reaction rules for these included enzymes are given in Table VI.
The basic idea is that the “Substrate” column is a substring of the
linear formula that must be present for the enzyme to act. The
“Product” column specifies what the substrate string is replaced
with through action of the enzyme. The “Constraint” column
specifies a set of additional conditions that must be satisfied for
the enzyme to act. These conditions are usually the presence
or absence of another substring somewhere in the substrate for-
mula. These are combined using the “not” operator (∼), the
“and” operator (&), and the “or” operator (or), with parentheses
as appropriate.

To simplify these expressions, a number of additional con-
ventions have been added. All substrate formulas are assumed
to be enclosed in parentheses before searching for the substrate
substring. Thus, an initial “(“ always indicates the terminal end
of a branch. Other codes and abbreviations used in formulating
the reaction rules are summarized in Table VII.

The computer program required to generate a complete path-
way from Table VI is straightforward, consisting of a series of
string searches and substitutions. The algorithm begins with a
list of starting structures, shown in this case for N-glycans in

1171



F J Krambeck et al.

Figure 1. Each substrate rule and corresponding constraint rule
is then applied to each structure in the list to determine which
structures are substrates for each rule. The abbreviations of Ta-
ble VII have turned out to be useful in formulating the rules.
For structures that satisfy the rules, the product structure is de-
termined, essentially by substituting the product substring of
Table VI for the substrate substring, taking the various abbre-
viations into account. If the structure is not already in the list
of structures, it is added to the list. At the same time, the new
reaction is added to a reaction list. The reaction list includes the
enzyme, substrate, cosubstrate, product, and coproduct strings
for each reaction. This process is repeated until no new reactions
can be generated.

Reaction kinetics
Consider the glycosylation of a glycan Pj with a monosaccha-
ride S catalyzed by an enzyme E. Assuming that the donor
cosubstrate is UDP-S, the overall reaction is shown in Eq. (1):

Pi + UDP-S f � Pi+1 + UDP. (1)

Assuming that the product Pi+1 competes for the same enzyme
site as the substrate Pi, that the donor cosubstrate UDP-S oc-
cupies a second site on the enzyme, and that the reaction is re-
versible, the Michaelis–Menten kinetic equation takes the form
shown in Eq. (2).

r =
k f [Et ]

(
[UDP-S][Pi ] − 1

K ′
eq

[Pi+1][UDP]
)

Kmi (Kmd + [UDP-S])
(

1 + ∑
j

[P j ]
Kmj

)

K ′
eq = k f Km,i+1

kr Kmd Kmi
= [Pi+1]∗[UDP]∗

[Pi ]∗[UDP-S]∗
. (2)

Here, kf and kr are the forward and reverse rate coefficients,
Kmi and Kmd are the dissociation constants for the substrate and
donor cosubstrate, and K ′

eq is the apparent equilibrium constant
for the overall reaction. The symbols [ ]∗ in Eq. (2) denote
equilibrium concentrations. The subscript “j” in the summation
in the denominator is taken over all the substrates that compete
for the same enzyme. A derivation for Eq. (2) is given in the
KB2005 model (Krambeck and Betenbaugh 2005).

Kinetic Parameters and Adjustment Rules. The values of the ki-
netic parameters kf , Km, and Kmd for a given enzyme can vary
significantly for different substrates. This was accommodated
by selecting base values for these parameters for each reac-
tion rule and by adding a set of structure-dependent adjustment
rules. Development of these parameter values and adjustments
for CHO cell enzymes are detailed in KB2005 (Krambeck and
Betenbaugh 2005). These have been supplemented with esti-
mates for the additional human cell enzymes. The base param-
eter values currently used for each of the reaction rules in Table
VI are shown in Table VIII. Adjustment rules for the parameters
are given in Table IX. Each adjustment rule includes a condition
on the substrate structure and multipliers to apply to each of the
three parameters whenever the condition is satisfied.

Simulation model
Assuming well-mixed compartments and the above
Michaelis–Menten kinetics for the glycosylation reactions,
equations were derived to solve for the concentrations of

Table VIII. Base values of kinetic parameters for rules in Table VI

Index Enzyme kf Km Kmd

1 ManI 1923.75 827 0
2 ManI 1923.75 5000 0
5 ManII 1923.75 200 0
6 ManII 1923.75 100 0
7 a6FucT 253 25 46
8 GnTI 990 260 170
9 GnTII 1320 190 960
10 GnTIII 607.2 4000 3100
11 GnTIV 187 3400 8300
12 GnTV 1410 130 3500
13 iGnT 24.66 700 55
14 b4GalT 8712 150 0
15 a3SiaT 484.1 260 57
16 IGnT 25 440 0
17 a6SiaT 25 180 0
18 b3GalT 25 110 250
20 FucTLe 481 1900 10.5
21 FucTLe 25 1600 5
22 FucTH 28.2 1500 108
23 FucTH 28.2 5700 108
24 a3FucT 25 1400 9
25 GalNAcT-A 294 15 13
26 GalT-B 390 281 285

Table IX. Adjustment rules to be multiplied by base values in Table VIII

Index Enzyme Rule kf Km Kmd

1 ManI #M = 9 1 500 1
1 ManI #M = 8 1 2.52 1
1 ManI #M = 7 1 1.04 1
10 GnTIII GNb2|Ma6 1 0.0475 1
11 GnTIV ∼GNb2|Ma6 1 5 1
11 GnTIV Ab4GNb2|Ma6 1 1.5 1

or Ab4GNb6)Ma6
11 GnTIV GNb6)Ma6 1 0.178 1
12 GnTV GNb4)Ma3 1 0.6923 1
13 iGnT ∗_Ma3 1 10 1
13 iGnT ∗_GNb2Ma6 1 4 1
13 iGnT ∗_GNb2Ma3 1 4 1
14 b4GalT ∗_GNb2|Ma6 1 0.9 1
14 b4GalT ∗_GNb4)Ma3 1 0.5333 1
14 b4GalT ∗_GNb2|Ma3 1 26.667 1
14 b4GalT Gnbis & GNb2|Ma6 1 3.62 1
15 a3SiaT #NN>1 1 5 1
20 FucTLe Fa2Ab3∗ 0.05 0.1053 1
20 FucTLe NNa3Ab3∗ 0.05 0.3526 1
21 FucTLe (∗Fa2Ab4 1 0.6875 1
21 FucTLe (∗NNa3Ab4 1 0.0625 1
24 a3FucT (∗Fa2Ab4 4.08 0.5 1

each of the individual glycan structures in each of the Golgi
compartments in KB2005 (Krambeck and Betenbaugh 2005).
The case with 7565 structures and four compartments has
30,260 equations and unknowns.

Other Model Parameters. The model includes a number of other
parameters needed for the calculations, including compartment
residence times, enzyme distributions between compartments,
compartment volumes, total glycan concentration, and donor
cosubstrate concentrations. These were estimated based on a
variety of literature sources as detailed in KB2005 (Krambeck
and Betenbaugh 2005). Compartment residence times were esti-
mated to be 5.6 min each. The assumed distribution of enzymes
between the four compartments is shown in Table X and the
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Table X. Assumed distribution of enzymes between the four compartments of
the model

Enzyme Comp 1 Comp 2 Comp 3 Comp 4

ManI 0.967 0.032 0.001 0
ManII 0.15 0.45 0.3 0.1
a6FucT 0.15 0.45 0.3 0.1
GnTI 0.15 0.45 0.3 0.1
GnTII 0.15 0.45 0.3 0.1
GnTIII 0.15 0.45 0.3 0.1
GnTIV 0.15 0.45 0.3 0.1
GnTV 0.15 0.45 0.3 0.1
iGnT 0 0.6 0.3 0.1
b4GalT 0 0.05 0.2 0.75
a3SiaT 0 0.05 0.2 0.75
IGnT 0 0.05 0.2 0.75
a6SiaT 0 0.05 0.2 0.75
b3GalT 0 0.05 0.2 0.75
FucTLe 0 0.05 0.2 0.75
FucTH 0 0.05 0.2 0.75
a3FucT 0 0.05 0.2 0.75
GalNAcT-A 0 0.05 0.2 0.75
GalT-B 0 0.05 0.2 0.75

Table XI. Assumed donor concentrations in Golgi compartments

Donor Concentration (μM)

GDP-Fuc 5000
UDP-GlcNAc 9143
UDP-Gal 3810
CMP-NeuAc 2286
UDP-GalNAc 3000

assumed nucleotide sugar donor concentrations are shown in Ta-
ble XI. It should be emphasized that these numbers are intended
to be reasonable initial estimates subject to further refinement.
Furthermore, enzyme concentrations vary widely with changes
in the expression level.

The use of the model to infer changes in enzyme activities
between different disease states of cells depends on the assump-
tion that the changes in enzyme activity levels are the main
cause in the observed changes in glycan structure between the
cell states rather than the effects of other cell characteristics
that may also change between the cell states. While it is well
known that enzyme activity levels vary considerably between
different cell-types and tissues in an individual, and between
normal and diseased cells (Brockhausen et al. 1998), possible
variations in other quantities affecting glycosylation are less
well documented.

A few measurements are available of the residence times of
proteins in the compartments (Bibila and Flickinger 1991). It
has been found that the Golgi compartment volumes can vary
considerably as the state of a cell changes (Griffiths et al. 1989).
These changes in compartment volume presumably affect the
residence times of proteins in the compartments. However, the
effects of changes in compartment residence times in the model
are indistinguishable from the effects of changes in enzyme con-
centrations within the compartments. Thus, very little model
robustness is lost by assuming that the residence times are un-
changed between the cell states.

Changes in donor cosubstrate concentrations in the Golgi
compartments do occur between different cell states due to
changes in the activities of enzymes that synthesize the donors,

as well as due to changes in the activities of the transporter
proteins that concentrate the donors in the Golgi compartments.
While the Kmd values for many of the enzymes are very low, so
that those enzymes are almost always saturated with the donors,
some of the enzymes have higher values, so that changes in
donor concentration can be significant. Thus, the donor synthe-
sis and transport processes should be included in future versions
of the model.

Numerical methods
The model equations are nonlinear algebraic equations which
are solved for the concentrations of each of the structures in
each of the four Golgi compartments. These are solved us-
ing a constrained Newton–Raphson method with the Harwell
MA28 sparse linear solver (HSL 2002). The efficiency of a
sparse linear solver for large numbers of variables depends on
the problem Jacobian being sparse. The Michaelis–Menten de-
nominator terms in Eq. (2) involve a large number of species
that compete for each of the enzymes. This could make the
Jacobian matrix rather dense. To avoid this, the denominator
terms for each enzyme are formulated as separate variables
with equations added to specify how the denominators are cal-
culated. This confines the equations with large numbers of vari-
ables to only one for each enzyme. Analytical derivatives were
used. While each compartment could be solved separately in
sequence to give four subproblems, each one-fourth the size,
this was not found to be necessary.

In addition to solving the model for a given set of model
parameters, provision was also made to adjust parameters to
match a given set of data. This was done using the Marquardt-
Levenberg method with numerically estimated derivatives
(Marquardt 1963). The same method was used for optimizing
model parameters to achieve a desired distribution of glycan
structures.

The Marquardt–Levenberg method is typical of nonlinear op-
timization algorithms in that it makes use of a sequence of local
linear approximations to the nonlinear model to converge to a
solution that is a local optimum. Except in special cases, there is
no way to determine whether the nonlinear problem possesses
an even better solution far removed from this point. Experience
in using this method shows, however, that if a reasonably good
fit is obtained with the local optimum it is also a global optimum
for the parameter estimation problem. All required calculations
were performed on a laptop computer.

Mass spectrometric analysis software
Mapping Glycan Structure Distributions to MALDI MS. A sig-
nificant development in this paper was the mapping of model-
calculated glycan distributions to synthetic mass spectra for
direct comparison with measured MALDI mass spectra, as il-
lustrated in Results. Several steps are involved in generating the
synthetic spectrum:

• The chemical formula of each model-predicted glycan
structure is calculated after sample preparation. This step
is necessary because after glycans are removed from their
protein or lipid carrier; they are permethylated to improve
the stability of the ions and reduce the variability of the
mass spectrometer response factors of different glycans.
This process replaces each OH group with an OCH3 group.
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The glycans also receive a sodium ion. These steps change
the mass of the glycan necessitating this calculation.

• A table of isotope masses and abundances for each element
is used to calculate the relative abundances and masses of
the isotopic satellite peaks for each glycan. These follow a
multinomial distribution.

• The model-predicted concentration of each glycan is mul-
tiplied by the relative abundances of each of its isotopic
peaks, and these are summed for all the glycans in the
model.

A computer program was developed to rapidly calculate the most
significant isotope peaks for each glycan (those amounting to
at least 10−6 of the total for the glycan) and store them in a
database. The final step of multiplying and summing over all
the glycans is then very rapid.

Processing Experimental Mass Spectra. The experimental
MALDI mass spectra require processing before comparison
with the synthetic mass spectra through baseline correction,
mass calibration adjustment, and peak integration.

The baseline correction method was adapted from Williams
et al. (2005). The mass calibration was done by finding the
linear mass adjustment that maximizes the sum of the experi-
mental peaks interpolated to the theoretical masses of the model-
predicted glycan peaks. An approximate area for each peak in the
baseline-corrected and mass-calibrated spectrum was calculated
as follows: first, the nearest local maximum to the theoretical
mass for each peak was determined to give a “peak height.”
Then, a “peak width” was determined for the 50 largest peaks
by finding the point on either side of the maximum with an
intensity of exp(−π/4) (or 45.6%) of the peak height. Note that
multiplying this peak width by the peak height would give the
exact area of a Gaussian peak and also approximates the area
of a skewed peak, such as a relatively narrow gamma distribu-
tion. The peak widths for the largest peaks so determined are
then correlated as a linear function of peak molecular mass to
accommodate the broadening of mass spectrometer peaks with
increasing mass. The linear correlation of peak width versus
peak molecular mass is then used to calculate a peak width for
every peak in the spectrum. The calculated peak width is mul-
tiplied by the peak height to estimate the peak area. These peak
areas are then normalized to add up to 100%. Examples of pro-
cessed experimental spectra and calculated synthetic spectra are
shown in Figure 4 and in the Supplementary Data. The points
on this plot are the area of each peak plotted against the mass
at the peak maximum. Thus, the curves on the plots are isotope
envelopes.

Spectrum Matching and its Significance. The enzyme concen-
trations in the model can be adjusted to bring the calculated
synthetic mass spectrum into agreement with the measured
mass spectrum using a nonlinear regression algorithm. When
good agreement is obtained, which is usually the case, the re-
sult amounts to an automatic annotation of the measured mass
spectrum since the identities and amounts of the specific glycan
structures that comprise each of the peaks are calculated by the
model. This annotation is more meaningful than one arrived at
by the conventional method of searching through a library of
possible structures that match each peak and ranking their likeli-

hood by some heuristic. In the model-based method, rather than
treating each peak as an independent entity the whole spectrum
is forced to be consistent with a set of known biochemical re-
actions containing some combination of a number of enzyme
activities. Thus, if a given enzyme or combination of enzymes
is elevated in the model, all the products that result from the
action of that enzyme or combination of enzymes will be simi-
larly elevated. Furthermore, the model enzyme activities needed
to match the data provide significantly greater insight into the
meaning of the mass spectra than the large list of glycan identi-
ties themselves.

Supplementary Data

Supplementary data for this article is available online at
http://glycob.oxfordjournals.org/.
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[Et], enzyme concentration, μM; KB2005, (Krambeck and
Betenbaugh 2005); K′

eq, apparent equilibrium constant; kf ,
turnover number, min−1; Km, Michaelis–Menten dissociation
constant of substrate, μM; Kmd, Michaelis–Menten dissociation
constant of donor cosubstrate, μM; Kmi, Michaelis–Menten dis-
sociation constant of substrate i, μM; kr, reverse reaction rate
coefficient, min−1 μM−1; MALDI, matrix assisted laser desorp-
tion ionization; m/z, mass-to-charge ratio of mass spectrometric
peaks; [Pi], concentration of substrate i, μM; r, reaction rate,
μM/min; THP1, a line of monocytic leukemia cells; TOF, time
of flight; [UDP-S], concentration of nucleotide-sugar donor,
μM; []∗, equilibrium concentration.
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