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Realistic computational models of single neurons require compo-
nent ion channels that reproduce experimental findings. Here, a
topology-mutating genetic algorithm that searches for the best
state diagram and transition-rate parameters to model macroscopic
ion-channel behavior is described. Important features of the algo-
rithm include a topology-altering strategy, automatic satisfaction
of equilibrium constraints (microscopic reversibility), and multiple-
protocol fitting using sequential goal programming rather than
explicit weighting. Application of this genetic algorithm to design
a sodium-channel model exhibiting both fast and prolonged inac-
tivation yields a six-state model that produces realistic activity-
dependent attenuation of action-potential backpropagation in
current-clamp simulations of a CA1 pyramidal neuron.

T he importance of modeling ion channels has been under-
stood since Hodgkin and Huxley’s seminal work with the squid

giant axon (1). Subsequently, the development of the patch-clamp
method (2) enabled the characterization of the properties of a
wide range of channels, and intensive efforts followed to produce
quantitative models that could predict and explain specific ion-
channel behavior (3–7). Such efforts have led to two broad classes
of models: those describing single-channel and gating currents,
and those describing macroscopic currents.

Models of single-channel and gating currents can be used to ana-
lyze properties such as open-channel probabilities, dwell times,
and activation kinetics; they therefore facilitate an improved
understanding of channel biophysics (3–5, 7–9). By contrast, mod-
els of macroscopic currents are usually intended as empirical tools
as part of larger compartmental models of neurons. Such a macro-
scopic model may not necessarily describe the actual molecular
state changes of the channel; the goal is rather for it to function
as a “black-box” that reproduces the mean behavior of a popula-
tion of channels. Hodgkin and Huxley’s (1) original formulation
of sodium- and potassium-channel models is a prime example of
this case, and its basic formalism continues to be widely used to
generate empirical ion-channel models.

An alternative to the Hodgkin–Huxley formalism is the state-
dependent modeling approach (3). In reality, state-dependent
models subsume Hodgkin–Huxley models because the latter can
be recast as the former (3). State-dependent models are more gen-
eral, however, because they can describe certain behaviors more
easily than Hodgkin–Huxley type models, such as having widely
different transition rates into and out of a given state (10). In gen-
eral, the gold standard for the use of state-dependent models is
single-channel recording (3, 5, 11), but the state-dependent for-
malism is also often employed in models of macroscopic currents
(12–15) because of the generality and flexibility it affords.

Methods to make empirical state-dependent models conform to
data have been studied extensively and have involved a multitude
of techniques such as hand fitting (12–14, 16), principal-axis fitting
(17), maximum-likelihood estimation (5, 7, 17, 18), and genetic
algorithms (15), among others. Here, we present a new fitting tech-
nique based on a topology-mutating genetic algorithm. Genetic
algorithms have a number of useful characteristics: First, they
have been shown to explore a large area of parameter space with
relatively quick convergence, especially for problems with many

parameters (19). Second, they are easily parallelizable. Third,
they have been successfully applied to neuronal modeling, both
for Hodgkin–Huxley-type ion-channel parameters and for com-
partmental neuronal models with voltage-activated conductances
(15). Here we show that if the ion-channel model is formulated
properly, genetic algorithms provide a natural way to incorporate
changes in model topology as mutations.

The algorithm presented here has several key features. Most
notably, whereas other published optimization algorithms fix the
model topology and optimize the rate constants, our algorithm
searches over the space of model topologies and the space of rate
parameters simultaneously. In order to design such an algorithm
appropriate for state-dependent ion-channel models, we formu-
lated an automated, computationally efficient method to satisfy
the principle of microscopic reversibility, an equilibrium condi-
tion that imposes constraints on topologies with loops (20, 21).
Finally, our algorithm uses a sequential approach, also known as
goal programming (22), to optimize multiple protocols without
the need to assign weights to each of the objective functions. The
ability of this genetic algorithm to select and examine topologies
not previously explored demonstrates its flexibility in developing
working empirical models.

We applied this genetic algorithm to devise a sodium-channel
model that exhibits both fast and slow inactivation. Fast inactiva-
tion refers to a nonconducting channel state that follows quickly
after depolarization and activation (within milliseconds) and from
which channels recover quickly when the voltage is restored to
resting levels (1). In response to either sustained depolarization
(23, 24) or a train of depolarizing pulses (16, 25), however, the
fraction of sodium channels available for activation also decreases
rapidly, but in this case recovery occurs much more slowly, on the
order of seconds rather than milliseconds. This form of inactiva-
tion has therefore been called “prolonged” or “slow” (16, 25).
The presence of such widely disparate time scales makes the
creation of state-dependent models of these channels a chal-
lenge. At the same time, the effect of prolonged inactivation
on processes such as action-potential backpropagation (26, 27),
transitions from bursting to spiking (28), and dendritic spiking
(29, 30) makes the development of accurate models of prolonged
inactivation important for computational simulations of neuronal
function.

Results
To ensure the generation of a model with proper behavior over
a wide range of time scales and voltages, we required it to fit
macroscopic current data from voltage-clamp experiments detail-
ing the voltage-dependence of peak activation and steady-state
inactivation (31), the voltage-dependence of the activation and
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Fig. 1. Summary of voltage-clamp simulation behavior for the
optimal model under the various fitting protocols. (A) Topology
of the optimal model. The blue state (state 3) corresponds to the
open conductance state. (B) Voltage-dependent activation and
inactivation curves for the model (solid lines) and from experi-
ments (31) (points and dashed lines). (C) Activation and inacti-
vation time-constant curves for the model (solid lines) and from
experiments (14) (points and dashed lines). (D) Entry into and
recovery from prolonged inactivation induced by a train of 20 Hz
depolarizing pulses. The first 1,000 ms show the decline in peak
open fraction resulting from the 20 Hz train. The remaining points
represent the peak open fraction during depolarizing test pulses
delivered at various intervals and comparison with experimental
data (16) (dashed line). (E) Two-phase recovery from inactivation
induced by a single depolarizing pulse. The lower frame is a close-
up of the first 20 ms, showing the initial phase of the two-phase
recovery from a single pulse and comparison with experimental
data (16) (dashed line). (F) Model response (solid line) to a single-
step depolarization from −70 mV to −1 mV, showing agreement
with the experimentally observed time course of activation and
inactivation (14) (dashed line).

fast-inactivation time constants (14), the time course of entry into
and recovery from prolonged inactivation (16), and the two-phase
recovery from a single depolarizing pulse (16), in that order. Start-
ing with a population of 100 randomly generated models with
different topologies and numbers of states, we ran the algorithm
with 3,000 generations per protocol by using a goal-programming
approach with an error tolerance of 10% (see Materials and Meth-
ods). The algorithm took approximately two weeks of run time
to converge on a parallel cluster with 16 processors; during this
time, more than two million models with varying topologies were
examined.

The model to which the algorithm converged consisted of six
states and seven pairs of directed edges (Fig. 1A), with rate para-
meters given in Table 1. This model reproduced the experimental
data for all the protocols (Fig. 1 B–F) with an average error
of 1.8%. This six-state topology has not been proposed in any
previous studies. In addition, analysis of the topologies of inter-
mediate best-fit models (Fig. 2 and Movie S1 in the SI Appendix)
shows that the algorithm generated models with between four and
eight states at various points throughout the optimization process.
This finding demonstrates that the algorithm is not confined to
optimizing the parameters of one or two topologies but does
indeed evaluate a wide range of possible model structures.

The fitting of the first few protocols was accompanied by a
rapid reduction of the error in the initial generations; later pro-
tocols took longer to fit, due to the larger number of constraints
imposed by the goal-programming approach (see Fig. S1 in the
SI Appendix). The presence of error fluctuations in the earlier pro-
tocols during later generations indicates that the algorithm makes

use of the leeway afforded by the 10% tolerance constraint (see
Materials and Methods).

In order to qualitatively assess the robustness of this algorithm
to initial conditions, we performed three additional runs with dif-
ferent random initial populations. All runs generated models with
identical topology to the optimal model presented here, but one
of the three contained an extra edge (see Tables S1 and S2 in

Table 1. Rate parameters for the optimal six-state model

rij a b

r31 5.218 0.1066
r32 2.187 0.04433
r52 6.863 0.2200
r43 −11.53 0.03047
r63 0.5124 0.005264
r54 −2.802 0.05300
r65 −3.671 0.04366
r13 −5.018 −0.1773
r23 −2.819 −0.1498
r25 −4.085 −0.05757
r34 −18.68 −0.000002500
r36 14.85 0.2956
r45 −1.599 0.0000
r56 16.61 0.4175

The topology of this model is given in Fig. 1A of the main text. Rate con-
stants are in the from rij = exp(a + bV ), where rij is the rate from state j to
state i.
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Fig. 2. Intermediate topologies. The best-performing topologies at various
intermediate generations during the genetic algorithm optimization routine.

the SI Appendix for the results of two of these runs). In all three
alternate models the rate parameters were slightly different, but
the overall behavior of the models was qualitatively similar to the
optimal model. Thus, the algorithm reproducibly converged to a
six-state topology as providing the best fit to the experimental data.

To test the ability of models with fewer states to fit the data,
we conducted a run with a fixed four-state topology with all-to-
all connectivity. This optimization procedure generated a model
(data not shown) that could reproduce either fast or slow kinetics,
but not both simultaneously, suggesting that a four-state topol-
ogy is insufficient to characterize the observed range of behaviors
on both the fast and slow time scales. A similar procedure with a
five-state topology improved the fits of the channel kinetics, but
resulted in poorer fits to the voltage-activation curve.

Because the algorithm generated a model with a unique topol-
ogy(Fig.3AUpperRight), thepathwayscorresponding toactivation
and the two types of inactivation were not immediately evident.
By examining the state occupancies during the induction of pro-
longed (Fig. 3A) and fast (Fig. 3B) inactivation, it is clear that this
model contains a slow-inactivated state, where channel occupancy
accumulates during the induction protocol. This state is mainly
accessed through the fast-inactivated state. Apart from these two
states and the open state, there are two identifiable closed states
that the channel occupies at rest, and a transition state that never
achieves a high degree of occupancy in the protocol shown here
but is occupied more substantially at larger depolarizing steps.
The existence of this transition state improves fits of the voltage-
activation curve at voltages beyond 0 mV. Thus, a model with a
five-state topology fits the data well at most voltages, but a sixth
state improved the overall accuracy of the model because of better
fits at larger depolarizations. As a final check, the model behaves
properly in response to a range of voltage-step pulses (Fig. 3C).

Although the analysis of state occupancies does not necessar-
ily provide a prediction of actual channel conformational changes,
the identification of an appreciable fast-to-prolonged-inactivation
pathway suggests that this model will reproduce experimen-
tal observations beyond those used in the fitting protocols.
Specifically, the existence of this pathway has been posited to
explain the experimental observation that slow inactivation is
induced fully by long depolarizations (16). Simulation of this
protocol (see Fig. S2 in the SI Appendix) shows that our model
reproduces the proper behavior. It is reassuring that this behavior

emerged despite not being a fitting constraint, as the goal is
to use the model in simulations other than those tested during
the optimization. On a similar note, the removal of the slow-
inactivated state and its connecting edges from the six-state model
resulted in a five-state topology exhibiting only fast inactivation.
(See Table S3 in the SI Appendix for the rate constants after an
additional fixed-topology optimization to improve accuracy.)

We also tested models with additional states. In particular, we
added two additional states to a previously-developed 12-state
sodium-channel model (12), fixed the topology, and used the

Fig. 3. Dynamics of the optimal model. (A) State occupancies during entry
into prolonged inactivation in response to a train of 2-ms, 50-mV ampli-
tude pulses at 20 Hz. Topologies of the optimal six-state model are shown
at the upper right. The channel accumulates in the prolonged-inactivation
(black) state upon successive depolarizing pulses. (B) Occupancies of the var-
ious states during a single 2-ms, 50-mV amplitude depolarizing step, and for
a 10-ms recovery period. During the depolarization, the channel opens (blue
line) and then enters the fast-inactivated state (red line), through which it
accesses the prolonged-inactivation state (black line). Upon repolarization,
the channel starts to recover into the two closed (green and orange lines)
states. The sixth state (purple) is a transition state. (C) Current traces for a
channel with 1-nS peak conductance in response to a range of step pulses,
assuming a sodium-reversal potential of 40 mV.

Menon et al. PNAS September 29, 2009 vol. 106 no. 39 16831

http://www.pnas.org/cgi/data/0903766106/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0903766106/DCSupplemental/Supplemental_PDF#nameddest=SF2
http://www.pnas.org/cgi/data/0903766106/DCSupplemental/Appendix_PDF
http://www.pnas.org/cgi/data/0903766106/DCSupplemental/ST3_Pdf
http://www.pnas.org/cgi/data/0903766106/DCSupplemental/Appendix_PDF


Fig. 4. Compartmental simulation using the ion-channel model. The opti-
mal model was incorporated into current-clamp simulations to examine the
distance-varying degree of activity-dependent attenuation of a train of back-
propagating action potentials (bAPs). (A) Morphology of reconstructed CA1
pyramidal neuron showing attenuation of the bAP train at the soma and
two different apical dendritic locations. (B) Normalized amplitudes of the
first and last spike in a train of bAPs at various locations throughout the den-
dritic tree, in a simulation with a mixture of fast-only and slow-inactivating
sodium channels. The fraction of total sodium conductance contributed by
the slow-inactivating type is 100% in the distal dendrites and decreases lin-
early with distance to 0% in the soma. The somatic current injection was 0.15
nA for 800 ms. The solid and dashed lines represent fits of the experimental
data for the first and last APs respectively, extrapolated from data (27). (C)
Same as B, but using only sodium conductance with fast inactivation.

genetic algorithm to optimize the rate constants. The resulting 14-
state model, as shown in Fig. S3 and Table S4 of the SI Appendix,
did not produce a significantly better fit than the six-state model.
Simulations with the 14-state model, of course, require more than
twice the amount of computational effort than the six-state model.

Given that the ultimate purpose of this algorithm is to devise
models that can be used in compartmental simulations of neurons
with branching dendrites and multiple conductances, we incorpo-
rated our sodium-channel model into a model of a CA1 pyramidal
neuron (32). We examined the activity-dependent attenuation of
backpropagating action potentials (26, 27, 33). Because prolonged
inactivation of sodium channels has been implicated in this phe-
nomenon (25, 34), we inserted a combination of sodium-channel
models having fast inactivation alone and having both fast and
prolonged inactivation, with the latter comprising a larger frac-
tion of the total in the dendrites (see Materials and Methods), as
suggested by experimental observations (16).

The simulations (Fig. 4 A and B) showed that this model
produced accurate action-potential firing and backpropagation
on both the fast (during individual action potentials) and slow
(over the course of multiple backpropagating action potentials)
time scales. In addition, eliminating the prolonged inactivation
of the sodium conductance abolished the activity dependence of
action-potential backpropagation (Fig. 4C). Further simulations
showed that prolonged inactivation of sodium channels resulted
in experimentally observed inhibition of dendritic spikes by prior
local depolarization (29, 30) (see Fig. S4 in the SI Appendix).

Discussion
A standard approach for the development of empirical state-
dependent models has been to select a topology (usually based on
or pieced together from single-channel studies) and optimize the
transition-rate parameters (12–17, 35, 36). This inverse channel-
fitting problem (37) has been extensively studied, and a number of
different optimization techniques have been used (37). A common
theme that runs through the published techniques, however, is that
the model topology is constrained at the start.

The results from the algorithm presented here show that opti-
mization of channel models does not require the a priori constraint
of fixing the topology, and the burden of doing so can be shifted to
the computer. One problem with fixing the topology, of course, is
that one may have insufficient transitions to capture the range of
experimental behavior. A topology with a large number of states
and edges can be selected beforehand, but this can result in more
transitions and rate parameters than necessary, which in turn can
lead to slower computation, which is a disadvantage when per-
forming large-scale simulations. Although we have not performed
a systematic analysis of whether the topology-mutating genetic
algorithm generates a minimally complicated model, the fact that
the final model contains only six states (and five states with-
out prolonged inactivation), as opposed to the eight- or 12-state
sodium-channel models found in the literature (12, 13), suggests
that the models it develops are not overly complicated.

In addition to the topology-mutating aspect, the automatic
satisfaction of microscopic reversibility allows for the computa-
tionally efficient generation of models which satisfy equilibrium
constraints. For optimization of fixed topologies, the selection of
independent rate constants based on microscopic reversibility can
be done by hand. This approach is not convenient for an algorithm
that needs to explore multiple topologies in an efficient manner,
however. Alternative methods to ensure microscopic reversibility
have been devised, including the identification of ordered cycles
and spanning trees (21). Our approach, however, recasts the free
parameters not as the individual rates themselves, but as the sums
and differences of the logarithms of the rates (see Materials and
Methods); in this way, model-rate parameters for any given topol-
ogy can be made to satisfy microscopic reversibility automatically
with minimal computational effort.

A second important characteristic of the algorithm described
here is the goal-programming approach. To generate a model that
captures several distinct behaviors, one must by definition have
multiple experimental protocols covering a range of voltages and
time scales. A standard approach is to assign weights to the errors
associated with the different protocols and to balance the perfor-
mance of the model under one protocol with its behavior under the
others. A difficulty with this approach, however, can arise when
combining the errors; in particular, the minima associated with
each protocol’s error can appear in the weighted sum, and thus the
total error can have many local minima. The goal-programming
approach, on the other hand, optimizes the error for each pro-
tocol individually while merely constraining the error associated
with previously optimized protocols to not increase beyond some
set tolerance (22). Thus, with goal programming at each step of
the sequential optimization one is only dealing with minima of the
individual protocol being examined.

Although one does not need to assign weights when goal pro-
gramming is used, one does need to assign a sequential order to
the protocols. In general, this ordering could remain arbitrary, but
in the present case we have found that to a certain extent the pro-
tocols have an implicit hierarchy. For example, in order to exhibit
proper fast- and slow-inactivation kinetics, the model must have
the correct amount of activation. Similarly, the model must exhibit
the correct degree of prolonged inactivation before its recovery
profile can be fit. As a result, for this example we found the goal-
programming approach to be more straightforward than choosing
protocol weights. Nevertheless, selecting the protocol order is cru-
cial to the optimization process; indeed, an alternate run of the
algorithm with a random protocol order resulted in unacceptable
fits.

The model generated by this algorithm captures all the chan-
nel activation and inactivation kinetics throughout the range
of experimental voltages and time scales more accurately than
previously published sodium-channel models. A prior qualita-
tive Hodgkin–Huxley-based slowly inactivating model (38) repro-
duced peak activation, steady-state inactivation, and entry into
slow inactivation but did not accurately model the recovery from
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slow inactivation. Previous state-dependent models reproduced
the kinetics of entry into and recovery from prolonged inactivation
(16, 25) but did not exhibit proper peak activation, steady-state
inactivation, and kinetics of activation and entry into fast inacti-
vation. In contrast, this model reflects the kinetics of activation,
entry into and recovery from fast inactivation (Fig. 1 C and F)
as closely as other six-state, non-slow-inactivating models (14), in
addition to capturing the kinetics associated with prolonged inac-
tivation. Improvements could potentially be realized, of course,
by re-running the fitting algorithm with additional experimental
data from new protocols to further constrain the model.

We emphasize that the topologies generated by this algorithm
are not intended to reflect molecular reality. Examination of the
optimal model (Fig. 3) shows that recovery into one of the closed
states necessitates a transition through the open state. If this tran-
sition took place in actual channels, brief channel openings would
be evident in single-channel recordings during the recovery phase,
an observation which has not been made experimentally. In the
model, the transition from the open to the closed state during
the recovery phase is much faster than entry into the open state,
so on the macroscopic scale no appreciable accumulation in the
open state (and hence no appreciable current) is observed during
recovery from prolonged inactivation (Figs. 1 and 3).

A remaining question is the effect of various parameters on
algorithm performance. First, the optimization of the first few
protocols (Fig. S1) is much more rapid than the later protocols,
suggesting that a hard limit on the number of generations could be
replaced by a dynamic criterion. In addition, the sensitivity of our
algorithm to the probabilities of mutation, the goal-programming
tolerance, and the penalty factor imposed on more complex mod-
els, has not been explored systematically. Although values for
these parameters are somewhat arbitrary, qualitative analysis dur-
ing the prototyping phase of this algorithm suggested that the
present values for these parameters result in rapid, but not pre-
mature, convergence. Optimizing these parameters for the full
algorithm would no doubt result in a more efficient search process,
although it is unlikely that the resulting algorithm would perform
drastically better than the one presented here as there is such good
agreement between the final model and the experimental data.

Finally, this genetic algorithm can be easily modified to design
ion-channel models exhibiting any specified behavior; the only
required external specifications are the fitting protocols them-
selves. To model a different ion channel, therefore, it is only neces-
sary to change these protocols, and not the state-dependent model
topology and formulation. In fact, this algorithm should not be lim-
ited merely to ion-channel models, but should be applicable to any
system representable by a Markov process with unknown underly-
ing topology. The broad applicability of this algorithm, combined
with its topology-mutating feature, makes it an ideal candidate for
optimizing ion-channel models given any set of macroscopic data.

Materials and Methods
All programs will be made available on the ModelDB database, http://
senselab.med.yale.edu/ModelDB/.

Generation of Q matrix. A state-dependent model can be characterized
by its rate matrix Q, which determines the system of ordinary differential
equations describing flow into and out of the various states (3),

d�s
dt

= Q�s. [1]

Here �s is a column vector whose components sj indicate the fraction of chan-
nels in state j. Element Qij , for i �= j, represents the transition rate from state
j to state i.∗ In addition, Qjj is the total rate at which state j is exited, and
∑

i Qij = 0.

∗This formulation is the transpose of standard notation (3); this is done so that the inci-
dence matrices in the graph-theoretic formulation to follow can be used in their standard
forms.

The connectivity information of a state-dependent model can be repre-
sented by an incidence matrix Ia. Ia is an M-by-N matrix, where M is the number
of states and N is the number of directed edges. Each column represents a
single edge, with a −1 for the originating or source state, and a 1 for the final,
or target, state (39). Given the incidence matrix Ia and an ordered vector of
rate constants �r, Q can be constructed as follows (40):

Q = Iadiag{�r}Ik . [2]

Here diag{�r} is a matrix with the components of �r along the diagonal (and
zeros elsewhere), and Ik is the transpose of the incidence matrix Ia with all
the −1s and 1s replaced by 1s and 0s, respectively.

Microscopic Reversibility. For the most general case, the rate parameters
�r can all be specified independently of one another. For systems that must
satisfy microscopic reversibility, however, a topology containing P cycles must
have P dependent rate constants (21). Alternatively, because a graph with N/2
edges (or N directed edges) and M nodes must have (N/2)−M+1 cycles, the
number of free rate parameters must equal M+(N/2)−1 (21).

The algorithm outlined here relies on the structure of the equations and
the connection between microscopic reversibility and detailed balance (20).
The latter is based upon the requirement that in the steady-state, the forward
and backward fluxes between any two states must be equal,

Qijsj = Qjisi . [3]

If fluxes are equal pairwise, then the fluxes around closed loops in oppo-
site directions must also be equal, i.e., these transitions are reversible. The
detailed balance equations can be rewritten in terms of logarithms as

ln (Qij) − ln (Qji) = ln (si) − ln (sj) [4]

for all nonzero values of Qij and Qji . If the directed edges in the incidence
matrix Ia are ordered pairwise, with the lower-numbered of the two states
as the source in the first of the two edges, then the full set of difference
equations can be written as a matrix equation connecting the logarithms of
the rate constants (in the same order as in the vector �r) with the logarithms
of the equilibrium state variables,

D ln (�r) = Ie ln (�s). [5]

Here D is a rectangular diagonal matrix with Di,2i−1 = −1 and Di,2i = 1, the
rows of Ie consist of the even columns of the incidence matrix Ia, and ln (�r)
and ln (�s) are vectors formed by taking logarithms componentwise of �r and �s.

For a fully connected network topology, the matrix Ie has a single null vec-
tor consisting of all 1’s (39). Thus, there are M −1 independent parameters
(where M is the number of states) in ln �s; because the equations only involve
the ratios of the state occupancies, an overall scaling constant is omitted.

The constraints imposed by detailed balance generate N/2 equations. There
are a total of N rates that need to be specified, however, because each
directed edge has its own corresponding rate. The additional N/2 equations
needed to completely determine each rate can be found by specifying the
sum of the logarithms for each pair of forward and backward rate constants,

abs(D) ln (�r) = ln (�k), [6]

where abs(D) is the matrix D with −1’s replaced by 1’s. The components of �k
are constants representing the products of the forward and backward rates
for each edge.

Therefore, with this approach the free parameters for any given model
are the logarithms of the steady-state occupancies of each state, less one,
and the sums of the logarithms of each pair of rates. For each pair of rates,
there is one equation for the difference of their logarithms and one for their
sum, so obtaining the rates from the free parameters is straightforward.

Voltage Dependence. To incorporate voltage dependence into the rates,
all of the independent parameters, i.e., ln �s and ln �k, should depend upon the
voltage. The simplest choice is to use a linear function, �a + �bV . In this case,
both the rates and the equilibrium-state occupancies become exponential
functions of the voltage. This basic formulation is essentially a version of the
one-ion symmetrical barrier pore model (41). We also tested two alternative
formulations, the first being a quadratic function, �a + �bV + �cV 2, and the sec-
ond a piecewise linear function, with different constants �b for positive and
negative voltages. The quadratic formulation did not yield significantly bet-
ter models and so is not discussed here. The piecewise linear model reduced
the matrix stiffness at higher voltages. This model’s optimal rate constants
are given in Table S5 in the SI Appendix.
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Genetic Algorithm. Models were ranked according to the squared error
between the experimental data and the simulation results for the six differ-
ent protocols described in the text. A final protocol was added to reduce the
stiffness of the Q matrix by decreasing the ratio of the largest and smallest
nonzero eigenvalues. A more complete description of the fitting protocols is
provided in the supporting information online. In addition, the error value
for a given model under the protocol being optimized was multiplied by
1 + (N/100), where N represents the number of directed edges; this penalty
factor is used to favor models with simpler topologies in order to keep the
size from growing without bound.

The genetic algorithm follows the goal-programming approach (22) to
address the multiobjective nature of this optimization. Protocols are opti-
mized sequentially; for any given run, only the error from a single protocol is
optimized, with the constraint that the error from each previously optimized
protocol remains within a certain tolerance. This tolerance was set at a value
10% above the lowest error found for each protocol.

After the population of models is ranked, some fraction of the worst
models is replaced by “offspring” of existing models. To generate an off-
spring model, two parents are chosen by using tournament selection (42).
If the parents have identical topologies, the offspring model is created by
using a two-point cross-over on the parents’ parameter vectors (42). If the
parent topologies are different, new parents are selected until two with
identical topologies are found. If 20 successive attempts to select parents are
unsuccessful, the model is mutated instead of being replaced by an offspring
model.

The remaining models in the population, with the exception of the best
model, are mutated. Mutation consists of four possibilities:

1. Addition of an edge: Two existing states are randomly selected, and
an edge is created between them. A pair of values (corresponding
to the voltage-independent and -dependent portions of the sum
of the logarithms of the transition rates) is drawn from a normal
distribution and appended to the parameter vector. If the states hap-
pen to be connected already, then the algorithm adds a new state,
as described below.

2. Subtraction of an edge: Two connected states are selected, and the
edge between them is deleted. If, after edge subtraction, the topol-
ogy consists of a disconnected graph, the segments not containing

the open state are deleted. The corresponding pair(s) of values from
the parameter vector are also removed.

3. Addition of a state: A new state is created and randomly connected
to an existing state. Two pairs of values are drawn from a normal dis-
tribution and are added to the parameter vector: one set after the
2(M − 1)th parameter (corresponding to the new state) and another
set at the end of the parameter vector (corresponding to the new
connecting edge).

4. Change of parameters: The topology is unchanged, but each para-
meter is altered with some mutation probability. This is the default
mutation operation.

The genetic algorithm was run for 3,000 generations per protocol for
seven different protocols by using the goal-programming approach, with a
population size of 100 models per generation. The initial population was gen-
erated randomly and contained model topologies with between three and
eight states. In each generation, the best model was carried over unchanged,
80% of the population was replaced by offspring, and the remaining models
were mutated. The probabilities of edge addition, subtraction, and parame-
ter mutation were 5%, 10%, and 7%. Parameters were mutated by using
the formula pnew = pold(1 + Z), with Z being a standard Gaussian random
variable. We used 16 processors in a parallel cluster to speed up the optimiza-
tion algorithm by having 15 slave processors evaluate the error for multiple
individuals in the population.

Neuronal Simulations. Multicompartmental simulations were carried out
by using the NEURON software package (43). Two types of sodium con-
ductance were used: the optimal channel model exhibiting prolonged-
inactivation, and the model with only fast recovery from inactivation
obtained by eliminating the prolonged-inactivation state. The amount of
slowly inactivating sodium as a proportion of total sodium conductance
varied from 0% at the soma to 100% in distal dendrites, reflecting the exper-
imentally observed gradient of sodium channels exhibiting prolonged inac-
tivation (16). Additional details associated with the compartmental models
are provided in the SI Appendix.
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