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V
ision begins when light enters
the eye and falls onto the neu-
ral retina, a thin tissue in the
back of the eye. In the neural

retina, photoreceptor cells (cones for
high visual acuity; rods for night vision)
capture and transform the light into
electrophysiological signals, which are
relayed by retinal ganglion cells to the
brain. Lining the neural retina is a
single-layered, often darkly pigmented,
transporting epithelium—the retinal pig-
ment epithelium (RPE)—that forms the
outer blood–retinal barrier and regulates
retinal physiology. The RPE interacts
intimately with cones and rods, and to-
gether they constitute the outer retina.
Atrophy of the RPE or photoreceptors
leads to vision loss, as in age-related
macular degeneration, a leading cause
of blindness in people age 65 and older
in developed countries (1). How the hu-
man retina forms is both scientifically
fascinating and clinically important be-
cause such knowledge may lead to bet-
ter diagnosis, prevention, and treatment
of visual impairment. However, direct
examinations of the molecular events
unfolding as a cell begins its journey to
becoming a retinal cell in our own spe-
cies have been limited; current knowl-
edge is mostly extrapolated from studies
of other mammals, mice in particular, as
well as a range of nonmammalian verte-
brates. This landscape is changing, as a
study by Meyer et al. (2) in this issue of
PNAS offers a way to look into early
events in human retinogenesis.

Meyer et al. (2) report that a targeted
and stepwise differentiation process
channels human embryonic stem (ES)
cells and induced pluripotent stem (iPS)
cells through a sequence of stages that
mimic retinogenesis during vertebrate
embryonic development to eventually
differentiating into RPE cells and cones,
end products similar to those reported
by others (3–5). During this stepwise
differentiation process, the pluripotent
stem cells progressively narrow their po-
tential fates to the eye field, then to the
optic vesicle, the optic cup, retinal pro-
genitors, and finally to differentiated
cells of the retina (Fig. 1). As the cells
journey through these stages, they ex-
press regulatory genes that define the
corresponding stage. For instance, cells
at the eye field-equivalent stage express
a number of eye-specifying genes (6),
including Pax6, Rx, and Six3. This is fol-
lowed by the expression of Mitf, a gene
widely expressed in the optic vesicle and
shown to be important for promoting
and maintaining RPE properties (7–9).
As the process continues, the population
of Mitf� cells decreases, while the popu-
lation of cells expressing Chx10 in-
creases, reminiscent of the ‘‘optic vesicle
3 optic cup’’ transformation, during
which the identities of RPE vs. neural
retina are established by key regulators
including Mitf (pro-RPE) and Chx10
(pro-neural retina) (10, 11). Further, ex-
perimental attenuation of fibroblast
growth factor (FGF) signaling leads to
expansion of Mitf� (RPE) cell popula-
tion at the expense of the Chx10� (ret-

ina) cells, an outcome consistent with
the classic phenomenon of FGF-stimu-
lated ‘‘RPE 3 neural retina’’ transdif-
ferentiation in early chick and rodent
embryos (12). By confirming landmark
events in early retinogenesis in verte-
brates, the results show that the time
has come to learn some of the molecu-
lar underpinning as pluripotent stem
cells of our own species forfeit other
potential pathways to become special-
ized into cells of the retina.

Meyer et al. (2) observed the genesis
of cones in their experiments. During
vertebrate development, cone genesis
follows that of retinal ganglion cells, the
first-born. The cone genesis from ES/iPS
cells could reflect the cone pathway as a
default for the stem cell-derived retinal
progenitors, or the culture conditions
favoring cone genesis. After all, embry-
onic retinogenesis takes place in a
three-dimensional environment, where
various cellular, molecular, and electro-
physiological cues are spatially and tem-
porally coordinated. More than likely,
many of these cues are missing from the
in vitro system. Converting the current
two-dimensional culture model to three
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Fig. 1. Pluripotent stem cells on the path to differentiating into retinal cells. Human ES and iPS cells have
the potential to differentiate into any specialized cells, such as those in the heart, pancreas, or bone
marrow. When subjected to the targeted and stepwise differentiation process described by Meyer et al.
(2), these pluripotent stem cells embark on a special journey to becoming RPE cells and cones of the retina.
This process is sequential, going through stages of eye field, optic vesicle, optic cup, and final cell
differentiation. As cells travel along the path, their potential/plasticity decreases, whereas their commit-
ment to differentiating into specific cell types increases. This stepwise process resembles the process in
mammalian embryogenesis.
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Fig. 2. A scheme of ‘‘iPS3 eye field3 retina’’ for
autologous cell transplantation. Skin keratinocytes
are reprogrammed to give rise to iPS cells, which
are subjected to the targeted stepwise differenti-
ation process (2) to produce RPE cells or cones. The
autologous RPE or cones can then be transplanted
into the patient with atrophy of RPE or cones be-
cause of nongenetic causes. For genetic causes,
gene therapy (15, 16) needs to be incorporated.
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dimensions, along with supplementing
culture medium with factors, may in-
crease the utility of the in vitro system
in dissecting the detailed events in hu-
man retinogenesis. In addition, it may
facilitate the identification of intrinsic
and extrinsic factors that steer progeni-
tor cells to differentiate into specific
types of retinal cells for future cell
replacement.

Besides opening a way to examine the
molecular detail of human retinogenesis,
the in vitro modeling system also offers
an opportunity to scrutinize molecular
differences between human and model
organisms. Highlighting one such differ-
ence is the lack of macula in the mouse

retina. Importantly, not only is the mac-
ula responsible for high visual acuity, its
degeneration is a serious and common
cause of blindness. Identification of
those factors that contribute to making
the human retina unique will facilitate
effective translation of findings from
animal studies into clinical practice.

Notably, iPS cells can undergo the
same stepwise fate restriction or com-
mitment to give rise to RPE cells and
cones. This paves the road for elucidat-
ing the molecular mechanism underlying
RPE or cone degenerations that result
from genetic changes and for developing
patient-specific therapeutic strategies.

The generation of specific types of
retinal cells from ES cells and especially

from iPS cells is of high potential im-
pact on the development of cell replace-
ment therapies. Indeed, human pluripo-
tent stem cells can give rise to, besides
RPE cells and cones (2–5), inner retinal
neurons with functional glutamate re-
ceptors (3) and photoreceptors that re-
store some visual function in genetically
modified mice after cell transplantation
(4). Together, these studies support the
prospect of a scheme of ‘‘iPS 3 eye
field 3 retina’’ for autologous cell
transplantation (Fig. 2).
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