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Abstract
The Wiener diffusion model (WDM) for 2-alternative tasks assumes that sensory information is
integrated over time. Recent neurophysiological studies have found neural correlates of this
integration process in certain neuronal populations. This paper analyses the properties of the WDM
with two different boundary conditions in decision making tasks in which the time of response is
indicated by a cue. A dual reflecting boundary mechanism is proposed and its performance is
compared with a well-established absorbing boundary in the cases of the WDM, the WDM with
extensions, and the WDM with prior probability. The two types of boundary influence the dynamics
of the model and introduce differential weighting of evidence. Comparisons with Ornstein-
Uhlenbeck models are also done, and it is shown that the WDM with both types of boundaries
achieves similar performance and produce similar fits to existing behavioural data. Further studies
are proposed to distinguish which boundary mechanism is more consistent with experimental data.
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1 Introduction
Making choices is a frequent and critical element of human and animal lives. This problem has
been studied by psychologists under two types of 2-alternative-forced-choice (2AFC)
paradigms, in which subjects must decide between two available alternatives. The information
controlled (IC) paradigm allows subjects to respond whenever they feel confident (Luce,
1986). Alternatively, subjects can be required to report their choice immediately after a cue to
respond (Yellott, 1971; Swensson, 1972), under the time controlled (TC) paradigm (sometimes
referred to as the response signal paradigm, see Dosher, 1984).

Over the last half century several sequential sampling models have been proposed to describe
experimental results as well as underlying decision-making mechanisms in 2AFC tasks (for
reviews, see Townsend and Ashby, 1983; Luce, 1986). The Wiener diffusion model (WDM)
- the focus of this paper - assumes that subjects integrate partial information representing the
relative support for the two alternatives over time (Stone, 1960; Laming, 1968; Ratcliff,
1978), and has been shown to be the statistically optimal method for choosing between two
alternatives on the basis of noisy evidence. For a fixed set of stimulus conditions, the WDM
minimizes the reaction time for given accuracy, or maximizes the accuracy for given reaction
time (Wald, 1947; Edwards, 1965; Laming, 1968; Gold and Shadlen, 2001, 2002). The WDM
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successfully describes reaction times distribution and accuracy in various cognitive decision
tasks in the IC paradigm (Stone, 1960; Laming, 1968; Link, 1975; Link and Heath, 1975;
Ratcliff, 1978; Ratcliff et al., 1999; Ratcliff and Smith, 2004). However, in the TC paradigm,
the earlier version of the model (Ratcliff, 1978) allows integrator states to take arbitrary values.
It leads to the prediction that the accuracy always increases over time if the drift of the process
is in the correct direction. This is contrary to the finding that accuracy in the paradigm grows
over time to an asymptote. To avoid this shortcoming, the model needs to assume that drift
values are normally distributed across trials (Ratcliff, 1978) or that the integration range is
bounded (Ratcliff, 1988). With one of these elaborations, the model correctly predicts the time-
accuracy curves found in the IC condition.

This paper introduces a reflecting boundary mechanism to model 2AFC tasks in the TC
paradigm. We compare the dynamics and performance of the WDM with reflecting and
absorbing boundaries (Feller, 1968) and assess their ability to account for published
behavioural data from 2AFC experiments. We also compare them with an Ornstein-Uhlenbeck
(O-U) model (Busemeyer and Townsend, 1992, 1993; Diederich, 1995, 1997; Smith, 1995,
2000; Ratcliff and Smith, 2004). Analytical and numerical results show that both boundary
types lead to similar performance and produce similar fits, but we identify some differences
between them. Further studies are proposed that might distinguish which type of boundary
better describes the decision making process.

The paper is organized as follows. Section 2 reviews neurophysiological evidence of decision
making, and describes the WDM and alternative boundary mechanisms. More detailed reviews
are available elsewhere (Glimcher, 2001; Schall, 2001; Smith and Ratcliff, 2004; Bogacz et
al., 2006; Gold and Shadlen, 2007). Section 3 compares the dynamics and the performance of
models with the two types of boundaries. Section 4 compares fits of bounded models with
behavioural data. Finally, Section 5 discusses further experimental studies that could
distinguish between the boundary mechanisms. Mathematical details are provided in
Appendices A and B.

2 The biology of decision and the sequential sampling models
2.1 The neural basis of 2AFC tasks

Recently, neuronal activity from awake animals has been recorded in choice experiments. For
example, in the motion discrimination task, visual stimuli comprise arrays of random moving
dots, a proportion of which move coherently to the left or right. Subjects (monkeys) are required
to indicate their decision regarding the coherent direction by making a saccade to a left or right
target (Shadlen and Newsome, 2001; Roitman and Shadlen, 2002).

The activity of neurons in the middle temporal (MT) area has been shown to correlate with the
motion coherence (Britten et al., 1993). However, since these neurons are highly noisy and
poorly correlated with choices, area MT is less likely to be a “decision maker” than to provide
temporal information for a further process. It has been suggested that the lateral interparietal
(LIP) area may interpret raw information from MT neurons. Shadlen and Newsome (1996)
reported that LIP neurons gradually build up or attenuate their activity within a trial, and exhibit
persistent activity in the absence of stimuli (Shadlen and Newsome, 2001). The time course of
LIP neuronal activity suggests that area LIP integrates inputs from MT neurons (Roitman and
Shadlen, 2002; Huk and Shadlen, 2005; Hanks et al., 2006). Similar discharge patterns are also
found in the frontal eye field (FEF) (Schall, 2002) and the superior colliculus (SC) (Basso and
Wurtz, 1998).

These results indicate a general decision mechanism manifested in different brain regions in
which certain neuronal populations integrate sensory information over time to increase the
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accuracy of selection between alternatives (Gold and Shadlen, 2007; Schall, 2001). Gold and
Shadlen (2001, 2002) formalize the decision process in 2AFC tasks as following two processes:
two populations of sensory neurons (e.g., in MT) generate continuous noisy information
streams (Y1(t) and Y2(t)) for each of two alternatives Y1 and Y2 at time t. For simplicity, we
assume that Y1(t) and Y2(t) have constant means μ1 and μ2 during each trial, with the same
constant standard deviation, σ. The goal of the second process, (reflected in LIP activities), is
to successfully identify which input population has higher mean based on sample sequences
Y1(t) and Y2(t). This framework is the basis for several sequential sampling models in
behavioural studies, including the WDM (Ratcliff, 1978), the O-U model (Busemeyer and
Townsend, 1992), and the leaky-competing-accumulator (LCA) model (Usher and
McClelland, 2001).

2.2 The Wiener diffusion model (WDM)
The Wiener diffusion or Brownian motion is a continuous limit of the random walk (Stone,
1960; Laming, 1968; Ratcliff, 1978). It implies a leak-free integrator that accumulates the
difference Y1(t) - Y2(t) between noisy evidence streams for the two alternatives. Let X(t) denote
the accumulated difference at time t: the value of the integrator state, with initial state X0 = X
(0). If there is no prior bias towards either choice, the process starts at baseline X0 = 0, and is
described by a stochastic differential equation:

(1)

where dX(t) denotes the evidence obtained during time step dt. μ is a constant drift (the
accumulation rate), representing the average of evidence difference μ1 - μ2. On a given trial,
μ > 0 (μ1 > μ2) implies that Y1 is the correct choice, while μ < 0 (μ1 < μ2) if Y2 is correct. For
consistency we hereafter set μ > 0 unless indicated specifically and hence assume Y1 is the
correct choice. The magnitude of μ reflects the difficulty level of the task: for small μ (μ1 ≈
μ2), it is difficult to distinguish which evidence samples have higher mean. The second term
σ dW(t) denotes Gaussian noise with mean 0 and variance σ2dt. In the absence of noise (σ =
0), X(t) changes at rate μ and always reaches a correct decision. Noisy inputs cause the X(t) to
fluctuate and hence induce incorrect choices on some trials.

Figure 1 shows the growth of X(t) in the two paradigms. For the IC paradigm, the decision time
is unrestricted and two thresholds ±a are introduced to indicate termination states. Once X(t)
reaches a threshold, the corresponding alternative is chosen. For the TC paradigm, the decision
process is interrupted by a response cue, and a response is immediately required. We hereafter
denote the time delay from stimulus onset to response cue by tc. The alternatives are selected
by locating the final integrator state X(tc) and selecting Y1 if X(tc) > 0, and Y2 if X(tc) < 0.

Performance can be measured by the error rate: the probability of making an incorrect choice
in a block of trials1, hereafter denoted by P. The error rate is a function of model parameters
μ, σ, and threshold setting, a, or response signal, tc, depending on the paradigm. For unbiased
initial conditions X0 = 0, the error rate of the WDM in the IC and TC paradigms are given by
Eqs. 2 and 3, respectively (Bogacz et al. 2007; cf. Gardiner 1985; Ratcliff 1978):

(2)

1Here we do not directly measure the probability of choosing certain alternatives (e.g., PY1 or PY2) since in most experiments the correct
choice is randomly assigned from the two alternatives across trials (e.g., Shadlen and Newsome, 2001; Roitman and Shadlen, 2002).
Note that when we assume Y1 is correct, then P = PY2 .
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(3)

Two extensions have been proposed to improve fits to experimental data (Ratcliff et al.,
1999). They allow certain parameters to vary randomly across trials. First, drift rate  is
assumed to have a Gaussian distribution across trials with mean μ* and variance , which
might reflect the variability of difficulty between trials, the subject’s attention level, or other
variable inter-trial factors. On each trial,  can take either positive or negative values,
promoting accumulation towards different alternatives. The correct choice is determined by
the mean drift μ*, even if the sampled value  has opposite sign in some trials. This is motivated
by the fact that, in difficult situations, stimulus distributions corresponding to the two
alternatives often overlap (Ratcliff et al., 1999). Even after long training, perfect performance
in such tasks is impossible. Drift variability is also necessary to ensure that the asymptotic
accuracy of the WDM in the IC paradigm is not infinite in the absence of boundaries (Ratcliff,
1978). Second, the theory of premature sampling assumes that subjects start to integrate noise
before sensory information is available. Hence the starting point is not at 0 when stimuli onset
(Laming, 1968). Instead, On each trial X0 is chosen from a uniform distribution 2 on the interval
[-σX, σX].

The extended WDM produces different reaction times on correct and error trials in the IC
paradigm (Ratcliff et al., 1999). We assume that the same variability sources also operate in
the TC paradigm; their effects on the decision process will be evaluated in the next section.

2.3 Boundary mechanisms
In the TC paradigm, the fact that integrator states X(t) are unbounded implies that the error rate
of the WDM with no variability in drift rate diminishes to zero for large tc (cf. Eq. 3). To
eliminate this contradiction, absorbing boundaries can be introduced at X = ±b. This mechanism
was originally used to model tasks in which IC and TC paradigms were intermixed (Ratcliff,
1988). Such tasks promote subjects to respond as fast as possible before a predetermined
deadline. Under this condition the proposed model, also called the internal deadline model,
assumes that the decision process is terminated when the accumulated evidence reaches one
of the three possible boundaries, whichever comes first. The three boundaries are: top and
bottom absorbing boundaries in the state domain, and a deadline boundary in the time domain
(Diederich and Busemeyer, 2006;Ratcliff and Rouder, 2000).

In this work, we consider a pure TC paradigm in which subjects are only allowed to respond
after the deadline tc (Roitman and Shadlen, 2002). If the decision process reaches one of the
absorbing boundaries before tc, the accumulation process stops and the activity X(t) = ±b is
maintained until the end of the trial. For sufficiently large tc, X(t) will almost surely reach one
of the boundaries before tc (cf. Section 3.1). Absorbing boundaries have the same effect as the
decision threshold in the IC paradigm. Hence the error rate of the absorbing WDM with infinite
tc can be analytically obtained as (cf. Eq. 2):

(4)

2The uniform distribution is assumed to prevent X0 exceeding the thresholds ±a (by setting σX < a).
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where the subscript abs stands for the WDM with absorbing boundary. For b < ∞, the error
rate does not decrease to zero as tc increases, which is consistent with experimental observations
(Meyer et al., 1988; Usher and McClelland, 2001).

In contrast with the absorbing boundary mechanism, since no time pressure exists in the pure
TC paradigm, subjects may use the deadline alone to terminate the decision process. In this
case two reflecting boundaries may be more suitable to constrain the accumulation process,
because they allow the preferred choice to change even if X(t) reaches a boundary. Here the
boundaries restrict the amount of evidence that can be represented (much as a sigmoidal
function provides cutoffs at high and low activation). Some previous studies (Diederich,
1995; Diederich and Busemeyer, 2003) use a lower reflecting and an upper absorbing boundary
to model the simple reaction time task in which subjects respond immediately after a stimulus
is detected. The reflecting boundary in their model and the one proposed here share similar
motivations but there is a major difference. In the simple reaction time task, the accumulated
sensory information directly represents the absolute evidence to make a response. Sinece the
integrated information cannot drop below a certain baseline, one reflecting boundary is
required to model the minimum level of absolute evidence. Single reflecting boundaries have
also been used to represent a lower bound on the integration process (see Usher and
McClelland, 2001; Smith and Ratcliff, 2009; Ratcliff and Smith, 2004).

In the TC paradigm of 2AFC tasks, the integrator in the WDM represents the relative evidence
supporting the alternatives. The preferred alternative at time t is determined by the sign of X
(t). A value of X(t) > 0 means that the first alternative is the provisional choice, whereas X(t)
< 0 means that the second alternative is currently preferred. If we also assume that a minimum
activity baseline exists and that decision preferences may switch during the trial, two reflecting
boundaries are required to restrict the relative evidence of two alternatives within a certain
range. Details of the model are given in Section 3.

2.4 The Ornstein-Uhlenbeck (O-U) model
Another widely applied sequential sampling method is the O-U model (Busemeyer and
Townsend, 1992, 1993; Busemeyer and Diederich, 2002). It introduces a new parameter λ to
the WDM to represent decay (λ < 0) or growth (λ < 0) of accumulated information, its evolution
being described by:

(5)

where the notations are as in Eq. 1. In the O-U model the accumulation rate depends not only
on drift μ but also on the current state of the integrator X(t). This allows the error rate of the
O-U model to approach a finite asymptote for large tc even without boundaries.

The O-U model can account for the primacy and recency effects observed in decision making
tasks: some subjects paying more attention to initial evidence (primacy) while others focus on
later evidence (recency) (Wallsten and Barton, 1982). To illustrate this, note that Eq. 5 has a
fixed point X = -μ/λ. For λ > 0, the fixed point is unstable. After X(t) has been driven to one
side or other of the fixed point, subsequent evidence has little effect on the final choice due to
repulsion, indicating a primacy effect. For λ < 0, the fixed point is an attractor. Information
decays over time so that early evidence is partially lost, indicating a recency effect. A proof is
available in Busemeyer and Townsend (1993).

The O-U model has been applied to a variety of tasks (Diederich, 1995, 1997; Smith, 1995)
and also been extended to multi-alternative tasks (Usher and McClelland, 2001; McMillen and
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Holmes, 2006). As it is similar to the WDM, we include the O-U model in our subsequent
comparative study.

3 Comparison of properties of bounded WDMs
3.1 The WDM with reflecting boundaries

Motivated by the discussion in Section 2.3, we now propose reflecting boundary conditions.
In the simplest cases, the boundaries ±b are still symmetric about X0 but they differ from
absorbing boundaries in that once X(t) reaches ±b, it cannot exceed this value, but it may move
back due to noise, as specified by:

(6)

where dX(t) is given by Eq. 1. In contrast to absorbing boundaries, reflecting boundaries allow
information from any time period to contribute to the final choice, which is not determined
until the end of tc. Figure 2 shows sample paths of integrator states in the WDM with both
types of boundaries, over one trial.

The solid line shows that for reflecting boundaries, even if X(t) reaches the upper boundary, X
(t) continues to evolve until tc and it may “backtrack” to subsequently reach the lower boundary.

Note that, unlike the absorbing WDM in which boundary contact induces a decision, the
reflecting WDM requires an external criterion to stop (e.g., a response cue at time tc), so it
cannot be applied to the IC paradigm to tasks in which IC and TC paradigms are intermixed.
Hence we will only consider the TC paradigm in the rest of this paper.

The first step in investigating the bounded WDM is to compute the probability density p(X,
t) of Eq. 1 with appropriate boundary conditions, i.e., the probability of finding a sample path
at state X at time t. Explicit expressions for p(X, t) of absorbing and reflecting WDMs are given
in Eqs. B.5 and A.9 of the Appendix. Figure 3b illustrates the distribution of the reflecting
WDM at several time instants. Comparing with that of the absorbing WDM in Figure 3a, we
may distinguish properties of p(X, t) for the two types of boundaries. Initially both are
approximately Gaussian (note the curves marked t = 0.1s), with means close to X0 and shifted
towards the upper boundary (the correct choice for μ > 0), but they become significantly
different as t grows. For the absorbing WDM, p(X, t) collapses to 0 as t → ∞, since every
decision process is absorbed by one of the boundaries after sufficiently large tc. In contrast, no
paths terminate in the reflecting WDM, but p(X, t) remains of unit mass and approaches the
equilibrium distribution:

(7)

The error rate of the reflecting WDM can be computed by integrating p(X, t) from -b to 0 (cf.
Eq. A.16 of Appendix A), and as tc increases, it converges to:

(8)
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were ref stands for reflecting WDM. Note that arbitrarily small P(ref)(tc) can be achieved for
b < ∞ only if the signal-to-noise ratio μ/σ → ∞, and that the expression of P is identical to Eq.
4.

3.2 Primacy and recency effects
Since the updating rule in Eq. 1 is independent of the current state X(t), the unbounded WDM
implicitly assumes that the influence of sensory evidence on the final choice does not depend
on the timing of its occurrence. This assumption is contrary to the primacy and recency effects
discussed before. Here we show that by applying the two types of boundary, the WDM can
also represent primacy and recency effects.

For the absorbing WDM, once X(t) hits the boundary, the preferred decision is determined and
maintained. Only inputs prior to the first boundary hit contribute to the decision process, so
the probability that incoming evidence at time t contributes to the final choice (denoted by P
(dX(t) ≠ 0)) is equal to the probability that neither boundary has been reached before t, i.e.,:

(9)

where the random variable G(X) is the time required for X(t) to frist reach either boundary (the
first-passage time (Feller, 1968) and ΦG(X) is the cumulative distribution of G(X). Since
ΦG(X) is a monotonically increasing function, P(dX(t) ≠ 0) is monotonically decreasing. Thus
on average the decision is more likely based on earlier inputs, indicating a primacy effect.

For the reflecting WDM, each boundary hit results in a loss of information, since the model
does not fully integrate the increment that carries it to the boundary. To illustrate this, assume
that, at time τ, the incoming evidence dX(τ) drives the integrator to reach one of the boundaries.
Compared with the unbounded WDM, hitting the reflecting boundary leads to a loss of
information |X(τ) + dX(τ) - b| (cf. Eq. 6). On average, evidence presented earlier in the trial
results in more boundary hits. Thus, information arriving earlier is partially lost and the final
choice depends to a greater extent on later inputs, producing a recency effect. The reflecting
WDM can also (repeatedly) change the preferred alternative within a trial, e.g., in Figure 2 the
state of the reflecting WDM drops below zero, changing its choice in the last 0.2 s.

Primacy and recency effects can be illustrated by showing how the two models weight noisy
inputs during the decision process. A sequence of trials was simulated and the noisy inputs
recorded (right side of Eq. 1) only for trials resulting in correct choices. These inputs were then
averaged to indicate the correlation between the mean inputs and the final choice, and this
averaged input was shown in Figure 4. For absorbing boundaries, larger inputs at early times
contributed more to the final decision (primacy), while for reflecting boundaries, larger inputs
before the response led to the correct choice (recency).

3.3 Performance of bounded WDMs
Recall that the error rate expressions for the reflecting and absorbing WDM coincide when
tc → ∞ (Eqs. 4 and 8). In appendix B we prove that such an equality holds in general: given
the same parameter set (μ, σ, b) and no prior bias (i.e., boundaries equidistant from the starting
point X0 = 0), the error rates for the two bounded WDMs are identical for any tc:

(10)

Hence both bounded models achieve the same accuracy under the TC paradigm, as illustrated
in Figure 5: the two curves coincide for any given tc. Thus, although the different boundaries
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profoundly influence the dynamics of the decision process, their performances are
indistinguishable. For given experimental observations (P(tc) in TC paradigm) and the same
parameter set, the two types of bounded models can always provide the same fitting ability, as
we shall illustrate in Section 4.

3.4 Performance of bounded WDM with extensions
We now consider the extended WDM described in Section 2.2.

3.4.1 Variability of drift rate—Figure 6 compares P(tc) at different tc for the bounded WDM
with drift rates sampled from a normal distribution, with P(tc) for the bounded WDM with
constant drift rate. Drift variability increases the error rate for all tc. The figure also shows that
reflecting and absorbing boundaries still produce identical error rates for any tc. This is not
surprising since while drift differs across trials in the extended model, within each trial the
sampled drift  remains fixed. Hence both bounded models produce the same error rate,
according to Section 3.3.

3.4.2 Variability of starting point—Figure 7 shows the performance of the bounded WDM
with starting points X0 sampled from a uniform distribution. This produces higher error rates
than models with constant X0. Also, since starting points are not equidistant from the
boundaries, the error rates differ for the two types of boundary. One interesting result is that
the reflecting WDM with variable and constant X0 can achieve the same error rate for large
tc (the dashed and dash-dotted curves converge after 2s). This follows from the recency effect
discussed in Section 3.2: initial condition variability is attenuated by reflecting boundaries as
tc increases. In contrast, the performance of the absorbing WDM is highly sensitive to starting
points.

3.5 Prior probability and biased starting points
In this section we investigate how boundaries affect performance if the starting point X0
depends on the prior probability of the alternatives.

If the subject knows that one of the alternatives is more probable, performance can be improved
by moving the starting point towards that alternative (Edwards, 1965; Link, 1975). Such
starting point biases have been observed in behavioural experiments (Laming, 1968; Link,
1975; Ratcliff et al., 1999). We now compare the performance of bounded WDMs in this
situation. We denote the probability that the first alternative is correct by p+, and that the second
is correct by p- = 1 - p+, so that on each trial drift μ > 0 occurs with probability p+ and μ < 0
with probability p-.

Link (1975) proved that to minimize the error rate under the IC paradigm, the starting point
should be set to:

(11)

Thus, as the difference in prior probabilities increases, X0 moves towards the boundary which
is more likely to be correct. Recall that in Section 2 we proposed that absorbing boundaries in
the TC paradigm act like decision thresholds in the IC paradigm. Hence Eq. 11 also specifies
the optimal starting point of the absorbing WDM for large tc under the TC paradigm. Figure
8a illustrates this prediction by stimulating bounded models with several starting points. The
theoretically optimal X0 (vertical solid line) of Eq. 11 can minimize the error rate of the
absorbing model (solid curve). Note that the correct choice in the simulation is still defined by

Zhang et al. Page 8

J Math Psychol. Author manuscript; available in PMC 2009 October 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the sign of the drift rate. Hence a biased starting point close to the error boundary (X0 < 0)
induces P(tc) larger than 0.5. In contrast, the reflecting boundary model achieves the same error
rate for different X0 for large tc, because the recency effect attenuates the influence of starting
point on final choices.

Figure 8b compares the performance of bounded WDMs with starting points given by Eq. 11.
Biased starting points produce lower error rates for all tc than X0 = 0. As expected from Figure
8a, for large tc the reflecting WDM with the starting points of Eq. 11 has similar error rate to
the bounded WDM with X0 = 0 because of the recency effect, while the absorbing boundary
model with biased starting points of Eq. 11 achieves superior performance, since it can profit
from starting point adjustments. For small tc (< 0.3s), the two bounded models with biased
starting points exhibit similar performances, since early in the decision process most integrator
states |X(t)| are distant from the boundaries, so the models approximate an unbounded WDM
and hence produce similar error rates.

4 Fitting the models to experimental data
An interesting debate has recently taken place between Ratcliff and Usher and McClelland
regarding which model best describes data from the TC paradigm. We briefly recall this to
place our results in context.

Eq. 3 predicts that the error rate of the unbounded WDM under the TC paradigm converges to
zero as tc → ∞ if the sign of μ represents the correct choice, so that subjects can achieve
arbitrarily small error rate even for difficult tasks (small μ). However, it is known that humans
cannot produce 100% accuracy even for large tc. For example, Usher and McClelland
(2001) performed an experiment in which subjects were required to decide whether a rectangle
is tilted to the left or to the right and to respond within 200 ms of a cue (approximating the TC
paradigm). Three subjects were tested with ten different viewing times (lags) and three levels
of difficulty, 190 trials being administered for each combination of lag and difficulty. For no
subject did error rate in the most difficult condition approach zero, even at the longest tc: see
Figure 9.

The unbounded WDM can be extended to account for these data by adding variability of drift,
which predicts that the error rate does not decrease to zero for large tc (see Section 2.3).
However, Usher and McClelland (2001) have shown that it is inferior to an O-U model in
describing the shape of the error rate as a function of tc Ratcliff (2006) then proposed that the
poor fit of the WDM is due to the absence of boundaries and showed that the absorbing WDM
fitted the data from a combined IC and TC experiment better or equally well than alternative
models.

We now provied further support for Ratcliff’s claim that boundaries allow the WDM to account
for TC data. In Figure 9 we compare fits of the O-U model and bounded WDM to the data of
Usher and McClelland (2001). To fit the O-U model, each subject is characterized by five
parameters: drifts μ1, μ2, μ3 under three difficulty conditions, the coefficient λ, and the
component T0 of tc not due to the decision process (analogous parameters were used by Usher
and McClelland (2001)). For simplicity and without loss of generality, the noise level is set to
σ = 1. To allow fair comparison, we fit bounded WDMs that are also characterized by five
parameters: drifts in three difficulty conditions, the boundary level ±b, and the non-decision
part of the tc (T0). Since WDMs with absorbing and reflecting boundaries produce the same
error rate under the TC paradigm (see Section 3.3), their data fits are also the same. Hence we
do not specify the boundary types in Figure. 9.
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We estimated the above parameters using a maximum likelihood approach, computing the
likelihood of subjects’ accuracy under each experimental condition (corresponding to each
data point in Figure 9) from a binomial distribution (Usher and McClelland, 2001). The
likelihood of accuracy under condition i in which the subject made ni correct decisions in N
(N = 190) trials is equal to:

(12)

In Eq. 12, pi denotes the probability of a correct choice predicted by the model for the mean
tc of a given subject under condition i. The probability pi is equal to 1 - P(tc) in condition i. P
(tc) is calculated from Eq. A. 16 in the Appendix A for the bounded WDM, while for the O-U
model it is equal to (Busemeyer and Townsend, 1992):

(13)

where Φ is the normal standard cumulative distribution function. The total likelihood of the
model for a given subject is equal to the product of likelihoods of the accuracies in all 30 (10
lags × 3 difficulty levels) experimental conditions:

(14)

We used the Subplex optimization algorithm (Rowan, 1990) to maximize this total likelihood
over the five free parameters in both the O-U and bounded WDM. The values of the estimated
parameters and the likelihood ratios of experimental data given the models are listed in Table
1. The curves in Figure 9 show accuracies predicted by the O-U model and the ounded WDM.
The fits are very similar and cannot differentiate between the models. Although the likelihood
ratios imply that overall the data are about 3.5 times more likely to have been produced by the
bounded WDM than by the O-U model, this preference was not consistent among subjects as
the bounded WDM fits two subjects better, and the O-U model better fits the third subject.

In summary, Usher and McClelland (2001) showed that the O-U model fits the data shown in
Figure 9 much better than an unbounded WDM. Here we have shown that bounded WDM fit
the data at least as well as the O-U model, and the WDM with absorbing and reflecting
boundaries fit the data equally well.

5 Discussion
The present study compared the performance and consistency of WDMs with absorbing and
reflecting boundaries with existing experimental data, as summarized in Table 2. We first
showed that both boundary types introduce differential weighting of evidence within trials,
yielding a primacy effect for absorbing boundaries and a recency effect for reflecting
boundaries (Figure 4; we return to these effects below in discussing experimental predictions).

We then showed that, in spite of the different probability densities of their solutions (Figure
3), the absorbing and reflecting WDMs produce the same error rates under the TC paradigm
with and without variability of drift rate (Figure 5 and 6). Thus, simple comparisons of
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performance between bounded WDMs cannot provide clear evidence in support of either
model. However, for starting point variability resulting from premature sampling, the reflecting
WDM yields lower error rate due to the recency effect, while if starting points reflects estimates
of prior probabilities, the absorbing WDM is superior (Figures 7 and 8).

Finally, we compared model fits to existing experimental data, showing that both absorbing
and reflecting WDMs produce the same fit to behavioural data from TC experiments (Figure
9). A bounded WDM produces as good fit as the O-U model on the given data set. We claim
that both absorbing and reflecting WDMs should be considered as useful models in the TC
paradigm.

Boundary mechanisms are not limited to the WDM, but can also be applied to decision making
models based on absolute evidence. Bogacz et al. (2007) analyse the LCA model (Usher and
McClelland, 2001) with one reflecting and one absorbing boundary in both IC and TC
paradigms. They show that the reflecting boundary can improve performance in the IC
paradigm as the number of choice-alternatives increases. Although whether the decision is
rendered based on relative or absolute information is still an open question, the concept of
boundary modification is versatile and important to both categories of models.

Nevertheless, we feel that the existing experimental data is insufficient to differentiate between
the two types of bounded models and that further studies are required. We have shown that the
two types of boundaries introduce different weighting of evidence, so it seems that this should
provide clear experimental predictions. Unfortunately, the primacy and recency effects are also
predicted by the O-U model (Busemeyer and Townsend, 1993). Hence even if such effects are
detected, it will be unclear whether they are caused by the boundaries or by the linear term in
the O-U model.

One limitation of the WDM with dual reflecting boundaries is its deficiency in describing the
IC paradigm, while the absorbing WDM provides an account of performance in both IC and
TC paradigms (Ratcliff, 2006, and cf. Table 2). However, since the state variable of the
integrator of the WDM only reflects abstract evidence accumulated from sensory information,
rather than a specific quantity directly encoded by neural systems (Ratcliff et al., 2003), it is
possible that the boundaries of the WDM would change for different paradigms. To illustrate
this, we compare the neural recording data from experiments under the IC (Huk and Shadlen,
2005; Churchland et al., 2008) and TC (Shadlen and Newsome, 2001; Kiani et al., 2008)
paradigms and notice an interesting regularity: the firing rate of integrator neurons after
stimulus onset is much lower in TC than IC paradigm (for comarison, see Figure 7 and 9 in
Roitman and Shadlen, 2002). This is consistent with the idea that there are differences in the
neural implementation of these two paradigms, so it seems reasonable to propose different
models for the two paradigms.

The two types of boundary might be differentiated by considering their possible neural
implementations. As mentioned before, accumulating sensory information is a common
mechanism observed in many brain functions, including decision making. Accumulation up
to a threshold is equivalent to applying an absorbing boundary to the integrating process. Some
previous studies show that absorbing boundaries can be explicitly implemented in neural
circuits (Mazurek et al., 2003; Lo and Wang, 2006), or implicitly achieved by attractor
dynamics (Wang, 2002; Wong and Wang, 2006; Wong et al., 2007). On the other hand, Zhang
and Bogacz (2008) proposed that a reflecting boundary can be implemented by a network
including area LIP, the basal ganglia, and SC.

Most recently, Kiani et al. (2008) provided support for absorbing boundaries when monkeys
performed the motion discrimination task under TC paradigm. In their experiment, neuronal
activity in the LIP area was maintained after a certain latency, even when stimulus was still
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available, suggesting the influence of a boundary. Further, they observed the primacy effect
(Kiani et al., 2008, figure 4c), which is consistent with an absorbing boundary. Nevertheless,
as Kiani et al. (2008) also pointed out, in their experiment tc varied widely (80 ms - 1500 ms)
between trials which might have encouraged the animal to make choices quickly and be ready
to respond, thus adopting a strategy that can be modelled by absorbing boundaries. There is as
yet no neurophysiological study supporting the reflecting boundary or recency effect. However,
given its complementary characteristics and similar performance to the absorbing boundary,
we think it is necessary to test the existence of such boundary mechanism, e.g., in tasks in
which tc is not varied within a block of trials.

A version of the TC paradigm in which, on some trials, the stimulus changes within a trial
could also distinguish between the types of boundaries. One approach is to perturb the stimulus
during decision process by introducing informative background texture, as used by Huk and
Shadlen (2005). Another approach is to consider time varying stimulus (Rouder, 2000; Smith,
1995). For example, in the motion coherence task (see Section 2.1) initially the coherent dots
could move left, and then right (as proposed by Wang, 2002). Stimuli would have to be carefully
constructed to ensure that the integrator hits a boundary before the change in the stimulus, but
such a condition is hard to guarantee in the classical moving-dots paradigm. One alternative
would be to employ sequences of different geometrical shapes, with each shape carrying a
certain amount of information, as in the weather prediction task (Yang and Shadlen, 2007).
The shapes could first be evaluated under the IC paradigm to determine which sequence induces
a boundary hit, and then the sequence can be manipulated to serve as the stimulus under the
TC paradigm (e.g., by adding or changing individual shapes). Under these conditions, the two
types of boundaries would lead to different predictions: choices being dominated by
information before the change in the case of absorbing boundaries and by information after it
for reflecting boundaries. Recordings of neuronal firing rates during such an experiment would
further illuminate underlying mechanisms.
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A The probability density function for reflecting boundaries
Here we derive the probability density function p(X, t) for the WDM with reflecting boundaries.
To simplify the calculations, we fix unit noise variance (σ=1) and boundaries at 0 and 2b and
(symmetric) initial condition:

(A.1)

As shown in (Bogacz et al., 2006, Appendix), only the parameter ratios μ/σ and b/μ influence
the following expressions, so we may set σ = 1 without loss of generality.) To obtain expressions
for the case ±b and X(0) = 0 treated in the main text, one replaces X by X + b. We note that a
Laplace-transformed version of the solution to this problem appears in Khantha and
Balakrishnan (1983), but explicit expressions such as those given below do not appear to be
readily available.

The probability distribution p(X, t) for solution of (A.1) satisfies the forward Kolmogorov or
Fokker-Planck equation (Gardiner, 1985):
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(A.2)

and reflecting boundaries imply the following no-flux boundary conditions:

(A.3)

To solve (A.3) we separate variables (Boyce and DiPrima, 1997) and seek a solution of the
form:

(A.4)

obtaining the following eigenvalue problem

(A.5)

and ODEs for the time-dependent coefficients ωj(t):

(A.6)

Applying the boundary conditions (A.3) to the general solution

(A.7)

of (A.5), we find a single eigenvalue λ0 = 0 with eigenfunction ϕ0(X) = e2μX and an infinite set
of the form

(A.8)

for j = 1,2, . . .. Hence, from (A.4), the general solution of the Fokker-Planck equation may be
written as an infinite series

(A.9)

this may be computed with arbitrary accuracy by summing finitely many terms.

The coefficients ωj(0) in (A.9) are obtained from the initial probability distribution p(X, 0) =
p0(X). To compute them, it is convenient to use a weighted inner product with respect to which
the (non-normalized) eigenfunctions (A.8) are orthogonal. Upon multiplication by e-2μX the
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non self-adjoint boundary value problem (A.5) becomes a regular Sturm-Liouville problem
(Boyce and DiPrima, 1997):

(A.10)

and hence the eigenfunctions are pairwise orthogonal with respect to the weighted inner
product:

(A.11)

with normalization constants

(A.12)

Equating (A.9) to p0(X) at t = 0, and taking inner products, we obtain

(A.13)

As t → ∞, the terms in the sum of (A.9) all decay to zero and p(X, t) approaches the equilibrium
probability distribution p∞(X) = ω0(0)e2μX, so for normalized initial data  it must
follow that

(A.14)

For the delta function initial condition p0(X) = δ(X - b), the remaining coefficients for j ≥ 0
may be computed directly from (A.13) as:

(A.15)

Substituting (A.14) and (A.15) in (A.9), we obtain an explicit series representation of p(X, t).

The error rate P(tc) at given tc is computed by integrating p(X, tc) between the left boundary
and the starting point:

(A.16)
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As t increases, p(X, tc) converges to the equilibrium distribution

(A.17)

and the P(tc) approaches

(A.18)

B Equality of the error rate for the bounded WDMs
Here we show that the error rates of the reflecting and absorbing WDM are the same for
arbitrary tc. We again set σ=1, and take boundaries at 0 and 2b with X0 = b. Since the error rate
for absorbing boundaries cannot be evaluated analytically, we consider fluxes across the
starting point b (Goel and Dyn, 2003):

(B.1)

For reflecting boundaries, the derivative of p(X, t) at X = b is:

(B.2)

where (cf. equations) (A.8-A.9))

(B.3)

Hence from (B.1) the flux across b is:

(B.4)

For absorbing boundaries, the probability density p(X, t) with boundary at ±b is (Feller,
1968):

(B.5)
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Upon replacing X by X - b to adapt for absorbing boundaries at X = 0 and X = 2b, the probability
density function (B.5) becomes (Goel and Dyn, 2003)

(B.6)

and its derivative at X = b is:

(B.7)

Using (B.1) again, the flux for absorbing boundaries is therefore

(B.8)

Since the fluxes (B.4) and (B.8) are identical as functions of t, the error rates of the WDM with
symmetric reflecting and absorbing boundaries are also equal. Note the remarkable simplicity
of the final flux formula, due to cancellation of terms.
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Fig. 1.
Evolutions of integrator states after stimulus onset for the WDM, showing correct trials (black)
and error trials (grey). The model was simulated with μ = σ = a = 1 and time-step dt = 0.01s,
and hence X(t) > 0 corresponds to the correct alternative. a) IC paradigm: choices are made on
first reaching one of the two thresholds. b) TC paradigm: choices are determined by the sign
of the integrator state X(tc) at time tc.
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Fig. 2.
Examples of trajectories of the WDM with absorbing and reflecting boundaries. Models were
simulated with μ = 1, σ = 1, dt = 0.01 s, and symmetric boundaries ±b = ±1, indicated by thick
grey dashed lines. For the absorbing WDM (solid), the choice is determined when the state
first hits a boundary (at 0.5s); for the reflecting WDM (dashed), the preferred choice may
change throughout the decision process.
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Fig. 3.
Probability densities of integrator states in bounded WDMs. State values are shown on
horizontal axes. Densities are shown for parameters μ = σ = 1 and boundaries ±b = ±1. Different
curves show densities at different time instants from 0.1s to 2s. The probability density
functions p(X, t) are calculated via Eqs. B.5 and A.9 in the Appendix. All solutions start at
X0 = 0. (a) Absorbing WDM; (b) reflecting WDM.
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Fig. 4.
Primacy and recency effects for the WDM with absorbing (left) and reflecting (right)
boundaries. The bounded WDM is simulated for 10,000 trials. For all correct trials the input
to the WDM (μdt + σdW, cf. Eq. 1) at every time step is recorded and averaged. Curves illustrate
averaged inputs plotted against time. Parameter values are μ = 0.71, b = 0.47, σ = 1, which are
obtained by fitting behavioural data from subject S1 in a 2AFC task (Usher and McClelland
(2001), Table 1 and see Section 4) and tc = 3s.
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Fig. 5.
Error rates of the WDM with reflecting (solid) and absorbing (thick dashed) boundaries at
different time tc. Model parameters are μ = σ = b = 1 and data are averaged over 100,000 trials.
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Fig. 6.
Error rates of the bounded WDMs at different tc with variable drift rates across trials sampled
from a normal distribution (1,1) (solid and thick dashed), compared with the error rate of the
bounded WDM with constant drift rate μ = 1 (dash-dotted). Other model parameters are σ =
b = 1. Data are averaged over 100,000 trials.
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Fig. 7.
Error rates of absorbing (solid) and reflecting (dashed) WDMs at different tc with variable
starting point across trials, sampled from a uniform distribution between [1, 1], compared with
the error rate for the bounded WDM with starting point X0 = 0 (dash-dotted). Model parameters
are μ = σ = b = 1. Data are averaged over 100,000 trials.
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Fig. 8.
Error rates of bounded WDMs for stimuli with unequal prior probabilities. Models are
stimulated with μ = σ = b = 1, and probability of the positive alternative being correct p+ = 0.9.
Data are averaged over 10,000 trials. (a) Error rates as functions of starting point X0 for large
tc = 3s: solid vertical line indicates the optimal starting point predicted by Eq. 11. (b) Error
rates as functions of tc for the starting point of Eq. 11, compared with the error rate for unbiased
starting point X0 = 0. Note that error rates of the reflecting WDM with biased starting points
approach that for X0 = 0 at large tc.
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Fig. 9.
Accuracies as a function of reaction time for three subjects in the TC paradigm, from Usher
and McClelland (2001). Different symbols indicate different difficulty levels; solid and dashed
lines show fits of bounded WDM and O-U models for the three difficulty levels. Estimated
parameters used to generate the curves are given in Table 1.
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Table 2
Comparison of properties of bounded WDMs. ‘+’ denotes superiority of model in a given criterion (better fit to data),
‘-’ denotes inferiority, and ‘=’ denotes equality

Absorbing Reflecting

Weighting of inputs primacy effect recency effect

Error rate

pure =

variable μ =

variable X0 - +

biased X0 + -

Fit data =

Unification of IC & TC + -
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