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Abstract
We describe the construction of a digital brain atlas composed of data from manually delineated MRI
data. A total of 56 structures were labeled in MRI of 40 healthy, normal volunteers. This labeling
was performed according to a set of protocols developed for this project. Pairs of raters were assigned
to each structure and trained on the protocol for that structure. Each rater pair was tested for
concordance on 6 of the 40 brains; once they had achieved reliability standards, they divided the task
of delineating the remaining 34 brains. The data were then spatially normalized to well-known
templates using 3 popular algorithms: AIR5.2.5’s nonlinear warp (Woods et al., 1998) paired with
the ICBM452 Warp 5 atlas (Rex et al., 2003), FSL’s FLIRT (Smith et al., 2004) was paired with its
own template, a skull-stripped version of the ICBM152 T1 average; and SPM5’s unified
segmentation method (Ashburner and Friston, 2005) was paired with its canonical brain, the whole
head ICBM152 T1 average. We thus produced 3 variants of our atlas, where each was constructed
from 40 representative samples of a data processing stream that one might use for analysis. For each
normalization algorithm, the individual structure delineations were then resampled according to the
computed transformations. We next computed averages at each voxel location to estimate the
probability of that voxel belonging to each of the 56 structures. Each version of the atlas contains,
for every voxel, probability densities for each region, thus providing a resource for automated
probabilistic labeling of external data types registered into standard spaces; we also computed
average intensity images and tissue density maps based on the three methods and target spaces. These
atlases will serve as a resource for diverse applications including meta-analysis of functional and
structural imaging data and other bioinformatics applications where display of arbitrary labels in
probabilistically defined anatomic space will facilitate both knowledgebase development and
visualization of findings from multiple disciplines.
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1 Introduction
Atlases of human neuroanatomy play important roles in the interpretation of results, in the
visualization of information, and in the processing of data. Beginning with the detailed
drawings of brain structures produced during the Renaissance by Vesalius, numerous paper
atlases comprising collections of neuroanatomical illustrations, photographs, and other
imagery have been constructed (see Toga and Mazziotta (2002) for a review). As technology
advanced, digital atlases extended these efforts by providing interactive collections of brain
data. Most of these brain atlases were based on single subjects or on very limited numbers of
individuals. These included the Voxel-Man atlas (Höhne et al., 1992; Tiede et al., 1993;
Schiemann et al., 2000), the Karolinska Brain Atlas project (Greitz et al., 1991), the Human
Brain Atlas (Roland et al., 1994), the Digital Anatomist project (Eno et al., 1991; Brinkley et
al., 1997), the Harvard Brain Atlas (Kikinis et al., 1996), and the Visible Human Project
(Spitzer et al., 1996). The focus on individual subjects allowed considerable effort to be spent
detailing the neuroanatomy or acquiring multiple types of data from the subjects. However,
single subject atlases cannot describe the variability in brain structure that is inherent across
the human population. To capture this information, larger numbers of subjects must be
examined.

One of the early descriptions of a multisubject atlas was presented by Mazziotta et al.
(1995), who proposed the development of a comprehensive probabilistic brain atlas under the
banner of the International Consortium for Brain Mapping (ICBM). This project has collected
data from 5,300 subjects, including images of the brain using various magnetic resonance
imaging (MRI) modalities, genetic material, and demographic information (Mazziotta et al.,
2001). Multi-subject studies such as the ICBM project require methods that can bring the image
data from different subjects into a common coordinate frame; numerous research efforts have
been made to meet these demands (e.g., Bajcsy et al., 1983; Gee et al., 1993; Woods et al.,
1993, 1998; Collins et al., 1994; Davatzikos et al., 1996; Wells et al., 1996; Thompson and
Toga, 1996; Christensen et al., 1997; Ashburner and Friston, 1997; Ashburner et al., 1999;
Fischl et al., 1999; Jenkinson and Smith, 2001; Jenkinson et al., 2002; Johnson and Christensen,
2002; Shen and Davatzikos, 2002; Xue et al., 2006). These techniques extended the method
introduced by Talairach and his colleagues (Talairach et al., 1967; Talairach and Tournoux,
1988) for mathematically mapping an individual subject brain to an atlas.

Evans et al. (1993) applied registration methods (Collins et al., 1994) to produce a probabilistic
map of MRI data acquired from 305 subjects. The MRI volumes were co-registered using a
nine-parameter linear transformation and then averaged at each voxel to produce an average
intensity atlas, termed MNI-305. A second atlas was produced by registering a subset of 152
brains to the MNI-305 atlas, again using a 9-parameter linear transformation, to generate the
ICBM152 atlas. These templates provide a registration target for various analysis tools, such
as SPM (Ashburner et al., 1999) and FSL (Smith et al., 2004), both of which use versions of
the ICBM152 atlas as an anatomical reference. ICBM also produced an average intensity atlas
from 452 subjects using affine registration, and a second atlas was produced using 5th order
polynomial warps that improved cortical definition (Rex et al., 2003). Though affine alignment
can bring many subcortical structures into alignment, regions of the brain vary substantially
across subjects. Because of this, structures such as cortex are often blurry in average intensity
volumetric atlases. This may occur even when non-linear registration methods are applied, as
seen in Fig. 1a. Thus, it may be difficult to interpret location within an intensity averaged atlas.
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One way to address this problem is to create a multi-subject label atlas, in which voxel
identifiers from the original subjects are transformed into the atlas space. Statistics of these
transformed labels can then be computed at each voxel location to provide probabilistic
information about the structures in that atlas. Examples include maps of white matter (WM),
grey matter (GM), and cerebrospinal fluid (CSF) (see Fig. 1b) or individual brain structures
such as as gyri or nuclei (see Fig. 1c). Probabilistic atlases can also be generated based on
deformation maps (e.g., Thompson et al., 2004;Xue et al., 2006). Deformation-map methods
analyze the transformations required to bring the subjects into alignment in order to analyze
the variation of structures. Measures computed on the deformation processes can then be used
to describe the variation seen in the volume or surface models for the studied subjects.

Due to the tremendous burden of manual delineation, as well as concerns of rater reliability,
Collins et al. (1999) applied automated labeling techniques to produce a probabilistic mapping
of structures within the subject data from composing the ICBM152, thus creating a multi-
subject structural atlas. The ICBM project has also produced a series of probabilistic volumes
defining the voxel-wise frequency of several structures based upon manual delineations, which
included maps of the lobes and of subcortical structures that were manually labeled in the
volumetric data and sulcal maps that were generated by sampling curves that were manually
traced on cortical surface models 1. Hammers et al. (2003) produced a maximum-probability
atlas of the human brain based on a set of 20 manually delineated image volumes. The
production of this atlas emphasized labeling structures in the temporal lobe. The data were
aligned to the ICBM152 atlas using SPM99 (Ashburner et al., 1999) to produce an atlas that
provides a basis for analysis of functional imaging of temporal lobe epilepsy. The collection
of labels was later extended by incorporating additional structures and subjects; the augmented
collection was used for automated labeling of brain structures (Heckemann et al., 2006). Van
Essen (2005) produced a publicly available Population-Average, Landmark- and Surface-
based (PALS) atlas from structural volumes of 12 individuals; the atlas can be used for surface-
based analysis such as analysis of cortical folding abnormalities (Van Essen et al., 2006). Mega
et al. (2005) examined variability in 20 elderly subjects with various mental states (normal
cognition, mild cognitive impairment, or Alzheimer’s disease) by constructing an atlas from
68 manually delineated subregions. In that study, the authors also compared the use of 3
registration approaches and concluded that different methods may be appropriate for different
areas of the brain. Klein et al. (2005) produced an automated method based on a set of 20
manually labeled brains, each with 36 labels per hemisphere. In their work, each brain serves
as an atlas and is registered to serve as atlases; in their labeling method, each atlas brain was
registered to the subject brain, and the most frequently occurring label at each voxel was
selected to label that voxel in the subject brain. Atlasing is used in numerous other anatomical
studies, though it is frequently used as a tool for analyzing the data without the goal of producing
a widely distributed reference data set. Atlasing methods have also been applied in multi-
subject studies of indvidual substructures of the brain, such as the hippocampus (Csernansky
et al., 1998; Styner et al., 2004).

In this paper, we describe the construction of a probabilistic atlas of human brain structures.
We produced our atlas from manual delineations of high resolution T1-weighted MRI scans
of 40 healthy volunteers. A total of 50 cortical structures, 4 subcortical areas, the brainstem,
and the cerebellum were delineated by trained raters following protocols developed during the
course of this study. These data were then resampled into common spaces in order to produce
estimates of the probability density functions for each structure. We produced 3 versions of
our atlas using 3 widely used spatial normalization techniques paired with associated atlases.

1online athttp://www.loni.ucla.edu/Atlases/ICBMprobabilistic
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Each version of the atlas includes probabilistic maps of these structures, probabilistic maps of
tissue types, and a volumetric average of the intensity data.

Among its uses, the atlas can serve as a reference template for studies of functional data or
neuroanatomy, or as a statistical prior for segmentation algorithms. The delineated data can
also provide a basis for the analysis of automated image segmentation methods or as training
data for machine learning algorithms. The three versions of the atlas and the protocols used to
perform the delineations are all available online.

2 Materials and Methods
2.1 Subjects and data acquisition

Forty volunteers were scanned with MRI at the North Shore - Long Island Jewish Health
System (NSLIHS). Inclusion criteria for healthy volunteers included ages 16 to 40 and denial
of any history of psychiatric or medical illness as determined by clinical interview. Exclusion
criteria for all study participants included serious neurological or endocrine disorder, any
medical condition or treatment known to affect the brain, or meeting DSM-IV criteria for
mental retardation. The volunteer group was composed of 20 males and 20 females; average
age at the time of image acquisition [mean ± S.D.] was 29.2yr±6.4 (min = 19, max = 40). The
subjects had an average education level of 2.8±0.8, on a scale from 1 (completed graduate
school) to 7 (partial completion of elementary school), where a score of 2 reflects completing
college (16 years of education) and a score of 3 reflects completing part of college (12–16 years
of education) (Hollingshead and Redlich, 1958; Hollingshead, 1975). The subjects were
ethnically diverse, as described by self-selected categories (‘Asian or Pacific Islander’: 4
subjects; ‘Black not of Hispanic Origin’: 7 subjects; ‘Hispanic’: 5 subjects; ‘White not of
Hispanic Origin’: 23 subjects; ‘Other’: 1 subject).

High-resolution 3D Spoiled Gradient Echo (SPGR) MRI volumes were acquired on a GE 1.5T
system as 124 contiguous 1.5-mm coronal brain slices (TR range 10.0ms–12.5ms; TE range
4.22ms – 4.5ms; FOV = 220mm or 200mm) with in-plane voxel resolution of 0.86mm (38
subjects) or 0.78mm (2 subjects). Data were transmitted to the UCLA Laboratory of Neuro
Imaging (LONI) for analysis following IRB approved procedures of both NSLIJHS and UCLA.

2.2 Pre-processing
As part of a prior study, the 40 subject MRI volumes were processed to extract the cerebrum
and to align the brains rigidly to a canonical space. This processing followed existing protocols
used by LONI (see Fig. 2). First, the MRI volumes were aligned to the MNI-305 average brain
(181 × 217 × 181 voxels; voxel size 1 × 1 × 1mm3) (Evans et al., 1993) to correct for head tilt
and alignment. This step was performed to ensure unbiased anatomical decisions during the
delineation process. The alignment was performed with a rigid-body rotation to preserve the
native dimensions of the subject. Within each MRI volume, ten standard anatomical landmarks
were identified manually in all three planes of section by a trained operator (see (Narr et al.,
2002;Sowell et al., 1999) for details on this procedure). The landmarks for the subject were
then matched with a set of corresponding point locations defined on the MNI-305 average brain;
the landmarks were matched using a least-squares fit to produce a six parameter linear
transformation (three-translation, three-rotation rigid-body, no rescaling). This computation
was performed using the Register software package 2 (MacDonald et al., 1994). Each image
volume was then resampled into a common coordinate system using trilinear interpolation.
The resampled image volumes had the same dimensions and resolution as the atlas. Magnetic
field inhomegeneities were corrected using a non-parametric non-uniformity normalization

2available online athttp://www.bic.mni.mcgill.ca/software/distribution/
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method (nu_correct) (Sled et al., 1998). Extra-meningeal tissue in the resampled data was then
removed using the Brain Extraction Tool (BET) (Smith, 2002), an automated software program
that identified the brain region in the MRI. Errors in the automated segmentation of the brain
were corrected manually; the cerebellum and brainstem were also removed manually to
produce a cerebrum mask.

2.3 Delineation of individual subject brains
For each subject MRI volume, a corresponding 3D integer volume was produced that labeled
each voxel in the brain (see Fig. 3). Each integer label represents a particular neuroanatomical
structure; the set of structures used in this atlas are listed in Table 1. The structures were labeled
manually by trained raters following a set of written protocols produced by this project (see
online supplemental materials). All delineations were performed using the BrainSuite software
package (Shattuck and Leahy, 2002). BrainSuite provided users with the ability to display
simultaneous views of three orthogonal planes through the MRI volume, superimposed with
a label volume that identifies structures. Additionally, BrainSuite provided synchronized views
with 3D surface models of the brain. This allowed raters to view the label information
simultaneously in the volumetric space and on the surface model of the brain. The raters edited
the volume labels by using the mouse to paint within one of the image slices; the related views
updated in real-time with the new label information, providing a 3D context for the delineations.

The protocols for labeling each structure were defined by two primary raters (M.M. and V.A.)
based on neuroanatomical landmarks described in existing atlases, including published
references (Duvernoy, 1999; Salamon et al., 2005; Salamon and Huang, 1976) and an online
neuroanatomy atlas 3. The protocols were confirmed by a trained neuroanatomist (G.S.) and
are available online as a product of this research 4 and are also included as a supplement to
this article. The protocols provided detailed written instructions and figures that show both
surface renderings and 3D cross-sectional views of reference anatomy. Each protocol also
provided a general description of the structure to be delineated and specified a single plane of
section (coronal, sagittal, or transaxial) in which that structure should be labeled. Additionally,
each protocol defined, in an anatomical sense, where the rater should initiate and complete the
labeling. The cortical protocols emphasize inclusion of all grey matter in the cortical structures.
Sulci are used as boundaries, and the raters are instructed to follow the internal depths of the
sulci. White matter voxels that occurred between the boundaries of sulci and their surrounding
grey matter were included in the structure (see Fig. 3); most medial white matter was excluded.
To achieve additional refinement of the data into grey matter specific areas, we later combined
these results with automated tissue classification methods (see Sec. 2.4 below).

The task of delineating the 40 MRI volumes was divided among 15 human raters. Each structure
was assigned to a single pair of raters drawn from the entire group (see Table 3); in the case
of bilateral structures, the delineations for the left and right sides of the brain were performed
by the same rater pair. Delineation of the structure in the 40 MRI volumes was evenly divided
among the two raters assigned to it. At the beginning of the project, six of the subject MRI
volumes were selected at random to be used as the training data set for all raters. Raters 1 and
2 (M.M. and V.A.) supervised the training and delineations of the other raters. For each
structure, the assigned rater pair was trained by performing delineations of that structure in the
training data. Working independently of each other, the two raters delineated the structure in
all six training volumes; for bilateral structures, each rater delineated both left and right
structures. Once both raters had completed the delineation of the structure in the training data,
the total delineated volume of the structure in each volume was computed. These volume

3Salamon’s Neuroanatomy and Neurovasculature Web-Atlas Resource, available online
athttp://www.radnet.ucla.edu/sections/DINR/index.htm
4available online athttp://www.loni.ucla.edu/NCRR/protocols.aspx?id=722
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measures were then compared using using Intraclass Correlation Coefficient (ICC) methods
(Shrout and Fleiss, 1979). We use the Case 1 formula, which is given, for a single pair of raters,
by the formula

(1)

where MSB is the mean squares between the volume measurements of the structure and
MSW is the mean squares of the volume measurements within each structure. It assesses the
degree to which the variation in the measurements is due to intersubject variation as opposed
to the interrater variation. Rater pairs were required to achieve an ICC score above 0.9 on the
delineation of a structure in all 6 training images before they were considered to be reliable for
that structure. Scores for bilateral structures were computed separately, but raters were required
to achieve the score on both sides of the brain. Rater pairs who did not achieve the criteria were
retrained; if necessary, the protocol was revised to provide clearer definitions. After retraining,
the raters revised their delineations and their results were retested. This process was repeated
until raters achieved reliability.

Following training, we also computed the Jaccard similarity metric (Jaccard, 1912) on the sets
of delineations. This metric measures the agreement of two sets A and B using the formula

(2)

where |A ∩ B| is the size of their intersection and |A ∪ B| is the size of their union. In this
context, A and B each represent a set of voxels that were included in the delineation by one of
the raters. The metric is zero if the two sets have no common elements and one if the sets are
identical. While the ICC method measures the agreement in terms of volume delineated, the
Jaccard metric measures the degree of overlap between the two labelings.

Once a rater pair achieved reliability for a structure, the task of delineating that structure in the
remaining 34 volumes was divided evenly between the two raters. For each of the 6 subject
volumes that were delineated during the training procedure, one of the two label volumes was
chosen at random to represent the labeling for that structure in that individual, with 3 labelings
being selected from each rater. In some cases, different structures in the same subject volume
were delineated in parallel by pairs of raters. These results had to be composited into a single
label set for the subject. Conflicting voxel labels from the delineations were identified
automatically by computing the differences in the labeled areas of the two data sets. These
voxels were examined by a pair of raters, and a single label was selected for each voxel. This
merging occurred periodically during the delineation process, and only when the same subset
of structures had been labeled in all subjects. This allowing labeling to be performed using
partially completed delineations in most cases. The volume labelings were examined for
correctness by a trained neuroanatomist (G.S.). The labelings were also corrected for
disconnected voxel labels and gaps between structures either by the pairs responsible for those
structures or by the two senior raters (M.M. and V.A.) The final result of the manual delineation
process was a set of 40 integer volumes, each of which contained 56 contiguously labeled
structures in the delineation space of the individual subject.
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2.4 Atlas Production
For each structure, we computed spatial density maps after spatial normalization of the
delineation and imaging data. Though each brain was previously aligned to the ICBM305
average brain, that alignment did not allow rescaling or stretching. Thus, the individual
structures were not well-aligned across the subjects and spatial normalization of each subject’s
data to a canonical reference space was required.

Selection of a spatial normalization algorithm and target space is critical in the production of
an atlas. Ideally, all variation would be removed by the normalization process, thereby
providing an exact labeling of any data that are normalized to the reference space. In practice,
registration algorithms will retain some intersubject variation in the spatial location of
neuroanatomical structures. Since each registration approach will produce different effects, the
individual transformed data sets represent samples of the specific process used. We produced
3 variants of our atlas using widely-used methods matched with appropriate target spaces. The
methods and target spaces used were: (1) AIR 5.2.5’s nonlinear warping method 5 (Woods et
al., 1998) paired with the ICBM-452 5th order warp atlas 6 (Rex et al., 2003); (2) FSL’s FLIRT
algorithm 7 (Smith et al., 2004) paired with its ICBM152 T1 brain atlas; and (3) SPM5’s unified
segmentation (Ashburner and Friston, 2005) paired with the ICBM152 T1 whole head atlas
used as approach 8 SPM5’s default atlas. Table 2 summarizes the algorithms and registration
targets used.

2.4.1 Registration pre-processing—We performed pre-processing on the original MRI
data volumes to prepare them for the 3 registration approaches. For SPM5, the whole-head
MRI data in their native acquisition space were used in the normalization process. For AIR
and FLIRT, we skull-stripped and bias-corrected the MRI data for each subject prior to spatial
normalization. For skull-stripping, we generated a whole brain mask in the delineation space
by combining the cerebrum mask produced during pre-processing (see Sec. 2.2) with the
structural delineation labels. We could have computed a brain mask from the union of the
cerebrum mask voxels and the voxels that were delineated as brainstem or cerebellum.
However, this mask would not enclose areas such as the 4th ventricle or some portions of white
matter in the cerebellum. Since these areas are contained within the atlas target, it is important
that we also have them in our subject brains.

We applied a series of mathematical morphological operators to produce a set of whole-brain
masks from the delineations and cerebrum masks. First, we produced a mask composed of all
voxels labeled as cerebellum and brainstem. We then applied a modified closing operator to
this mask, which consisted of a dilation with a structure element, a flood filling of any internal
cavities in the resulting mask, and finally an erosion with the same structure element. The
structure element used was a digital approximation of a sphere of radius 4 (see (Dogdas et al.,
2005) for a detailed description of these operations). We then took the union of this mask with
the cerebrum mask, and again applied our modified closing operator to the output mask, this
time with a digital sphere of radius 2. We applied this procedure to the cerebrum mask and
delineation data of each subject to produce 40 brain masks in the delineation space. We then
resampled each of these masks into the native space using the inverse of the affine transform
that was used to map the brains into the delineation space. This resampling was performed by
applying AIR5.2.5’s reslice command with nearest-neighbor interpolation.

5available online athttp://bishopw.loni.ucla.edu
6available online athttp://www.loni.ucla.edu/Atlases/ICBM452
7available online athttp://www.fmrib.ox.ac.uk/fsl/
8available online athttp://www.fil.ion.ucl.ac.uk/spm/software/spm5/
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For each subject MRI, we performed bias field correction and tissue classification in its native
space. Each MRI volume was first masked using the corresponding resampled whole brain
masks, then corrected for RF artifacts using the Bias Field Corrector (BFC) software (Shattuck
et al., 2001). The corrected image was then classified into tissue types (GM, WM, and CSF)
using the Partial Volume Classifier (PVC) software (Shattuck et al., 2001). We note that the
use of BFC here differs from the pre-processing that was performed previously in section 2.2;
we selected the combination of BFC and PVC for this stage of the processing because it is a
sequence that is in routine use our lab (e.g., Sowell et al. (2004); Apostolova et al. (2007);
Chiang et al. (2007)) PVC is a fully automated method that assigns to each voxel a label
corresponding to GM, WM, CSF, or partial volume combinations of these; PVC also produces
estimates of the tissue fractions at each voxel. We used these estimates to produce fraction
volume images for GM, WM, and CSF in each image. Each voxel fraction had a floating point
value in the range [0, 1]; these volumes were rescaled to [0, 10000] and stored in 16-bit image
volumes to be compatible with the resampling software.

2.4.2 Normalization and averaging—The three variants of our atlas were constructed
following a single basic strategy (see Fig. 4). Each MRI volume was first aligned to the atlas
target using the selected algorithm to produce a native-to-atlas transform. Then, each of the
skull-stripped MRI volumes were transformed to the atlas space and averaged to produce a
mean intensity map. Next, the subject tissue fraction maps for GM, WM, and CSF were
resampled into the atlas space using trilinear interpolation. These maps were then averaged
across the subjects to produce mean tissue fraction maps.

We then applied the delineation-to-native and native-to-atlas transforms to resample the subject
delineation data into the target atlas space. Integer values in the delineation label volumes
represent discrete classes, thus resampling the data by interpolating between values that
represent adjacent structure can produce values that are not meaningful. Because of this,
nearest-neighbor resampling is often used to resample label or mask data. While this restricts
the output label values to those in the original image, it introduces aliasing artifacts at the
boundaries of structures. We instead adopted an alternate approach, in which we separated
each subject’s label volume into a set of 16-bit volumes for each of its 56 structures. At each
voxel site, we represented the presence of a structure label with a large integer value (10000)
and the absence of the structure with 0. This allowed us to resample the individual structures
using trilinear interpolation, thereby producing partial volume values in the resampled image.
We produced a total of 2,040 structure maps, each of which was resampled into the atlas space
according to the transforms produced by the automated methods. For each structure, we then
averaged across the 40 volumes corresponding to each subject. This produced spatial estimates
of the probability densities for the structures in our atlas.

Since most of the structures in our atlas are cortical structures, we also produced a refined set
of density maps by combining the partial volume structure maps with the grey matter partial
volume map. In the atlas space, we multiplied the density maps for each structure of each
individual by the GM map for that individual. We then averaged across the subjects to produce
a set of 56 GM-structure density maps.

We computed a maximum likelihood map and a maximum likelihood labeling by identifying,
at each voxel, the structure label with the greatest value in the structure density maps. In the
case of multiple modes, where multiple structures had maximal likelihood values at a voxel, a
label was chosen at random from the modes at that site. We repeated this process using the
GM structure maps to produce a GM maximum likelihood map and labeling. The net result of
this stage, for each atlas variant, is a set of maps: the average intensity image, the tissue density
maps, the structure density maps, and the maximum likelihood maps and labelings. Each map
was represented as a 3D integer volume. For a particular atlas variant, all of these data are in
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spatial register and together compose a single atlas. In the following sections, we detail the key
differences in the processing we used to transform the data into the respective atlas spaces for
the 3 methods.

2.4.3 LPBA40/AIR—The LPBA40/AIR variant was constructed using AIR5.2.5 (Woods et
al., 1998). We computed 5th-order warp transforms to normalize the subject volumes to the
ICBM 452 T1 Warp 5 Atlas (Rex et al., 2003), which we denote here as ICBM452W5. The
ICBM452W5 target space had a matrix size of 149 × 188 × 148 with 1 ×1 ×1mm3 voxel
resolution. We processed each subject data set as follows. First, we applied a crop operation
with an 8 voxel pad to the stripped, bias-corrected subject image volume in its native space.
This reduced the size of the image volume by trimming empty voxels, which improved the
initial alignment to the atlas. We then computed an affine, 12-parameter alignment between
the cropped image and the ICBM452W5 target. We next applied AIR’s alignwarp procedure
to compute a nonlinear 5th-order polynomial alignment to the atlas, which was initialized with
the 12-parameter affine alignment. For both alignment steps, the thresholds were set to 1 since
the volumes were masked prior to processing; all other parameters were left as their default
values. After correcting for the initial crop, this produced a native-to-ICBM452W5 transform.
We combined this with the original delineation-to-native mapping to produce a delineation-
to-ICBM452W5 transform. This produced the set of transforms required for the atlas
construction. During the resampling process, we applied the native-to-ICBM452W5 transform
to the skull-stripped MRI data using AIR’s reslice warp program with 3D sinc interpolation
(FWHM=6mm). Resampling of the structure volumes was performed using AIR’s reslice warp
program with trilinear interpolation.

2.4.4 LPBA40/FLIRT—The LPBA40/FLIRT variant was constructed using the FSL FLIRT
software (Smith et al., 2004) with the skull-stripped version of the ICBM152 average brain (91
× 109 × 91 voxels; 2 × 2 × 2mm3 resolution) that is included with the FSL distribution; we
denote that target here as ICBM152brain. The masked, bias corrected brain images for each
subject were aligned to the atlas target using the default settings in FLIRT. For each subject,
this produced an affine native-to-ICBM152brain transformation; we composited this transform
with the affine mapping from the subject’s delineation space to native space, thus producing
a delineation-to-ICBM152brain affine transform. Using AIR5.2.5’s reslice program with these
transforms, we resampled the subject data into the ICBM152brain space. The skull-stripped
bias-corrected MRI brain data were resampled using chirp-Z interpolation; all other structure
maps were resampled using trilinear interpolation.

2.4.5 LPBA40/SPM5—We applied the SPM5 unified segmentation approach (Ashburner
and Friston, 2005) to each subject’s whole-head MRI in native space. This process
simultaneously performed spatial normalization, bias correction, and tissue classification. The
registration target for this procedure was the ICBM452 T1 average (91×109 ×91 voxels;
2×2×2mm3 resolution), which is the default registration target used by SPM5. We note here
that we could have used the tissue classification volumes or bias-corrected data produced by
SPM5 to generate the final atlas products. However, for consistency, we used the same images
and tissue fractions for all three variants. Default settings were used consistently, with the
exception of the bounding box which was set to [−90 −126 −72; 90 90 108] to provide better
coverage of the head. We used SPM5 to resample the native space subject MRI, with spline
interpolation. We resampled the tissue fraction data into the ICBM152avg space using SPM5
with trilinear resampling. For the delineation data, we first resampled each structure volume
into the native space using AIR5.2.5’s reslice program with trilinear resampling. We then
applied SPM5 to resample each of these into the ICBM452avg space, again using trilinear
resampling. Using two consecutive resampling steps is not ideal; however, methods for
compositing AIR and SPM5 transforms were not available to us.
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2.5 Atlas analysis
We performed an initial assessment of the atlas data using measures of volume for each
structure. In the resampled structure data, volume measures were computed by summing the
voxels in the structure maps and dividing by 10,000, which was the value used to represent a
voxel that belonged entirely to a single structure. By doing this, we were able to account for
partial volume fractions in our volume measures. We analyzed structures in the data set for
asymmetry using the metric:

(3)

where VR and VL are the volumes of the right and left structures, respectively. We tested for
significance in the asymmetry measures for each bilateral structure using a one sample t-test
We also compared the effect of gender on total brain volume by computing a Welch two sample
t-test using the sizes of the brain masks divided into groups of males and females. For both
types of test, we considered as significant those results for which p < 0.05; we did not correct
for multiple comparisons. All statistical comparisons were computed using the statistical
software package R v. 2.2.19.

3 Results
3.1 Delineation

The delineation procedures were performed on all 40 subject volumes according to the
delineation protocols. The protocol training and reliability testing required between 24 and 40
hours per structure for each rater. The time required for delineation by each rater was
approximately one hour per structure per hemisphere. For the entire set of 40 volumes, each
structure required on the order of 120 hours of total rater time including training and
delineation. Approximately 10 hours of total rater time per volume were required to composite
all structure delineations into single volumes and to ensure contiguous labelings.

The similarity measures for the interrater comparisons are detailed in Table 3. All raters
achieved the required ICC score of 0.9, though retraining was typically necessary after the
initial labeling. We note that we did not record the number of attempts required to achieve
reliability, only that the reliability rating was ultimately achieved. The raters showed reasonable
Jaccard similarity scores for the training data, with most measures above 0.8. The raters
reported that the caudate nucleus, putamen, hippocampus, and lingual gyrus were the most
difficult structures to delineate.

3.2 Atlas construction
The spatial transforms and resampled data were computed for the three atlas variants as
described in the methods section. We note that the LPBA40/FLIRT and LPBA40/SPM5 atlas
variants were computed at lower resolution than the LPBA40/AIR version of the atlas, which
is evident in the images. Figure 5 shows example slices through the probability density
functions for the superior temporal gyrus for each version of the atlas, as well as reference
slices from the intensity average data. The GM density maps show improved definition of the
structure.

Qualitatively, the maps produced by applying trilinear interpolation separately to each subject’s
56 structures produced smoother maps than we produced using nearest-neighbor interpolation

9available online athttp://www.r-project.org/
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for an earlier version of this atlas. With the nearest-neighbor method, voxels in the resampled
atlas space could only be true or false for a give structure, hence the density maps for each
structure were quantized to number of subjects, i.e., to 40 levels. The use of trilinear
interpolation allowed us to quantize to an arbitrary degree and to use partial volume voxels to
reduce the aliasing artifacts. To further illustrate the density functions, we selected a brain at
random from the 40 subjects and transformed the LPBA40/AIR density functions back to the
native space of that subject using the inverse of the native-to-atlas transform for that subject.
Figure 6 shows the mapping of the LPBA40/AIR densities for the middle frontal gyrus, the
superior temporal gyrus, and the fusiform gyrus onto a cortical model of the subject.

The maximum likelihood maps were computed for each of the three variants. For the LPBA40/
AIR variant, multiple modes occurred in 125 voxels for the maximum-likelihood map and 357
voxels for GM maximum-likelihood map. For the LPBA40/FLIRT variant, multiple modes
occurred in 29 voxels for the ML map and 51 voxels GM map. For the LPBA40/SPM5 variant,
multiple modes occurred in 63 voxels for the ML map and 83 voxels GM map. These numbers
are much smaller than those that would have occurred had we used nearest-neighbor
interpolation to resample the structure labels, where each density function would be restricted
to 40 levels.

Figure 7 shows orthogonal sections of the intensity average brain images for the three variants
of the atlas. Figures 8 and 9 show corresponding slices from the maximum-likelihood maps
and the grey matter maximum likelihood maps. The maximum likelihood figures show, at each
voxel, the maximum probability value at that voxel colored according to the corresponding
most likely structure. The AIR version of the atlas shows the most detail, due in part to the
higher resolution at which it was sampled. The FLIRT and SPM5 versions of the atlas are both
at 2mm cubic resolution, and the differences between them are more evident in Figs. 7, 8, and
9. The boundaries of the SPM5 atlas appear crisper than those of the FLIRT atlas. This is due
to the extra degrees of freedom allowed by the nonlinear warping used by SPM5, which reduces
the intersubject variability to a greater degree than the affine transformation used within FLIRT.

Figure 10 shows the mapping of the LPBA40/AIR maximum likelihood labeling maps to the
individual surface model shown in Fig. 6. Also shown are the maximum probability values
and the number of structures that have non-zero probability at each vertex of the surface. This
figure emphasizes that even with nonlinear warping, most areas of the cortex are not uniquely
labeled. In areas where multiple atlas structures are near, such as the posterior portion of the
temporal lobe, we see this influence on the number of structures contending for those voxels.
Similarly, we see the maximum probabilities decrease, indicating less certainty in the
automated labeling. We note here that even with a dataset drawn from the 40 subject volumes
used to construct the atlas, the structures in the maximum likelihood labeling will not perfectly
match the structures in the individual. This is to be expected, since variation in the spatial
alignment of the subject anatomy is what produces the variation in the probability densities in
the atlas.

3.3 Volumetric analysis
We computed the total volume for each structure in each subject. The average volumes (mean
+ S.D.) of each structure are shown in Table 4. The cortical and subcortical structures in the
LPBA40/FLIRT and LPBA40/SPM5 versions of the atlas exhibit average expansions in the
mean volume measures of 37.7% and 37.8%, respectively, compared to their original sizes in
the delineation space. This is due, in part, to the size distortion in the ICBM152 atlas, which
is larger than an average brain. For example, the brain mask used in FLIRT for the ICBM152
brain is 2, 066.96 cm3, while the average volume of the brain masks for our population group
was 1, 358.25 ± 126.34 cm3. The sizes of these structures in the LPBA40/AIR atlas are more
similar to those in the delineation space, undergoing an average increase of 10.3% in their mean
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structure volume measures. The smaller change in volume is most likely because the ICBM452
target is closer in volume (1, 559.55cm3) to our population group than the the ICBM152 atlas
is. We also computed the asymmetry value based on the initial delineation. The hippocampus,
for which the right side was larger in 32 of the 40 subjects, had a mean laterality value of 0.0538
with significance (p = 5.40 × 10−5). Other structures showing significant asymmetry in the
delineated data were the angular gyrus (0.0765; p = 0.0417), the caudate nucleus (−0.0465; p
= 0.00243), the inferior frontal gyrus (0.0615; p = 0.0374); the inferior temporal gyrus (0.0680;
p = 0.0192); the insular cortex (−0.0804; p = 3.36×10−5); and the lateral orbitofrontal gyrus
(−0.0890; p=0.0291). The total brain volume was larger for males than for females (p =
0.000837), with average sizes (mean+s.d.) of 1422.43±117.70cm3 for males and 1294.05
±99.14cm3 for females.

4 Discussion
In this paper, we have described the production of a probabilistic atlas of human brain
structures. The atlas was generated from a set of T1-weighted MRI volumes collected from 40
healthy volunteers. Each MRI volume was delineated by trained raters to identify 56 brain
structures. The raters followed carefully written protocols and were tested for interrater
reliability on a subset of the data. The atlas data sets produced by this research are being made
available publicly via our website, http://www.loni.ucla.edu/Atlases/LPBA40. For each
version (LPBA40/AIR, LPBA40/FLIRT, LPBA40/SPM5), we are releasing six product
components:

1. the average intensity brain image

2. the tissue (GM/WM/CSF) density maps

3. the estimated probability density maps for each structure

4. the estimated grey-matter probability density maps for each structure

5. the maximum probability map and maximum likelihood labeling

6. the maximum probability map and maximum likelihood labeling for the GM density
structure maps

Additionally, we are making the anonymized individual subject data available to investigators.
The data that will be available include, for each subject, MRI data, tissue classification data,
structure delineation labelings, and the transformations used to map these data between the
different spaces used in the production of the versions of the atlas.

The main product of this research – the probabilistic maps of brain structure – can be used as
a basis for the analysis of various types of neuroimaging data. The atlases can be used to assign
structure probabilities to new images by aligning the images and the atlas. Ideally, the
registration methods would remove all variation and match the boundaries of these structures
exactly and all anatomical variation would be described by the deformation process itself. In
practice, the probabilities in the atlases reflect the variation seen across the subjects in the atlas
which was not accounted for by the particular registration methods that were used. Thus, these
probabilities can be used to attribute a degree of confidence to a label that was aligned to the
atlas space using the same registration technique on data that were similarly processed and
acquired. This has direct applications in areas such as functional imaging, where one can align
the atlas to a subject data set and associate areas of activation with the probabilistic
segmentation.

The probabilistic atlas and associated data can also play several important roles in the
development of new algorithms for automated delineation. The atlases provide prior
information that can be used by statistical classifiers for automatically labeling features in new
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images (Collins et al., 1995; Leemput et al., 1999a, b; Heckemann et al., 2006); similarly, the
individual labelings and MRI data could also be applied using the multi-atlas approach
presented by Klein et al. (2005). Additionally, the manual delineations provide a reference data
set to which the results of automated algorithms can be compared. An example the utility of
such data sets is the Internet Brain Segmentation Repository 10, which provides delineated
reference MRI data specifically for the purpose of analyzing and improving segmentation
approaches. While human rater reliability is subject to variability, manual delineation is still
the standard for interpretation of imaging data. The validation data produced during the training
process for our raters quantifies this variability and can be used to give context to the
performance of machine algorithms that automatically label the brain. While the raters
approached the ICC metric iteratively during their training, those metrics and the Jaccard
similarity metrics can serve as target values for machine algorithms or other raters to achieve.
The delineation data may also serve as a training set for automated algorithms that require
training. Additional delineations can be performed following the written protocols to obtain
additional testing or training data.

While this research shares many features with other multi-subject atlasing efforts, we describe
briefly some of its distinguishing features and note that different atlases are likely to be
appropriate for different applications. First, few multi-subject atlas studies have been
performed where human raters labeled the brain in a comprehensive manner. While Collins et
al. (1999) have generated atlases based on delineations of MRI from more subjects (N=152),
those results were produced using automated labeling of brain structures due to the resources
required for performing manual delineations. Hammers et al. (2003) have also used manual
delineation techniques to create a maximum probability labeled brain atlas, but their atlas was
constructed from fewer subjects (N=20) and the structures chosen for delineation were
concentrated on the temporal lobe. The atlas described by Hammers et al. (2003) was later
extended with data from additional subjects and labels for additional structures; these labels
emphasize the temporal lobe and the frontal lobe (Heckemann et al., 2006). In contrast, our
atlas contains labels for at least 4 sub-structures in each of the frontal, temporal, parietal, and
occipital lobes for each hemisphere. The atlases used in the work by Klein et al. (2005) used
20 subjects and 36 cortical areas, with no subdivision of the occipital lobe. The atlas produced
by Mega et al. (2005) used 20 subjects and 68 structures, but was composed of data from an
aging population, while our atlas is composed of data from a younger population.

A significant component of this work is the public availability of the atlas data via our webset;
they currently represent one of the more comprehensive multi-subject structure atlases that is
freely available. Through this, we hope this atlas can serve as a resource to the neuroimaging
community. In related work, we are developing a validation framework to test the accuracy of
segmentation algorithms based on the manual delineations described in this paper.
Additionally, we already have identified relations of the delineated structures to corresponding
labels in the Foundational Model of Anatomy 11, and several additional atlases, to facilitate
bioinformatics applications. For example, we developed a web service that computes
associations of the neuroanatomic terms with user-specified search strings (e.g., “working
memory”); these results can then be displayed on the probabilistic atlas so that users can
visualize and interrogate literature relevant to these associations
(seehttp://www.pubbrain.org).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

10available online athttp://www.cma.mgh.harvard.edu/ibsr/
11online athttp://sig.biostr.washington.edu/projects/fm/index.html
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Fig. 1.
Examples of probabilistic atlases. (a) An average intensity atlas computed from co-registered
MRI data (b) A tissue-type probability atlas computed from co-registered tissue fraction maps
produced from MRI. Each voxel was partitioned into grey matter, white matter, or CSF
components in the original volumes (shown here in green, blue, or red, respectively). The values
are transformed into the common atlas space, then used to compute the likelihood of each voxel
in the atlas space containing the different tissue types. (c) A probabilistic structure atlas
computed from co-registered cortical structure delineations. The delineations (see Table 1 for
color index) are mapped into the atlas space, then used to create density maps for each structure
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in the volume. The figure shows a maximum likelihood labeling generated from a probabilistic
structure atlas.
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Fig. 2.
Image pre-processing sequence. MRI of the brain for each subject were registered to the
MNI-305 atlas (181 × 217 × 181 voxels, 1 × 1 × 1mm3 voxel resolution) using a rigid-body
transformation. This corrected for head-tilt and alignment to ensure unbiased anatomical
decisions during the delineation process. Once in the delineation space, the MRI were corrected
for RF inhomogeneity artifacts and processed to identify the cerebrum.
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Fig. 3.
Delineation Example figures from the delineation protocol for the post–central gyrus. The left
image shows the slice view, while the middle view shows the corresponding surface view.
These views are consistent with what the raters see during the delineation process, except for
the annotations, which are part of the written protocol. The rightmost figure shows the inclusion
of white matter in the delineation of a gyrus. Text and images for all protocols used in this
study are available from our website.
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Fig. 4.
These flowcharts show the common approach used in the production of the 3 atlas versions.
Once the spatially normalized maps were produced for each subject, they were averaged to
produce the average intensity and probability density maps. (a) Normalization of data from
native space to the atlas space. The spatial normalization methods and target spaces used are
detailed in Table 2. The skull-stripped, RF-corrected MRI were used for the AIR and FLIRT
normalization processes; the whole-head MRI were used for the SPM5 normalization. The
skull-stripped, RF-corrected MRI were resampled for all 3 versions of the atlas; see the text
for details on the resampling parameters used. (b) Normalization of data from delineation space
to the atlas space. The delineation labels were separated into individual structure maps and
resampled using trilinear interpolation. For the AIR and FLIRT versions of the atlas, this was
achieved using a single composited transform; for the SPM5 version, the structure maps were
first resampled into the native space, then retransformed into the atlas space. Trilinear
interpolation was used in each instance.
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Fig. 5.
Probability densities for the superior temporal gyrus, computed for each of the three atlas
spaces. Each density is superimposed on the average intensity brain image computed for each
target space. For the LPBA40/FLIRT and LPBA40/SPM5 images, the slices are taken through
the z = 0 plane in SPM5 coordinates for the ICBM152 T1 average; the LPBA40/AIR images
were taken from a corresponding plane. All images are shown in neurological convention
(anatomical left is displayed on the left) (Top) The average intensity brain image (Middle) The
superior temporal gyrus density map (Bottom) The superior temporal gyrus grey matter density
map.
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Fig. 6.
Probability maps for three cortical structures. Probabilistic data from the LPBA40/AIR atlas
was mapped back to the space of one of the atlas subjects. The surface model has been colored
according to the probability values for middle frontal gyrus, superior temporal gyrus, and
fusiform gyrus to indicate the likelihood of one of those structures at a given surface point.
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Fig. 7.
Average MRI intensity images. On the left are slices from the average brain images produced
after spatial alignment with AIR nonlinear warping and the ICBM452 T1 5th order warp atlas.
In the middle are similar slices in the average intensity image produced after alignment using
FLIRT and its skull-stripped ICBM152 T1 average brain. On the right are the same slices in
the images produced using SPM5 to align the subject data to its ICBM152 T1 template.
Transaxial and coronal mages are displayed in neurological convention (anatomical left is
displayed on the left); the crosshairs indicate the slice positions.
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Fig. 8.
Maximum likelihood maps. Shown are images from the maximum likelihood maps for the
three versions of the atlas, corresponding to the slices shown in Fig. 7. The intensity represents
that maximum probability value at each voxel, computed from the estimated structure
probability density maps. The color indicates the most probable structure (see Table 1).
Transaxial and coronal images are displayed in neurological convention (anatomical left is
displayed on the left)).
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Fig. 9.
Maximum likelihood grey matter maps. Shown are images from the maximum likelihood grey
matter maps for the three versions of the atlas, corresponding to the slices shown in Fig. 7. The
intensity represents that maximum probability value at each voxel, computed from the
estimated grey matter structure probability density maps. The color indicates the most probable
structure (see Table 1). Transaxial and coronal images are displayed in neurological convention
(anatomical left is displayed on the left).
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Fig. 10.
The LPBA40/AIR maximimum likelihood atlas data, mapped back to the surface model of an
atlas subject. (Top) The surface has been colored according to the most likely structure label
(see Table I for key). (Middle) The surface is colored according to the maximum probability
value at each surface point. (Bottom) The surface has been colored according to the number
of structures with non-zero probabilities at each location on the cortex.
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Table 1
Cortical structures in the probabilistic atlas and the corresponding colors used to
denote them in this paper. *The hippocampus can be considered to reside in both
the temporal lobe and the limbic lobe. ** The fusiform and lingual gyrus can be
considered to reside in both the occipital lobe and temporal lobe.
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Table 2
The three variants of the LONI Probabilistic Brain Atlas.

LPBA40/AIR LPBA40/FLIRT LPBA40/SPM5

package AIR FSL SPM5

algorithm align_warp FLIRT unified segmentation

target ICBM452 Warp 5 avg152T1_brain avg152T1

matrix 149 × 188 × 148 91 × 109 × 91 91 × 109 × 91

resolution 1 × 1 × 1mm3 2 × 2 × 2mm3 2 × 2 × 2mm3
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Table 4
Average volume measures of the delineated structures, computed in the delineation space and after spatial normalization
to the three registration targets.

Structure Volume, in cm^3 (mean + s.d.)

structure delineation space LPBA40/AIR LPBA40/FLIRT LPBA40/SPM5

brainstem 29.59 ± 3.32 31.28 ± 2.28 39.57 ± 2.95 33.05 ± 1.38

cerebellum 133.97 ± 17.05 160.13 ± 6.23 184.37 ± 14.38 155.69 ± 6.74

L angular gyrus 17.44 ± 3.40 17.12 ± 4.00 24.13 ± 4.86 23.86 ± 4.84

R angular gyrus 18.82 ± 3.65 18.36 ± 3.20 26.00 ± 4.84 25.69 ± 4.37

L caudate 2.97 ± 0.55 3.62 ± 0.63 4.10 ± 0.64 4.15 ± 0.68

R caudate 2.86 ± 0.62 3.51 ± 0.71 3.94 ± 0.75 4.05 ± 0.75

L cingulate gyrus 12.45 ± 2.12 19.54 ± 3.92 17.28 ± 3.17 17.31 ± 3.09

R cingulate gyrus 12.79 ± 2.30 20.15 ± 4.52 17.77 ± 3.65 17.90 ± 3.55

L cuneus 6.00 ± 1.51 5.97 ± 1.56 8.26 ± 1.97 8.42 ± 1.94

R cuneus 6.45 ± 1.69 6.73 ± 1.75 8.93 ± 2.47 9.07 ± 2.29

L fusiform gyrus 12.25 ± 2.32 16.42 ± 2.61 16.84 ± 2.70 17.04 ± 2.67

R fusiform gyrus 12.31 ± 2.13 16.65 ± 2.75 16.98 ± 2.62 16.95 ± 2.52

L gyrus rectus 3.19 ± 0.64 3.02 ± 0.71 4.41 ± 0.88 4.50 ± 0.89

R gyrus rectus 3.34 ± 0.75 3.08 ± 0.67 4.58 ± 0.92 4.68 ± 0.95

L hippocampus 3.91 ± 0.52 4.44 ± 0.47 5.39 ± 0.48 5.36 ± 0.54

R hippocampus 4.12 ± 0.52 4.70 ± 0.50 5.68 ± 0.58 5.64 ± 0.56

L inferior frontal gyrus 22.26 ± 4.73 24.96 ± 5.03 30.67 ± 5.97 31.52 ± 5.50

R inferior frontal gyrus 23.76 ± 5.44 26.22 ± 5.95 32.78 ± 7.23 33.23 ± 6.49

L inferior occipital gyrus 10.78 ± 2.29 10.66 ± 2.43 14.83 ± 2.81 15.43 ± 2.88

R inferior occipital gyrus 10.79 ± 2.22 11.09 ± 2.69 14.87 ± 2.74 15.43 ± 3.01

L inferior temporal gyrus 20.62 ± 4.06 21.84 ± 3.47 28.36 ± 4.66 29.04 ± 4.63

R inferior temporal gyrus 21.97 ± 3.78 22.40 ± 3.05 30.26 ± 4.09 30.18 ± 3.84

L insular cortex 7.30 ± 1.02 9.94 ± 0.90 10.03 ± 0.87 9.96 ± 0.83

R insular cortex 6.74 ± 0.89 9.20 ± 0.89 9.29 ± 1.00 9.19 ± 0.91

L lateral orbitofrontal gyrus 6.31 ± 1.29 7.27 ± 1.78 8.75 ± 2.03 8.89 ± 1.92

R lateral orbitofrontal gyrus 5.79 ± 1.32 6.61 ± 1.82 8.00 ± 1.83 8.02 ± 1.73

L lingual gyrus 12.95 ± 2.40 16.21 ± 2.75 17.88 ± 3.11 17.98 ± 3.02

R lingual gyrus 13.09 ± 2.42 16.99 ± 2.85 18.05 ± 2.88 18.28 ± 2.87

L middle frontal gyrus 50.96 ± 6.99 55.36 ± 6.18 70.32 ± 8.08 71.95 ± 8.33

R middle frontal gyrus 51.26 ± 7.10 55.02 ± 6.73 70.72 ± 8.37 71.81 ± 9.07

L middle orbitofrontal gyrus 9.20 ± 2.00 9.75 ± 1.69 12.61 ± 2.18 12.70 ± 2.28

R middle orbitofrontal gyrus 9.17 ± 1.89 9.68 ± 1.81 12.59 ± 2.15 12.65 ± 2.23

L middle occipital gyrus 23.04 ± 5.24 19.52 ± 3.87 31.61 ± 6.18 31.97 ± 5.90

R middle occipital gyrus 23.79 ± 5.64 21.35 ± 5.41 32.66 ± 6.79 32.97 ± 6.30

L middle temporal gyrus 25.03 ± 4.50 25.83 ± 2.94 34.39 ± 4.56 36.34 ± 3.94

R middle temporal gyrus 25.49 ± 4.85 25.94 ± 3.45 35.05 ± 5.38 36.37 ± 4.76

L parahippocampal gyrus 6.31 ± 1.20 7.43 ± 1.23 8.70 ± 1.36 8.52 ± 1.30

R parahippocampal gyrus 6.50 ± 1.36 7.66 ± 1.42 8.92 ± 1.56 8.72 ± 1.48

L postcentral gyrus 22.00 ± 2.70 21.99 ± 2.63 30.32 ± 2.77 29.78 ± 2.62

R postcentral gyrus 21.35 ± 2.85 21.97 ± 2.89 29.47 ± 3.25 28.63 ± 3.26
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Structure Volume, in cm^3 (mean + s.d.)

structure delineation space LPBA40/AIR LPBA40/FLIRT LPBA40/SPM5

L precentral gyrus 26.44 ± 3.03 27.10 ± 2.99 36.45 ± 2.83 35.82 ± 2.67

R precentral gyrus 25.88 ± 3.75 26.77 ± 3.57 35.64 ± 3.64 34.62 ± 3.56

L precuneus 10.68 ± 2.25 12.83 ± 2.16 14.64 ± 2.25 14.06 ± 1.94

R precuneus 10.59 ± 1.91 12.65 ± 2.17 14.55 ± 2.10 14.02 ± 1.90

L putamen 4.25 ± 0.52 5.17 ± 0.73 5.87 ± 0.69 5.69 ± 0.68

R putamen 4.22 ± 0.49 5.13 ± 0.61 5.83 ± 0.63 5.77 ± 0.62

L superior frontal gyrus 57.67 ± 9.03 60.91 ± 6.18 79.44 ± 9.53 77.26 ± 7.87

R superior frontal gyrus 57.71 ± 8.66 60.74 ± 5.50 79.25 ± 7.18 76.89 ± 5.89

L superior occipital gyrus 8.19 ± 2.00 7.31 ± 1.79 11.29 ± 2.50 11.07 ± 2.19

R superior occipital gyrus 8.70 ± 1.93 7.85 ± 1.87 12.01 ± 2.47 11.81 ± 2.42

L superior parietal gyrus 26.25 ± 4.30 25.05 ± 4.90 36.15 ± 4.70 34.16 ± 5.02

R superior parietal gyrus 25.96 ± 4.59 24.36 ± 4.50 35.63 ± 4.49 34.02 ± 4.85

L superior temporal gyrus 27.66 ± 4.45 29.92 ± 3.01 38.01 ± 4.06 39.22 ± 3.86

R superior temporal gyrus 26.78 ± 3.28 29.10 ± 3.19 36.92 ± 3.33 37.34 ± 3.51

L supramarginal gyrus 14.41 ± 3.30 13.84 ± 3.00 19.77 ± 3.66 20.18 ± 3.64

R supramarginal gyrus 13.95 ± 3.34 13.51 ± 2.87 19.11 ± 3.72 19.02 ± 3.53
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