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We develop a rapid and efficient method for the comparison of
protein local surface similarities using geometric invariants (fin-
gerprints). By combining fast fingerprint comparison with explicit
alignment, we successfully screen the entire Protein Data Bank for
proteins that possess local surface similarities. Our method is
independent of sequence and fold similarities, and has potential
application to protein structure annotation and protein-protein
interface design.

molecular surface � surface matching � structural genome

W ith the advance of high-throughput protein-structure de-
termination techniques and structural genome initiatives,

the number of solved protein structures in the Protein Data Bank
(PDB) (1) grows daily. With this trend arises the need to analyze,
compare, and classify proteins using 3-dimensional (3D) struc-
tural information. Methods have been developed that can com-
pare and classify proteins using their overall sequence and
structural similarities (2–4). However, it is known that the overall
sequence and fold similarities of proteins do not necessarily
translate to similarities in protein function. The biological role of
a protein can diverge as the protein evolves, resulting in multiple
functions corresponding to the same fold (5). For example, the
TIM barrel fold has evolved to possess a variety of functions (6).
Conversely, proteins of different folds may acquire similar
functions: for example, in trypsin-like catalytic triad (7). In such
cases, the function of the protein is connected more closely to the
local structural similarity around the functional site than it is to
sequence. In this context, there is great need for fast and
accurate methods that can compare such function-related local
structural similarities.

The general difficulty with local structural comparisons is the
complexity associated with the additional degree of freedom for
matching 3D objects. To find local structural similarities, 3D
objects must undergo extensive rotational and translational
transformations so that various local alignments may be sampled
and differences can be measured. Such transformations impose
tremendous overhead for computational methods. Although
algorithmic improvements, such as subgraph-isomorphism (8),
geometric hashing (9–13), Fourier transformation (FT) (14),
spherical FT (15), and clique detection (16, 17) have been used
to reduce the complexity of this problem, these methods are still
too computationally expensive to be applied on a large database
of more than 105 protein structures. As a result, previous studies
of local structural comparisons have often been limited to
predefined protein-ligand binding pockets (16–18). Using geo-
metric hashing and a hierarchical scoring approach, complete
local surface screening has been performed on a nonredundant
PDB database containing 4,375 structures (11).

Recently, new approaches (19, 20) have emerged that can
compare protein surfaces without explicit alignment. Borrowed
from the computer vision field, the key idea behind these new
approaches is the usage of geometric invariant descriptors, or
fingerprints. A geometric fingerprint is a set of scalar measure-
ments for a 3D object that does not vary upon translation and
rotation. The fingerprint faithfully describes the 3D features so

that similarity between fingerprints will correspond to similarity
of the corresponding 3D objects. Using fingerprints, the com-
parison of 3D objects can be achieved at high speed and without
the need to explicitly translate and rotate objects into alignment.
Although promising applications of this approach have been
demonstrated (19, 20), the fingerprint-based method often suf-
fers from lack of accuracy, which limits its application in
large-scale screening for protein surface similarity. Therefore,
the application of fingerprint-based methods has only been
applied to small-scale datasets of protein pockets (19) or the
evaluation of the overall shapes of proteins (20).

Here, we develop fast and accurate protocols that significantly
improve the accuracy of the fingerprint-based surface patch
comparison. Using this method, we are unique in performing a
complete screening of the entire PDB and successfully identify
protein structures that have surface patches similar to the query
protein, independent of sequence and fold. In our method, we
use a graph-based representation of the molecular surface. The
local surface patches are defined as a continuous circular area in
the protein surface manifold, measured by geodesic distance
from the center point. We use the distance-dependent distribu-
tions of curvatures as the geometric fingerprints for the surface
patches. By averaging the fingerprint similarity scores over
neighboring vertices, we increase the robustness and accuracy of
the fingerprint comparison algorithm. The averaging procedure
also provides a tentative alignment pose for the matching
patches, which allows explicit alignment and comparison of the
patches without undue additional computational cost. Combin-
ing fast fingerprint comparison and accurate explicit alignment,
we successfully screen the entire PDB and identify proteins that
possess similar local surface patches in 4 protein families:
chymotrypsin inhibitor, uracil-DNA glycosylase inhibitor, estro-
gen receptor, and cyclin-dependent kinase 2.

We envision that this method will be useful for predicting
protein function without requiring any overall sequence or fold
similarity with known proteins. Our method can also be applied
to search complementary surfaces for use in the prediction of
protein-protein interactions or as a template for computer-aided
protein design.

Results and Discussion
Fingerprint-Based Surface Comparison. The difficulty of finding
local shape similarity is 2-fold: first, one must sample over a
protein’s surface to identify local areas that are similar to the
query protein; second, explicit 3D alignments of the patches
must be conducted to compare the differences.

We use the fingerprint-based comparison approach to circum-
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vent such difficulties. In our approach, similar to the procedure
described above, we scan the entire protein surface to locate all
possible patches. However, instead of performing explicit com-
parisons of the patches, we use geometric fingerprints to rapidly
judge if patches are similar. Unlikely patches are rejected, and
only the patches with the best-scoring fingerprints are explicitly
aligned to measure the surface similarity.

The workflow of surface patch and fingerprint generation is
illustrated in supporting information (SI) Fig. S1. To generate
surface patches, we first generate a dot-surface representation
for any given protein structure. Then, from the surface dots, we
create a graph representation that uniformly covers the molec-
ular surface. Next, we scan the molecular surface and generate
circular patches centered at each vertex. Finally, for every patch,
we calculate the distance-dependent distribution of curvatures
from the center vertex. This distribution is used to determine the
geometric fingerprint (see Methods).

To improve the robustness of the fingerprint comparison upon
resampling, we devised an averaging protocol that searches
neighboring vertices and selects the 5 best-matching vertices (see
Methods). The rationale for the averaging protocol is that a true
matching patch will have multiple positive hits clustered around
its center. False-positives, which have only 1 accidental finger-
print match, can be eliminated. In addition, averaging also
removes the sensitivity of the method to resampling noise, and
thereby reduces false-negatives.

We find significantly better performance of our method using
the average fingerprint similarity score (AFSS) than the direct
fingerprint similarity score (DFSS). One example is shown in
Fig. 1, where we perform a rigid-body transformation and
resampling of the protein surface to test if the fingerprint scores
can distinguish the same patch after such transformations. To
visualize the results, we map the fingerprint similarity scores
onto the protein surface by color-mapping the patch center
according to the scores. Lower scores (higher fingerprint simi-
larity) are shown in blue and higher scores (lower fingerprint
similarity) in red. As shown in Fig. 1B, although the DFSS is
lower near the center of the matching patch than at other points
on the protein surface, the DFSS of the matching area is not
prominently differentiated from other, nonmatching patches
(scattered blue spots). There are also significant fluctuations of
DFSS near the matching patch, indicating that DFSS is more
sensitive to resampling noise. In contrast, using the averaging
protocol (AFSS), we can clearly identify the matching patch (Fig.
1C). The scores decrease smoothly as the patches are closer to
the matching center, forming a low AFSS ‘‘funnel’’ on the
protein surface, which indicates that the method is more robust
upon resampling and small deformations.

Explicit Patch Comparison After Fingerprint Matching. Using AFSS
for fingerprint comparison, we effectively reduce the number of
candidate patches to a few that are at the bottom of the matching
funnels. This reduction allows explicit comparison to be per-
formed for only a few patches. More importantly, the averaging
protocol suggests tentative poses for the patch alignment (see
Methods). Based on the suggested best-matching vertices, we can
rapidly align the patches and precisely compare the patches using
the explicit patch similarity score (EPSS) (see Methods).

We demonstrate the performance and statistics of these 3
fingerprint comparison methods by using 2 sets of proteins. In
the first set, we select inhibitors that bind to a common enzyme
pocket, and choose from among these a query inhibitor. We also
include the same query protein rotated by 120° along a randomly
chosen axis. The rotated structure contains the identical surface
patches but the vertices are resampled. Because all proteins in
this set bind to the same enzyme pocket, they share some extent
of surface similarity at binding interface. In the second set, we
select 200 nonredundant protein domains (21) that share no

sequence similarity with the query protein. We use this set as a
control to demonstrate how the similarity scores are distributed
on proteins that do not share any surface similarity with the
query protein.

We find that by using EPSS, we clearly separate the structures
in the similarity group from those in the control group (Fig. 2).
There is a clear separation in score even between the best-
scoring decoy structure and the worst-scoring similarity struc-
ture (see Fig. 2C). Furthermore, the results also show that AFSS
has a better performance than DFSS in distinguishing structures
in the similarity group. Therefore, as we expected, the averaging
protocol significantly improves the accuracy of fingerprint com-
parison. However, even with AFSS, there are a few decoy
proteins that achieve better scores than the similarity groups,
which highlights the necessity for explicit alignment.

Screening Similar Surface Patches in the Entire PDB. Combining
AFSS and EPSS scores, we search the PDB using the binding

A

B

C

Fig. 1. Comparison of surface patches using DFSS and AFSS. (A) The query
patch is shown in a trypsin inhibitor structure (PDBID 1an1). (B and C) The
surface of the same inhibitor structure, but rotated by 120° along the axis
perpendicular to the plane of the page. In (B), the DFSS scores of all possible
patches are color-mapped onto the surface (blue for lower score and red for
higher score). The center of the matching patch is indicated by an arrow. (C)
is similar to (B) except that the AFSS score is used. As observed in (C), we can
clearly identify the matching patches using AFSS scores, even after rotation
and resampling. A funneled shape is observed near the matching site. While
using DFSS, the matching patches do not clearly separate from other patches,
which makes this score more error-prone on resampling and small surface
deformation when compared to AFSS.
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interfaces of chymotrypsin-inhibitor (PDBID: 1acb), uracil-
DNA glycosylase-inhibtor (PDBID: 1udi), estrogen receptor
(PDBID: 1qkn), and cyclin-dependant kinase 2 (PDBID: 1di8),
and rank all structures in the PDB based on their patch similarity
scores.

To test the performance of the similarity screening, we
compiled (see Methods) a set of known protein inhibitors for
both chymotrypsin and uracil-DNA glycosylase. The rationale
for our choice of test sets is that, because the all inhibitors (even
with nonsimilar fold and sequences) that bind to a common
enzyme site should possess some kind of surface similarity near
the binding interface, these similar binding interfaces should be
identified by patch similarity.

We measure the performance of our method by enrichment
plot. Such measures are widely used in the evaluation process of
computer-aided drug design. We examine the ranking of the
selected inhibitor sets and expect that inhibitors with the same
inhibitory function will be more similar to the query interface
patch. As a result, a given fraction of the highly ranked PDB
domains should contain more known hits than from a random
selection of the same size (enrichment). For example, we have
collected 243 known chymotrypsin inhibitors from among the
107,592 chains in the PDB. If we randomly select 108 protein
chains (0.1%) from these domains, we expect to find on average
0.1% (or 0.243) such known inhibitors. In contrast, by ranking
the PDB based on similarity scores and selecting the best 108
matching proteins, we actually find 64 such known inhibitors,
which corresponds to an enrichment factor of 263 (64/0.243).
Therefore, guided by the similarity score, we can rapidly identify
known inhibitors by looking a small fraction of the PDB.

For the screening of chymotrypsin inhibitors, we find remark-
able enrichment of the known inhibitors (Fig. 3). The enrichment
factors are 411, 263, and 48 at 0.01%, 0.1%, and 1% percent,

respectively. In addition, 19 out of the top 20 hits based on the
similarity score are known chymotrypsin inhibitors, indicating
that the number of false-positives is negligible among the top hits
(Table S1). By examining some of the top hits, we find that many
of them are from different inhibitor families and share little in
common in sequence and overall fit (Fig. 4). In other words, the
functional similarities are not likely to be revealed by the
comparison of sequence or overall fold of these proteins.

For screening of uracil-DNA glycosylase inhibitors, the en-
richment is even more significant. The enrichment factors are
3,846, 615, and 61 at 0.01%, 0.1%, and 1% percent, respectively.
In fact, the top 16 hits are all known uracil-glycosylase inhibitor
proteins (Table S2). The results also show the limitations of the

Fig. 2. Comparison of the 3 different types of surface similarity scores. These
3 scores are applied to 2 sets of proteins: one set (similarity set) contains 4
proteins having similar surface patches to the query patch of a trypsin inhibitor
(the scores are marked as vertical lines); the other set (control set) contains a
decoy set of 200 nonhomologous proteins (21) that share no surface similarity
with the query patch (the histograms of the scores are shown as bar graphs).
In the similarity set, we also include the identical query structure rotated 120°
along a randomly chosen axis (dashed lines). (A) The DFSS can only distinguish
the rotated protein and a few proteins in the similarity set. (B) By averaging
over the neighbor vertices, the AFSS score can distinguish all structures in the
similarity set from those in the decoy set. Only a few proteins in the control set
achieve better score than the similarity set. (C) Finally, after applying explicit
alignment for several of the best-matching patches, the resulting EPSS scores
clearly distinguish all of the proteins in the similarity set. Note that only 3 black
lines are visible in this plot because 2 of the proteins in the similarity group
have nearly identical EPSS scores.

Fig. 3. Enrichment plots of screening the whole PDB for (A) chymotrypsin
inhibitors and (B) uracil glycosylase inhibitors. All 107,592 protein domains
from PDB are ranked according to their similarity to the query patch. Protein
domains that have the same function as the query protein are found to have
higher similarity rank, resulting in remarkable enrichments. At the 0.1%
screening range, the enrichment factors are 220 and 615 for chymotrypsin
inhibitors and uracil glycosylase inhibitors, respectively. In both cases, the top
10 hits are exclusively protein-inhibitors from known lists (no false-positives).

A B

C D

Fig. 4. Structure alignment of the top 3 hits from screening of the chymo-
trypsin inhibitors. (A) The query structure (PDBID 1acb, chain I) and the patch
(gray mesh). (B–D) The structures of the top hits aligned with the query
structure [(B): PDBID 1cho, chain I; (C): PDBID 1p2n, chain B; (D): PDBID 2sec,
chain I]. The hit protein structures are aligned using the best matching patches
[white mesh (B–D)] with the query patch [gray mesh (A)]. Note that 2 of the
hits, basic pancreatic trypsin inhibitor (C) and Turkey ovomucoid third domain
(B), have a completely different fold and sequence from the query inhibitor
structure. Alignment of these 2 structures is almost impossible to achieve
based on sequence or fold alignment.
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shape-based approach; 10 known uracil-DNA glycosylase inhib-
itor structures are not highly ranked based on the surface
similarity, resulting in a plateau at 60% discovery rate in the
enrichment plot (see Fig. 3B). These 10 structures are selected
in the screening after 8.8% of the PDB is screened. These
structures are from PDBID 1ugi and 2ugi, which are unbound
structures of uracil-DNA glycosylase inhibitor. Examination of
the structures suggests that there are significant side chain
movements near the interface upon binding. Because we only
consider surface similarity in our scoring protocol, the lower
ranking of those 10 structures is to be expected (See SI Text).

We also perform screening for the protein-ligand binding
interfaces of estrogen receptor and cyclin-dependent kinase 2.
These 2 query interfaces are from concave ligand-binding pock-
ets, different from the mostly convex protein-inhibitor interfaces
in the previous 2 examples. In both cases, we find significant
enrichment of proteins that belong to the same families as the
query proteins (Tables S3 and S4).

Evaluation of Speed. The calculation is performed on a Linux
cluster (UNC Topsail system). Each compute node is equipped
with 2 Intel quad-core CPUs (Model ES45/Clovertown) running
at 2.33 GHz and with 12 GB memory. In a benchmark run
comparing a 93-residue protein with 200 proteins (average size
246 aa), each comparison takes about 0.5 s CPU time, with 0.1 s
for all pairwise DFSS calculation, 0.1 s for AFSS calculation, and
0.3 s for EPSS calculation. This speed is faster than previously
reported in similar studies (11, 17). Here we have excluded the
CPU time (about 2.1 s) spent on generating the surface graphs
and calculating the fingerprints, which can be performed offline
during the preprocessing stage.

Comparison with Previous Methods. Previous methods have been
developed that to compare the local structural patterns of proteins
in PDB scale. These methods differ from each other in aspects of
surface representation and surface-matching algorithms.

Schmitt et al. (17) used pseudoatoms to encode the physico-
chemical properties of protein cavities, and the cavities’ simi-
larities to each other are compared using a clique detection
algorithm. Kinoshita and Nakamura (16) used graphs to repre-
sent the protein surfaces. Their surface points encode both
electrostatic potential and local curvatures at the surface. The
matching between surface patches is done by clique detection,
similar to Schmitt et al. Although different in surface represen-
tation, both methods use similar clique detection algorithms to
find geometric similarity between surface patches. Because of
the computational difficulty in clique detection, their methods
have only been applied to predefined protein-ligand cavities.

Shulman-Peleg et al. (11) also used a ‘‘pseudocenter’’ ap-
proach to characterize the physicochemical properties of the
protein surface. They used a geometric-hashing algorithm to
identify possible transformations that will match the pseudo-
centers between 2 structures. The possible matches are further
evaluated using a hierarchical comparison approach to remove
false-positives. Their comparison time scales linearly with the
size of the surface and takes about 7 s for local structure
comparison for 1 protein. They have applied the method to a
complete protein surface search in a nonredundant PDB set of
4,375 structures.

Unlike the previous methods (11, 17) that use clique detection
or geometric hashing to match the geometry of surface patches,
fingerprint-based methods seek to compare the geometry di-
rectly using well-designed fingerprints that capture the geometric
features. Bayley et al. (19) used fingerprint-based methods to
compare the protein local structure similarities. They construct
surface patches that are within a 12 Å distance from the center
points. The fingerprints are calculated by FT of surface points in
several distance shells. Their methods have been tested in a

complete surface search on set of 366 proteins. Our method
differs from that of Bayley et al. in the patch generation,
fingerprint calculation, AFSS, and EPSS stages. Fingerprint-
based surface patch comparison scales linearly with surface size.
Because the most time-consuming stage of fingerprint genera-
tion can be done offline, the method is promising for large-scale
surface patch comparison. The major challenge is to improve the
robustness and accuracy of the fingerprint comparison. Our
results demonstrate that simple neighbor averaging combined
with explicit alignment significantly improves the results with
little computational overhead.

Methods
Surface Generation and Representation. We use the MSMS program (22)
(version 2.6.1) from the Scripps Institute to generate a dot surface for each
protein structure, and set the dot density to 2 points/Å2. Ideally, surface points
are distributed as smoothly as possible on the protein surface. The MSMS
program generates a dot surface that is in general uniform, except for a small
amount of over-sampling in some areas. To correct this problem, after the
surfaces are generated, we remove points that are too close to each other.
More specifically, a cutoff distance of 0.2 Å is used to eliminate those over-
close points. We construct a graph to represent the molecular surface, where
the vertices are the surface dots and edges are generated connecting neigh-
boring vertices if they are within a 2.5 Å radius. We have visually inspected the
generated graph representations and find that the vertices are uniformly
distributed over the surface. More importantly, from each vertex, the edges
are uniformly distributed along all directions to avoid any anisotropic arti-
facts. (See the SI Text for comparison of alternative methods of surface
generation and representation)

Patch Generation. Patches are generated from a given center point. Some
programs generate patches to include points within a distance from the center
point (19); however, this approach may only work for surfaces with relatively
simple topology. We define a patch as a continuous surface area within a
cutoff geodesic distance from the center point. By using geodesic distance, we
guarantee that the generated surface patches are continuous, uniform, and
easily extensible to any size. In the graph representation, the surface patch can
be effectively generated by taking advantage of fast shortest-path search
algorithms. For this purpose, we implement a modified Dijkstra algorithm to
calculate the geodesic distance. We choose a cutoff distance of 9 Å, which
gives reasonable results for describing similarities between protein-protein
interactions. The average number of vertices per patch is about 500. For a
typical protein with 100 residues, the final graph has �9,000 vertices. The
number of patches generated for each protein is the same as the number of
vertices. All of the patches are generated during the fingerprint calculation
stage and are not stored to save memory. Only 5 patches are regenerated in
the EPSS scoring stage for explicit alignment.

Fingerprint Generation. We use the distance-dependent distribution of curva-
turesas thefingerprintof thepatch.Morespecifically (seeFig. S1e), foranyvertex
vj in the patch, the curvature between vj and the center vertex vi can be calculated
as kij � � (�rj � nj – ri – ni� – dij) �nj � ni�/dij (23), where � is a step function; dij � �rj

– ri� is the distance between viand vj; and ni, nj, ri and rj are the normals and
coordinates of vi and vj, respectively. To avoid oversensitivity to sampling when
calculating curvatures, ni is taken as average of all normals for vertices within 2.5
Å of the center vertex vi. We create curvature distributions by dividing geodesic
distances from1Åto9Åinto4bins. Ineachdistancebin,wecollect thecurvatures
at all vertices in that range and generate normalized distributions of the curva-
tures. The curvatures are then divided into 15 bins from –0.7 Å�1 to 0.7 Å�1.
Distances and curvatures outside of the cutoff ranges are discarded. At the end,
each fingerprint is comprised of a 2-dimensional (4 by 15) array, with each
element corresponding to the curvature distribution in the bin.

Direct Fingerprint Similarity Score. We compare the fingerprints by measuring
the root-mean deviations of each fingerprint bin as DFSS � ��i(xi � yi)2/N,
where n � 60 is the total number of bins, and xi and yi are the normalized
distributions in bin i for the 2 patches, respectively.

Averaged Fingerprint Similarity Score. For each patch pi and pj, we also search
neighboring patches within 2.5 Å and compute all pairwise differences of the
fingerprints. The best 5 pairwise similarity scores are selected as the difference
between the patch pi and pj. The purpose of the averaging procedure is 3-fold:
first, it avoids any omission of matching patches caused by resampling; second,
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it assures matches at multiple points and reduces the number of false-
positives; third, it suggests possible ways to align the matching surface. On
average, there are 30 neighbors for each patch pi and pj, resulting in about 900
additional pairwise fingerprint comparisons. To speed up calculation, we
precalculate all pairwise fingerprint comparisons and store the results in a
2-dimensional array to avoid duplicate calculation. As a result, the additional
comparisons in AFSS cost little computational overhead as demonstrated in
the CPU time measurements.

Explicit Patch Similarity Score. The averaging protocol of AFSS provides 5 pairs
of best matching vertices, which can be used to rapidly align the 2 patches. To
account for the directionality of the surface, we create additional vertices by
shifting the existing vertices 1 Å along the direction of the surface normal,
creating, in effect, a mirror of the original matching vertices. An alignment is
then performed to minimize the root mean square distance between the
patching vertices.

In the second step, we perform an explicit alignment of the patch vertices,
starting from the previous rough alignment step. The purpose of this step is to
accurately estimate the similarity between the 2 patches. The alignment step
is implemented using a Monte Carlo simulated annealing algorithm that
maximizes the overlapping of the vertices of the 2 patches.

The overlapping of the 2 patches X and Y is measured using a scoring
function E(X,Y) � �iF(di). Here, di � minj{�ri � rj�} is the smallest distance
between vertex vi in patch X and any vertex vj in patch Y; and F(d) � d2 � dcuotff

2

is the penalty for nonoverlapping vertices. The idea is to penalize any points
in patch X that cannot fit in patch Y within the sampling accuracy dcutoff. We
choose dcutoff � 0.75 Å, which matches the average neighboring distance
between vertices. To consider the directionality of each patch, we also create
an ‘‘auxiliary patch’’ by shifting each vertex by 1 Å along the surface normal
direction. The final score is the summation of the 2 overlapping scores for both
the original patch and the auxiliary patch: EPSS � E(X,Y) �E(Y,X)� E(X�,
Y�)�E(Y�,X�), where X� and Y� are the auxiliary patches of X and Y, respectively.

PDB Screening Dataset. The structure database we use for screening is a
snapshot of the Protein Data Bank created on January 7th, 2008. We first
separate each PDB file into different chains based on the chain ID, and all
atoms without a chain ID (mostly solvent) are discarded. By parsing the
metadata and residue information in the PDB files, we eliminate the DNA and

RNA chains. We also eliminate chains that contain only metal, water, or other
small cofactors. The final number of valid chains is 107,592.

We select 2 enzyme-inhibitor sets and search for patch similarity in the PDB.
The first inhibitor set contains alpha-chymotrypsin inhibitors. To find known
chymotrypsin inhibitors, we first search the Protein Data Bank Web interface
using the keywords ‘‘chymotrypsin inhibitor,’’ and manually check the SCOP
(24) classification (1.73 version) of the search results to locate the SCOP protein
entries that correspond to real alpha-chymotrypsin inhibitors. For each such
entry we search the SCOP database and find all PDBIDs and chain IDs of the
proteins that belong to the same entry. The reason for such an approach is that
all chymotrypsin inhibitors have diverse sequence similarity and fold, and
therefore cannot be identified by searching only sequence or fold similarity.
Furthermore, the inhibitors themselves are not always annotated as chymo-
trypsin inhibitors in the PDB files. For the second set that contains uracil-DNA
glycosylase inhibitors, we simply search with the keywords ‘‘uracil glycosylase
inhibitors’’ through the text of the PDB files and manually select the inhibitors
from the searching results. In total, we collect 243 chymotrypsin inhibitor
domains (Table S5) and 26 uracil-DNA glycosylase inhibitor domains (Table S6)
from the PDB snapshot.

Screening Protocol. For each protein structure, we first calculate the DFSS
scores of all possible patches as compared to the query patch, and kept the top
10% of the best-scoring (DFSS) patches for more accurate AFSS scoring. We
select the query patch whose center vertex is located in the middle of the
binding interface. There is some ambiguity regarding which vertex to select.
However, the calculations are not sensitive to vertex selection, as searches are
span to neighboring patches within 2.5 Å from the selected vertex. The 5
top-scoring (AFSS) patches, which are separated by at least 2.5 Å, are then
explicitly aligned with the query patch using the methods previously de-
scribed. The best EPSS score is reported as the final similarity score for this
structure. The EPSS scores, as well as the translation matrix, are reported in an
output file for further analysis and alignment of protein structures. Finally, all
protein domains are ranked according to the best EPSS, and those with the
best score are expected to have local surface patches that are most similar to
the query surface patch.
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