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Abstract

Principal components analysis, PCA, is a statistical method commonly used in population genetics to identify structure in
the distribution of genetic variation across geographical location and ethnic background. However, while the method is
often used to inform about historical demographic processes, little is known about the relationship between fundamental
demographic parameters and the projection of samples onto the primary axes. Here I show that for SNP data the projection
of samples onto the principal components can be obtained directly from considering the average coalescent times between
pairs of haploid genomes. The result provides a framework for interpreting PCA projections in terms of underlying
processes, including migration, geographical isolation, and admixture. I also demonstrate a link between PCA and Wright’s
FST and show that SNP ascertainment has a largely simple and predictable effect on the projection of samples. Using
examples from human genetics, I discuss the application of these results to empirical data and the implications for
inference.
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Introduction

The distribution of genetic variation across geographical

location and ethnic background provides a rich source of

information about the historical demographic events and processes

experienced by a species. However, while colonization, isolation,

migration and admixture all lead to a structuring of genetic

variation, in which groups of individuals show greater or lesser

relatedness to other groups, making inferences about the nature

and timing of such processes is notoriously difficult. There are

three key problems. First, there are many different processes that

one might want to consider as explanations for patterns of

structure in empirical data and efficient inference, even under

simple models can be difficult. Second, different processes can lead

to similar patterns of structure. For example, equilibrium models

of restricted migration can give similar patterns of differentiation

to non-equilibrium models of population splitting events (at least in

terms of some data summaries such as Wright’s FST ). Third, any

species is likely to have experienced many different demographic

events and processes in its history and their superposition leads to

complex patterns of genetic variability. Consequently, while there

is a long history of estimating parameters of demographic models

from patterns of genetic variation, such models are often highly

simplistic and restricted to a subset of possible explanations.

An alternative approach to directly fitting models is to use

dimension-reduction and data summary techniques to identify key

components of the structure within the data in a model-free

manner. Perhaps the most widely used technique, and the most

important from a historical perspective, is principal components

analysis (PCA). Technical descriptions of PCA can be found

elsewhere, however, its key feature is that it can be used to project

samples onto a series of orthogonal axes, each of which is made up

of a linear combination of allelic or genotypic values across SNPs

or other types of variant. These axes are chosen such that the

projection of samples along the first axis (or first principal

component) explains the greatest possible variance in the data

among all possible axes. Likewise, projection of samples onto the

second axis maximizes the variance for all possibles axes

perpendicular to the first and so on for the subsequent

components. Typically, the positions of samples along the first

two or three axes are presented, although methods for obtaining

the statistical significance of any given axis have been developed

[1]. Beyond being non-parametric, PCA has many attractive

properties including computational speed, the ability to identify

structure caused by diverse processes and its ability to group or

separate samples in a striking visual manner; for example, see [2].

PCA has also become widespread in the analysis of disease-

association studies where the inclusion of the locations of samples

on a limited number of axes as covariates can be used in an

attempt to control for population stratification [3].

Although PCA is explicitly a non-parametric data summary, it is

nevertheless attractive to attempt to use the projections to make

inferences about underlying events and processes. For example,

dispersion of sample projections along a line is thought to be

diagnostic of the samples being admixed between the two

populations at the ends of the line, though these need not always

be present [1], while correlations between principal components

and geographical axes have been interpreted as evidence for waves

of migration [4,5]. However, while simulation studies have shown

that such patterns do occur when the inferred process has acted

[1,6], they can also be caused by other processes or even statistical

artefacts. For example, clines in principal components result not
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just from waves of expansion, but also recurrent bottlenecks,

admixture and equilibrium models of spatial structure [6–11].

In this paper I develop a framework for understanding how

PCA relates to underlying processes and events. I show that the

expected location of samples on the principal components can, for

single nucleotide polymorphism (SNP) data, be predicted directly

from the pairwise coalescence times between samples. Because it is

often relatively easy to obtain analytical or numerical solutions to

expected coalescence times under explicit population genetics

models, it is also possible to obtain expressions for the PCA

projections of samples under diverse scenarios, including island

models, models with isolation and founder events and historical

admixture. The result also highlights some key limitations of PCA.

For example, it follows that PCA cannot be used to distinguish

between models that lead to the same mean coalescence times (for

example models with migration or isolation). Furthermore, PCA

projections are strongly influenced by uneven sampling. Using

examples from human genetics I discuss the implications of these

results for making inferences from PCA of genetic variation data.

Results

PCA describes structure in the matrix of pairwise
coalescence times

In this section I provide a brief summary of how PCA is carried

out and describe the key result concerning the relationship

between PCA and average coalescence time. In what follows I

assume that n haploid individuals have been sequenced with

complete accuracy (diploid samples and the influence of SNP

ascertainment will be discussed later). The only polymorphisms

present are biallelic SNPs that are the result of a single historical

mutation. Let Zsi [ f0,1g be the allelic state for individual i at locus

s (here I assume that the ancestral allele is defined as 0 and the

derived allele as 1, however the following also applies for any

coding, for example where the minor allele is coded as 1). After

removing monomorphic sites the data, Z, consist of an L|n

binary matrix (L is the number of SNPs). In PCA, the first step is

to zero-centre the data, so as to create a new matrix, X, where

Xsi~Zsi{
1

n

Xn

j~1

Zsj : ð1Þ

At this stage, the data rows are often normalized so as to have

equal variance, however, it is assumed that this is not the case (in

practice normalization has little effect for SNP data, though will

tend to up-weight the influence of rare variants). Each individual

sample can be thought of as representing a point in L-dimensional

space, where each dimension (or axis) represents a single SNP. The

goal of PCA is to find a new set of orthogonal axes (the principal

components), each of which is made up from a linear combination

of the original axes, such that the projection of the original data

onto these new axes leads to an efficient summary of the structure

of the data. More formally, PCA defines a stretch and rotation

transformation, expressed through the matrix P, such that

application of P to the original data (Y~PX) leads to transformed

data with the following properties.

1. The transformed data matrix, Y, has the same dimensions

(L|n) as the original data and the mean of each row is zero.

2. The value associated with a given individual in yi, the ith row of

Y, represents the individual’s position or projection on the ith

principal component.

3. The correlation between any two rows of Y is zero.

4. The sum of the variances of the rows equals the variance in the

original data.

5. The variances of the rows are monotonically decreasing.

6. The variance of the first row is the largest of any possible

projection of the original data on a linear combination of the

SNPs.

The principal components can be obtained directly by finding

the eigenvectors of the covariance matrix

C~
1

n{1
XXT , ð2Þ

such that the ith principal component (the ith row of P, pi) is the ith

eigenvector of C. However, because C (of dimension L|L) can be

very large for genome-wide SNP data sets, it can be more

convenient to use singular value decomposition (SVD) to find the

principal components and individual projections. SVD, which

exists for any L|n real matrix (where L§n) rewrites the original

data in terms of three other matrices

X~U
X

VT , ð3Þ

where U is an orthogonal matrix (i.e. the dot-product between any

two columns is zero) of dimension L|n,
X

is a diagonal matrix

of dimension n|n and V is another orthogonal matrix of

dimension n|n. This is achieved by setting vi, the ith column of V,

to be the ith eigenvector of the matrix

M~XT X , ð4Þ

si, the ith diagonal entry of
X

to be the square root of the

corresponding eigenvalue and ui, the ith column of U, to be the

vector

ui~
1

si

Xvi : ð5Þ

PCA and SVD are, through construction, intimately related.

Specifically, the projection of samples along the ith principal

component is given by yi~sivi (note this is the ith row of Y and the

Author Summary

Genetic variation in natural populations typically demon-
strates structure arising from diverse processes including
geographical isolation, founder events, migration, and
admixture. One technique commonly used to uncover
such structure is principal components analysis, which
identifies the primary axes of variation in data and projects
the samples onto these axes in a graphically appealing and
intuitive manner. However, as the method is non-
parametric, it can be hard to relate PCA to underlying
process. Here, I show that the underlying genealogical
history of the samples can be related directly to the PC
projection. The result is useful because it is straightforward
to predict the effects of different demographic processes
on the sample genealogy. However, the result also reveals
the limitations of PCA, in that multiple processes can give
the same projections, it is strongly influenced by uneven
sampling, and it discards important information in the
spatial structure of genetic variation along chromosomes.

Gene Genealogies and PCA
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ith column of V) and the ith principal component is pi~ui. For

typical population genetics data sets, eigenvalue analysis of the

matrix M (of dimension n|n) is computationally simpler than

analysis of the matrix C (typically hundreds or thousands of

samples have been genotyped at hundreds of thousands or millions

of SNPs). The above construction results in the projection of

samples on the PCs being influenced by the number of SNPs (e.g.

repeating the analysis on a data set in which every SNP is included

twice will lead to projections that are a factor
ffiffiffi
2
p

larger than

previously). To correct for this, consider a slightly different

definition of the matrix M:

M~
1

L
XT X , ð6Þ

which is equivalent to dividing the data matrix by the square-root

of the number of SNPs. It is worth noting that L may either be a

random variable as in the case of sequencing, or a fixed variable,

as in the case of genotyping. Here, it will be treated as a fixed

variable, though in practice this is of little importance.

M is a stochastic matrix. However, it is possible to learn about

the key structural features of M by considering its expectation.

From above, it follows that

Mij~
1

L

XL

s~1

XsiXsj ð7aÞ

E Mij

� �
~

1

L

XL

s~1

E XsiXsj

� �
ð7bÞ

~
1

L

XL

s~1

E Zsi{
1

n

Xn

k~1

Zsk

 !
Zsj{

1

n

Xn

k~1

Zsk

 ! !
: ð7cÞ

Assuming that sites are identical in distribution (though not

necessarily independent) the subscript s can be dropped to give

E Mij

� �
~E(ZiZj){Ek(ZiZk){Ek(ZjZk)zEkl(ZkZl) , ð8Þ

where the terms such as Ek(ZjZk) indicate the expectation (for

sample j) is averaged over all individuals k in the sample (note this

includes self); i.e. Ek(ZjZk)~1=n
Xn

k~1
E(ZiZk). Because Zi is

either 0 or 1, the four terms in Equation 8 can be thought of as:

1. The probability that samples i and j both carry a derived

mutation at a randomly chosen locus conditional on the locus

being polymorphic in the sample.

2. The probability that sample i and another randomly chosen

sample k (which may include either i or j) both carry the

derived mutation at a randomly chosen locus.

3. The probability that sample j and another randomly chosen

sample k (which may include either i or j) both carry the

derived mutation at a randomly chosen locus.

4. The probability that two samples, k and l, chosen at random

with replacement both carry the derived mutation at a

randomly chosen locus.

In the case of a low mutation rate, where polymorphic sites are

the result of a single historical mutation, expressions can be

obtained for the above quantities in terms of features of the

genealogical tree [12–14]. Figure 1 shows how the probability of

two samples both carrying a mutation depends on their time to a

common ancestor relative to the time to the common ancestor of

the whole sample. Let E(tij)~�ttij be the expected coalescence time

for samples i and j, E(TMRCA) be the expected time to the most

recent common ancestor of the sample, and E(T)~�TT be the

expected total branch length in the tree. The probability that two

samples share a derived mutation (conditional on the site being

segregating) is given by

E(ZiZj)~
P(Mutation occurs on branch ancestral to i and j)

P(Mutation occurs in tree)
ð9aÞ

~ lim
h?0

E h
2

(TMRCA{tij)exp { h
2

(TMRCA{tij)
� �� �

E h
2

Texp({ h
2

T)
� � ð9bÞ

~
E TMRCAð Þ{E tij

� �
E Tð Þ : ð9cÞ

By writing similar expressions for the other terms in Equation 8 it

follows that

E(Mij)~
1
�TT

�ttiz�ttj{�tt{�ttij

� �
, ð10Þ

where �tti~
1

n

Xn

k~1
�ttik and �tt~

1

n

Xn

k~1
�ttk. Note that these

expressions include coalescence with self where the coalescence

time is always zero; i.e. �ttii~0. In short, the expectation of the

matrix whose eigenvectors give the projections of samples on the

principal components can be written in terms of the mean

coalescence times for pairs of samples. It is worth noting that �ttij

(and the related quantities) can be interpreted either as the

Figure 1. Genealogical statistics. The chart shows a genealogical
tree describing the history of a sample of size five. Two samples, i and j,
will share a derived mutation (indicated by the circle) if it occurs on the
branch between their most recent common ancestor and the common
ancestor of the whole sample. The length of this branch is TMRCA{tij .
doi:10.1371/journal.pgen.1000686.g001
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expected coalescence time under some model or else the average

realized coalescent time across the genome. The difference

between these quantities can be important in some settings, such

as admixture models (see below).

For diploid individuals the genotypic value for an individual at a

given SNP is typically given by the sum of the allelic values; i.e.

Gsi~Z1
sizZ2

si[f0,1,2g, where the superscripts indicate the two

alleles. By following the same argument as above it can be shown

that for genotype data

E(Mij)~
1
�TT

2�tt1
i z2�tt2

i z2�tt1
j z2�tt2

j {4�tt{�tt11
ij {�tt12

ij {�tt21
ij {�tt22

ij

� �
, ð11Þ

where the superscripts again indicate the relevant allele in each

individual. In the following I will assume that data consist of

haplotypes, however Equation 11 makes it clear that essentially

identical results will hold for genotype data.

An example using two geographically separated
populations

The implication of Equation 10 is that if the structure of pairwise

coalescence times in a given data set can be understood, then the

projection of the samples on the principal components can be

predicted directly. Two illustrate this idea consider the simple model

of a population split shown in Figure 2A. Under this model the

expected coalescence time for pairs of samples within either

population is 1 (in units of 2Ne generations) and the expected

coalescence time for pairs of samples from different populations is

1zD, where D is the age of the population split (also in units of 2Ne

Figure 2. Principal component analysis of two populations. (A) Consider a sample of nA individuals from population A (indicated by the red circle) and
nB from population B (indicated by the blue circle), where the two populations have the same effective population size of N and are both derived from a single
ancestral population, also of size N , with the split happening a time D in the past. (B) The expected locations of these two sets of samples on the first PC is

defined by the time since divergence (the Euclidean distance between the samples is

ffiffiffiffiffiffiffiffiffiffiffiffi
2D=�TT

q
) (see text for definitions) and the relative sample size from the

populations, with the larger sample lying closer to the origin. Defining w~nA=(nAznB), the relative location of the two populations on the first PC are 1{w

for samples from population A and {w for samples from population B (note that the sign is arbitrary). (C) To investigate the effect of finite genome size

simulations were carried out for the model shown in part A with 80 genomes sampled from population A, 20 from population B and a split time of 0.02 Ne

generations (FST~0:01) and between 10 and 105 SNPs. Lines indicate the analytical expectation. A jitter has been added to the x-axis for clarity. Note that the
separation of samples with 10 SNPs does not correlate with population and simply reflects random clustering arising from the small numbers of SNPs.
doi:10.1371/journal.pgen.1000686.g002
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generations). Suppose of the total sample size n, a fraction w are

from population A. Define a~2D(1{w)2 and b~2Dw2
, it follows

that for large n, M has a simple block structure;

E(M)&
1
�TT

1za a a {
ffiffiffiffiffiffi
ab
p

{
ffiffiffiffiffiffi
ab
p

a 1za a {
ffiffiffiffiffiffi
ab
p

{
ffiffiffiffiffiffi
ab
p

a a 1za {
ffiffiffiffiffiffi
ab
p

{
ffiffiffiffiffiffi
ab
p

{
ffiffiffiffiffiffi
ab
p

{
ffiffiffiffiffiffi
ab
p

{
ffiffiffiffiffiffi
ab
p

1zb b

{
ffiffiffiffiffiffi
ab
p

{
ffiffiffiffiffiffi
ab
p

{
ffiffiffiffiffiffi
ab
p

b 1zb

0
BBBBBB@

1
CCCCCCA

,ð12Þ

where the first wn rows and columns represent the samples from

population A (here, for example, three samples from A and two

from B are shown). What will the leading eigenvalue and associated

eigenvector be for a matrix with this kind of block structure?

Although it is simple to obtain eigenvectors numerically, it is also

worth having some intuition about what they represent. Through

the construction of SVD it follows that the leading eigenvector, l1

and eigenvector, v1, are those that, through Equation 3, provide the

best approximation to the original data in terms of least-squares

error. Equivalently, the matrix l1v1v1
T is the best least-squares

approximation to M. Intuitively, the original data is well

approximated by the average allele frequency in each population

and the the block structure of M can be recovered by clustering

samples from the two populations either side of the origin in v1.

More formally, it can be shown that

v1&

ffiffiffiffiffiffiffiffiffiffi
1{w

w

s
,

ffiffiffiffiffiffiffiffiffiffi
1{w

w

s
, � � � ,{

ffiffiffiffiffiffiffiffiffiffi
w

1{w

s
,{

ffiffiffiffiffiffiffiffiffiffi
w

1{w

s !
=
ffiffiffi
n
p

ð13aÞ

l1& 1z2Dnw(1{w)ð Þ=�TT : ð13bÞ

Assuming that 2Dnw(1{w)ww1 , the projection of the samples on

the first principal component is given by the vector

y1&

ffiffiffiffiffiffi
2D
�TT

r
1{w,1{w, � � � ,{w,{wð Þ: ð14Þ

Note that the sign of the projections is arbitrary. This result implies

that the Euclidean distance between samples from the two

populations on the first principal component will be

ffiffiffiffiffiffiffiffiffiffiffiffi
2D=�TT

q
and

their position relative to the origin is determined by the relative

sample size, with the larger sample lying closer to the origin.

Figure 2B shows the expected projection of samples.

These results refer explicitly to the expected value of M.

However, it is also important to know whether stochasticity

resulting from the finite size of the genome has a significant effect

on the results. Theoretical work on the nature and size of the first

principal component in random matrices [15,16] has identified a

critical signal to noise ratio below which the true structure of the

signal cannot be recovered. In the context of a two-population

model this equates to FST being greater than 1=
ffiffiffiffiffiffi
nL
p

[1]. For

example, with a sample size of 100 and FST~0:01, the threshold

is 100 SNPs. Simulations were carried out for different numbers

of independent SNPs (Figure 2C). As expected, for 10 or 100

SNPs PCA fails to separate samples from the two populations,

while for 1,000 SNPs or more samples from the two populations

are distinct on the first PC and centre around the theoretical

expectation.

PCA cannot distinguish between alternative models that
have the same effect on mean coalescence time

A direct consequence of Equation 10 is that PCA predomi-

nantly reflects structure in the expected (or mean realized

coalescent) time. Consequently, any two demographic models

that give the same structure of expected coalescence times will also

give the same projections. To illustrate this result, consider a fully

general model with two homogeneous populations where the

expected coalescence time for two samples from population A is

tAA, the expected coalescence time for two samples from

population B is tBB and the expected coalescence time for one

sample from each population is tAB. Define c~2tAB{tAA{tBB,

a~c(1{w)2 and b~w2
. It can be shown that

E(M)&
1
�TT

tAAza a a {
ffiffiffiffiffiffi
ab
p

{
ffiffiffiffiffiffi
ab
p

a tAAza a {
ffiffiffiffiffiffi
ab
p

{
ffiffiffiffiffiffi
ab
p

a a tAAza {
ffiffiffiffiffiffi
ab
p

{
ffiffiffiffiffiffi
ab
p

{
ffiffiffiffiffiffi
ab
p

{
ffiffiffiffiffiffi
ab
p

{
ffiffiffiffiffiffi
ab
p

tBBzb b

{
ffiffiffiffiffiffi
ab
p

{
ffiffiffiffiffiffi
ab
p

{
ffiffiffiffiffiffi
ab
p

b tBBzb

0
BBBBBB@

1
CCCCCCA
: ð15Þ

Again, only three samples from population A and two from

population B are shown. For large n, the leading eigenvalue and

corresponding eigenvector of the above matrix are respectively

l1&cnw(1{w)=�TT ð16aÞ

v1&

ffiffiffiffiffiffiffiffiffiffi
1{w

w

s
,

ffiffiffiffiffiffiffiffiffiffi
1{w

w

s
, � � � ,{

ffiffiffiffiffiffiffiffiffiffi
w

1{w

s
,{

ffiffiffiffiffiffiffiffiffiffi
w

1{w

s !
=
ffiffiffi
n
p

: ð16bÞ

Consequently, the projection of the samples on the first principal

component is given by the vector

y1&

ffiffiffiffi
c
�TT

r
1{w,1{w, � � � ,{w,{wð Þ: ð17Þ

Comparison of Equations 14 and 17 shows that the Euclidean

distance between samples from the two populations on the first PC

is a function of the difference between cross-population and

within-population coalescence times and that the positioning of the

populations relative to the origin simply reflects their relative

sample size (as for the simpler two-population model). Conse-

quently, any two models that give the same value of c=�TT will give

the same expected projections of samples on the first PC.

One connection that is worth exploring further is the link

between the results shown here and those of Slatkin [12]

concerning FST . Slatkin showed that

FST~1{
�ttw

�tt
, ð18Þ

where �ttw is the average coalescence time for pairs of samples from

the same population and �tt is the average coalescence time across

all pairs of samples. In the notation used above it can be shown

that

FST~
cw 1{wð Þ

�tt
: ð19Þ

Now consider the PCA projection. The variance along the first

Gene Genealogies and PCA
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axis is cw(1{w)=�TT . The total variance in the sample is �tt=�TT .

Consequently, the fraction of the total variance explained by the

first PC is equal to cw(1{w)=�tt~FST . Given that FST is defined as

the fraction of the total variance that is explained by between-

population differences this result is not surprising. Nevertheless,

the result demonstrates a simple relationship between the

Euclidean distance of populations in PCA space and FST , at least

in the case of two populations.

Uneven sampling has a strong influence on PCA
projections

As has been shown previously [11], PCA projections can be

strongly influenced by uneven sampling from a series of

populations. The results described here provide an explanation.

First, from Equation 10 it can be seen that the the matrix M is

influenced by the relative sample size from each population

through the components �tti. For instance, even if all populations

are equally divergent from each other, those for which there are

fewer samples will have larger values of �tti because relatively more

pairwise comparisons are between populations. Second, even if the

entries of M were not influenced by the relative sample size, its

eigenvectors will be, simply because relative sample size will

influence the structure of the genetic variance in the sample (see

Figure 2). The influence of uneven sample size can be to bias the

projection of samples on the first few PCs in unexpected ways, for

example, where there is spatial structure to genetic variation.

Consider a lattice arrangement of populations with equal

migration between neighbouring populations. For this arrange-

ment it is possible to obtain analytical expressions for the expected

coalescence time for pairs of samples from the different

populations (results not shown) and hence the matrix M (up to

an unknown scaling factor) and subsequently the projection of

samples on the first few PCs under different assumptions about

sample size and migration rate. If sample sizes from the different

populations are equal, the spatial arrangement of the populations

on the first two PCs mimics the structure of the migration matrix

(Figure 3A). However, sample sizes differ between populations the

effect is to distort the projection space (Figure 3B and 3C). This

distortion of PC-space relative to the structure of the migration

matrix is problematic for interpreting the location of samples on

PCs. Sub-sampling from populations to achieve more equal

representation, as in [2], is the only way to avoid this problem.

The projection of admixed individuals onto existing axes
directly identifies admixture proportions

The principal components identified through PCA can be used

to project not just those samples from which the PCs were

obtained, but also additional samples. The appeal of such analyses

is that it enables the analysis of structural features identified in one

data set to be transferred to another. For example, where data

from two source populations and a set of possibly admixed samples

are available, projection of the admixed samples onto the axes

defined by the source populations can identify the extent of mixed

ancestry. The advantage of this approach rather than simply

performing PCA on all samples together is that other structural

features within the admixed samples (e.g. admixture from a third

population or relatedness) will have little influence on the

projection. In the light of the above results showing how the

PCA projection of samples can be interpreted in terms of

coalescence times, it is interesting to ask how the the projection

of additional samples onto the same axes also relates to

coalescence times.

Consider the case of the general two-population model where

the positions of the samples on the first PC are

ffiffiffiffiffiffiffiffiffi
c=�TT

q
(1{w) for

samples from population A and {

ffiffiffiffiffiffiffiffiffi
c=�TT

q
w for samples from

population B. The first PC can be obtained as in Equation 5. For a

given SNP, s, the expected loading for the first PC, us1, is therefore

us1~
1ffiffiffiffi
L
p

l1

Xn

i~1

Xsiy1i ð20aÞ

~
1ffiffiffiffi
L
p

l1

Xn

i~1

Zsiy1i ð20bÞ

E us1ð Þ&
�TT

cnw(1{w)

ffiffiffiffiffiffiffi
c

L �TT

r
n1

A(1{w){n1
Bw

� �
, ð20cÞ

where n1
A is the number of samples carrying the derived allele in

population A. By writing n1
A~nwpA and n1

B~n(1{w)pB, such

that pA and pB are the frequencies of the derived alleles in

populations A and B respectively, it follows that

E us1ð Þ&
ffiffiffiffiffiffi
�TT

cL

r
pA{pBð Þ : ð21Þ

The expected location of an additional sample, j, on the first PC is

therefore

y1j~
XL

s~1

Xsjus1 ð22aÞ

E y1j

� �
~

1

L

ffiffiffiffi
�TT

c

r XL

s~1

E Xsj(pA{pB)
� �

ð22bÞ

~

ffiffiffiffi
�TT

c

r
E (Zj{�ZZ)(pA{pB)
� �

, ð22cÞ

where �ZZ~1=n
Xn

i~1
Zi (note this does not include the additional

sample j). Again, the subscript s has been dropped by assum-

ing that sites are identical in distribution. By noting that

E(ZjpA)~EA
k (ZjZk), where the expectation is over those samples

from population A, it follows that similar arguments to those above

can be made to relate the quantities in Equation 22 to coalescent

times. Define �ttjA as the average coalescent time between the

additional sample and all samples from population A and �ttjB to be

the equivalent for population B, it can be shown that

E y1j

� �
~

ffiffiffiffiffiffi
1

c �TT

r
�ttjB{�ttjAz

1

2
tAA{tBBz(1{2w)cð Þ

� �
: ð23Þ

An important implication of Equation 23 is that if the additional

sample is the result of an admixture event between the two

populations with a fraction hj of its genome coming from

population A then it follows that the location of the sample on

the first PC is
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E y1j

� �
~

ffiffiffiffi
c
�TT

r
hj{w
� �

: ð24Þ

In words, the admixture proportion of the individual can be

directly inferred from their relative position along the first PC from

the two source populations.

There are three important points to note when applying this

result. First, only if the admixture event was very recent are the

source populations likely to be available. Rather samples may be

available for descendants of these source populations. Conse-

quently, the average divergence between the population A part of

an individuals genome and other samples from population A

might typically be greater than for two samples taken directly from

population A. However, this effect is likely to be very similar for

the two source populations and, given Equation 23, these effects

largely cancel out.

The second point to note is that if samples are admixed between

more than two populations, the result generalises so that an

individual whose genome is derived from several source popula-

tions will have a projected position (along each significant PC)

defined by the weighted sum of the positions of its source

populations. Informally, the result arises because of the linearity in

Equation 22. Those parts of the genome with ancestry from a

given population will have a PC projection that matches samples

taken directly from the source population. If there is mixed

ancestry, the effect is simply to average the PC projections.

Finally, it is important to note that projection of non-admixed

individuals can also lead to their location being intermediate

between the two original populations. For example, samples from

Figure 3. The effect of uneven sampling on PCA projection. PCA projection of samples taken from a set of nine populations arranged in a
lattice, each of which exchanges migrants at rate M per Ne generations with each adjoining neighbour, leads to a recovery of the migration-space if
samples are of equal size (A), or a distortion of migration-space if populations are not equally represented (B,C). In each part the left-hand panel
shows the analytical solution (the area of each point represents the relative sample size) with migration routes illustrated while the right-hand panel
shows the result of a simulation with a total sample size of 180 and 10,000 independent SNP loci. All examples are for M~2.
doi:10.1371/journal.pgen.1000686.g003
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a third population that either diverged from population A since the

split with population B or that come from a population that

diverged before the A/B split will (in both cases) be projected

between the locations of samples from populations A and B. It

may, however, be possible to distinguish between such cases by

carrying out PCA on all data combined.

PCA carried out on admixed individuals can identify
relative admixture proportion in the absence of source
populations

As has already been shown through simulation [1], PCA carried

out on samples that are the result of admixture events can identify

admixed samples as lying along the axes between the two or more

source populations, even if one or more of the source populations

are absent. The results above shed some light onto when such

analyses are expected to work and when they will fail.

Consider a sample of individuals who are the result of an

historical admixture event between two populations A and B. In

order to define the matrix M for this sample it is necessary to know

which part of their genome is derived from each of the source

populations. Let ai be a series of indicator functions for each of the

L SNPs in individual i that takes value 1 if that part of the

individual’s genome was derived from population A and 0 if it was

derived from population B. The value �ttij can be obtained by

comparing the value of ai and aj at each position and adding up

the relevant contribution from each of tAA, tBB and tAB. Note that

here the achieved ancestry proportions are being used rather than

their expectation under some model (which might be the same for

all samples).

Given these considerations there are two situations under which

none of the structure between the two source populations is

expected to be reflected in the matrix M. First, all individuals

could have the same vector a, which could occur if the admixture

event were ancient and involved relatively few individuals such

that the source population at every point in the genome were fixed

(note this does not mean that there is no variation, simply that all

individuals at this location have an ancestry from the same

population). Second, individuals have different ancestry vectors,

but the average value is the same for all individuals and the

admixture chunks have been sufficiently broken up through

historical recombination such that everyone is equally related to

everyone else. Again, this scenario could occur if the admixture

result were ancient. Note that all individuals having the same

average ancestry proportions is, by itself, not sufficient to create

this problem. To examine the rate at which admixture signal is

lost, an admixed population was simulated forward in time and the

projections of samples on the first PC were followed, along with

the correlation between PC projection and individual ancestry. As

shown in Figure 4, in which the population is chosen to have

parameters comparable to humans, the initially strong correlation

between ancestry proportion and location on the first PC is rapidly

lost such that after only 15 generations there is essentially no signal

remaining, even though locally within the genome admixture

chunks are still very clear (i.e. there is still admixture LD) after 50

generations.

Discussion

The primary result of this paper is that the locations of samples

on the principal components identified from genome-wide data on

genetic variation can be predicted from an understanding of the

average coalescent time for pairs of samples. This gives a direct

route to understanding the influence various demographic

scenarios can have on the relationships between samples identified

from PCA and how PCA can be used to make inference about

processes of interest such as admixture. However, the results also

demonstrate the way in which sampling schemes can influence PC

projections and how similar projections can arise from very

different demographic scenarios. Consequently, using these results

to motivate inference from PCA about underlying demographic

process may prove difficult.

There are, however, situations in which PCA can be used to

infer demographic parameters directly. For example, in cases of

Figure 4. Identification of admixture proportions without source populations. Initially an admixed population is formed by random mating
from two populations, each fixed for a different allele at each locus with 40% contribution from one population. In the simulated population there are
1000 individuals, each of which has 20 chromosomes with 50 markers each, a genetic map length of 1 per chromosome and a uniform recombination
rate. Subsequent generations are formed by random mating of the ancestral population. (A) Projections of 100 randomly chosen samples on the first
PC over time show a decay in the fraction of variance explained by the first PC (note that the total variance in the population decays little over the
time-scale of the simulation). (B) Admxiture proportions for the same individuals as in part A (blue points) as well as the everage heterozygosity (red
line) and the fraction of the variance in PC1 explained by admixture proportions (black line). While there is a strong association between admixture
proportion and location on PC1 for the first few generations, after 15 generations recombination has eliminated any signal, even though there is still
strong admixture LD between nearby markers (data not shown).
doi:10.1371/journal.pgen.1000686.g004
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simple two- or three-way admixture, where populations close to

the source populations can be identified and sampled from,

estimation of admixture proportions can be achieved from

projecting samples onto the PCs identified from the source

populations. To illustrate this, Figure 5 shows the inferred ancestry

proportions for a set of haplotypes (estimated from trio data) in 20

African Americans collected as part of the HapMap3 project. In

this analysis, haplotypes (also inferred from trios) from the

European ancestry population in Utah (CEU) and the Yoruba

in Nigeria (YRI) are used to represent the source populations

(note, as discussed above, the requirement is not that these are the

source populations, simply that they are closely related to the

source populations). By analysing each chromosome separately it

can be shown that while each individual’s average ancestry

proportion across the genome is fairly constant (typically 70–90%

African), there is considerable variation at the level of individual

chromosomes, with some chromosomes appearing essentially

European (for some individuals) and others essentially African

(no chromosome shows an overall tendency to come from one

population). Such information could be informative about

processes such as the level of assortative mating and the rate of

ongoing admixture.

One important issue in the application of these ideas to the

analysis of empirical data is the extent to which SNP ascertain-

ment will influence outcome. SNP discovery in a small panel will

typically lead to the under-representation of rare SNPs in the

genotyped data and, depending on the geographical distribution of

the samples used for discovery, can also lead to biases in the

representation of variation from different areas. The quantities in

Equation 8 are therefore conditional not just on segregation in the

genotyped sample, but also on segregation within the SNP

discovery panel. Consider the joint genealogy of the genotyped

and discovery samples shown in Figure 6A. The probability that a

pair of samples, i and j share a derived mutation (in the genotyped

samples) that also lies on the subtree of the discovery samples,

E(ZiZ
�
j ) is

E ZiZ
�
j

� �
~

E T�M RCA

� �
{E t�ij

� �
E T�ð Þ ð25Þ

where t�ij is the first time at which the common ancestor of the

samples i and j is also a common ancestor of at least one of the

discovery panel samples (t�ij§tij), T�MRCA is the time to the more

recent of the discovery or sample MRCAs and T� is the total time of

the intersection between the discovery and genotyped samples’

genealogies (Figure 6A). It follows that the equivalent expression for

Equation 10 with SNP ascertainment will typically be larger than

without SNP ascertainment because T�ƒT whereas the differences

in the numerators will largely cancel each other out. Consequently, it

is expected that, except for very strongly biased SNP discovery (e.g. a

sample of two from one of a series of very divergent populations), that

PCA projections from genotype data will be similar to PCA

projections from resequencing data, but will typically be larger in

magnitude (if the matrix M is normalized by the number of SNPs) by

a factor

ffiffiffiffiffiffiffiffiffiffiffiffi
�TT=�TT�

q
; a result confirmed by simulation (Figure 6B and

6C). For the example shown, this result holds even under the most

extreme ascertainment scheme of two discovery samples from a

single population. In short, SNP ascertainment will tend to have a

simple and predictable effect on PC projections that has little

influence on the relative placing of samples.

Finally, it is worth pointing out that because PCA effectively

summarizes structure in the matrix of average pairwise coalescent

times, but in a manner that is influenced by sample composition,

more direct inferences can potentially be made from the matrix of

pairwise differences (which are trivially related to pairwise

coalescent times). This is not to say that eigenvalue analysis of

the pairwise distance matrix will correct for the effects of biased

sampling demonstrated in Figure 3. However, while readily-

available alternatives to PCA, such as multidimensional scaling,

seem to have properties similar to PCA, it is possible to envisage

non-parametric methods for analysing the matrix of pairwise

differences that identify structure without being influenced by

sample size.

Methods

Coalescent simulations were carried out using scripts written by the

author in the R language (www.r-project.org) and available on request.

Figure 5. Admixture proportions inferred from PCA projec-
tions. (A) For each of the autosomes (chromosome 1 is the lowest) the
points indicate the locations of sampled haplotypes (the transmitted
and untransmitted haplotypes inferred from trios) on the first principal
component (each chromosome is analysed separately; blue = CEU,
orange = YRI, green = ASW). Importantly, PCA is carried out only on the
haplotypes from CEU and YRI and all samples are subsequently
projected onto the first PC identified from this analysis. Lines connect
the transmitted (or untransmitted) haplotypes for each individual across
chromosomes. Note the uniformity of the locations of samples on the
first PC for CEU and YRI. Individual chromosomes within the ASW,
however, show a great range of locations on the first PC. (B) The
genome-wide admixture proportions (separately for transmitted and
untransmitted chromosomes) can be inferred directly from the location
of admixed samples on the first PC between the two source
populations. Colours are as for (A). The vertical spacing of points is
arbitrary.
doi:10.1371/journal.pgen.1000686.g005
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Principal component analysis of simulated data was carried out using

the R function eigen. Phased haplotypes from the International

HapMap Project (HapMap3 release 2) were used in the analysis of the

CEU, YRI and ASW population (see ftp://ftp.hapmap.org/hapmap/

phasing/2009-02_phaseIII/HapMap3_r2/).
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Figure 6. The effect of SNP ascertainment on PCA projection. (A) In the joint genealogy of the ascertainment (black circles) and genotyped
samples (grey circles), only mutations occurring on the intersection of the two genealogies (shown in black) will be detected in both samples. For
small discovery panels and large experimental samples, this may be considerably less than half the total genealogy length. (B) Model used to simulate
data from three populations linked by two vicariance events, each of which is associated with a bottleneck; the model is an approximation to the
demographic history of the HapMap populations [17,18]. In the simulations 100 haploid genomes with 10,000 unlinked loci were sampled from each
population and the parameters are t1~0:3, t2~0:2, f1~0:2, f2~0:1, where f is the bottleneck strength measured as the probability that two lineages
entering the bottleneck have coalesced by its end (the bottleneck is instantaneous in real time). All populations have the same effective population
size. (C) PCA of the simulated data (small open circles) shows strong agreement with results obtained from analytical consideration of the expected
coalescence times (large circles). When only those SNPs that have been discovered in a small panel are considered (here modelled as 4, 8, and 4
additional samples from populations I, II, and III respectively) the principal effect is to scale the locations of the samples on the first two PCs (small

filled circles) by a factor of approximately
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(large diamonds).
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