
Reversal of Chemoresistance and Enhancement of Apoptosis by
Statins Through Downegulation of the NF-κB pathway

Kwang Seok Ahn, Gautam Sethi, and Bharat B. Aggarwal*
Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas
M. D. Anderson Cancer Center, Houston, Texas

Abstract
We recently found that simvastatin can modulate the nuclear factor-κB (NF-κB) activation pathway,
but whether other statins have similar effects to those of simvastatin is unknown. Therefore, we
evaluated the effect six different statins on TNF-induced NF-κB activation in human myeloid
leukemia cells. We then determined whether the combination of statins and standard
chemotherapeutic agents could overcome chemoresistance and augment apoptosis. Of the six statins
evaluated, only the natural statins (simvastatin, mevastatin, lovastatin, and pravastatin), not the
synthetic statins (fluvastatin and atorvastatin), inhibited TNF-induced NF-κB activation. Simvastatin
suppressed the NF-κB activation and potentiated the apoptosis induced by doxorubicin, paclitaxel,
and 5-fluorouracil. These results suggest that different statins behave differently from one another
and that they may be useful in overcoming chemoresistance.
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1. Introduction
Statins may be the most important family of cholesterol-lowering drugs to emerge in the 21st
century [1]. Statins primarily inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA)
reductase, which is needed to produce cholesterol through the mevalonate pathway.

Recent evidence suggests that statins have pleiotropic effects and thus may be useful in the
treatment of diseases such as cancer [2–6]. Indeed, statins have been found to have anticancer
activity in various cancer cell types, including colorectal [7], colon [8], bladder [9], prostate
[10], and gastrointestinal [11] cancer, although they do not significantly reduce the risk for
breast, prostatic, colorectal, or lung cancer [12]. Browning et al [13] suggested that statins are
not associated with short-term cancer risk, but longer latency effects are possible.

Recently, we reported that simvastatin can potentiate the TNF-induced apoptosis through
down-regulation of nuclear factor-κB (NF-κB) regulated antiapoptotic gene products [14]. NF-
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κB activation has been associated with tumor cell proliferation, invasion, angiogenesis, and
metastasis through its regulation of various gene products [15]. Thus, NF-κB suppression in
cancer cells may be useful in the prevention and treatment of cancer [16]. Inducible drug
resistance has emerged as a substantial obstacle to effective cancer therapy, and NF-κB
activation may play a role in the development of chemoresistance 16[17]. In fact,
chemotherapeutic agents themselves can activate NF-κB, which leads to tumor cells’ eventual
resistance to therapy [17]. NF-κB activation has been associated with paclitaxel, doxorubicin,
and 5-fluorouracil resistance in tumor cells [18–20].

Lovastatin, mevastatin, simvastatin (a methyl derivative of lovastatin), and pravastatin are
natural statins, isolated from fermented red yeast rice; fluvastatin, atorvastatin, cerivastatin,
rosuvastatin, and pitavastatin are synthetic compounds. Natural and synthetic statins have
different biologic characteristics (Fig. 1); whether they have similar potency against NF-κB
and can potentiate the effects of chemotherapeutic agents is not understood. Therefore, we
examined the ability of six statins to suppress TNF-induced NF-κB activation and if this
inhibition overcomes chemoresistance and enhances apoptosis in human myeloid leukemia
cells. The six statins varied in their ability to suppress NF-κB activation, and simvastatin
suppressed chemotherapeutic agent-induced NF-κB activation, leading to potentiation of
apoptosis.

2. Materials and Methods
2.1. Materials

All statins were obtained from LKT Laboratories, Inc. (St. Paul, MN). A 50 mM solution of
statins was prepared in 100% dimethyl sulfoxide, stored as small aliquots at −20°C, and then
diluted as needed in cell culture medium. Bacteria-derived recombinant human tumor necrosis
factor (TNF), purified to homogeneity with a specific activity of 5 × 107 U/mg, was kindly
provided by Genentech (South San Francisco, CA). Penicillin, streptomycin, Iscove’s modified
Dulbecco’s medium, and fetal bovine serum were obtained from Invitrogen (Grand Island,
NY). Paclitaxel, doxorubicin, and 5-fluorouracil were obtained from Sigma-Aldrich (St. Louis,
MO).

2.2. Cell lines
Human myeloid leukemia KBM-5 cells were obtained from American Type Culture Collection
(Manassas, VA). KBM-5 cells were cultured in Iscove’s modified Dulbecco’s medium
supplemented with 15% fetal bovine serum. Media were also supplemented with 100 U/mL
of penicillin and 100 µg/mL of streptomycin.

2.3. NF-κB activation
We performed an electrophoretic mobility shift assay (EMSA), essentially as previously
described [21]. In brief, nuclear extracts prepared from TNF-treated cells (1 × 106/mL) were
incubated with 32P-end-labeled 45-mer double-stranded NF-κB oligonucleotides (15 µg of
protein with 16 fmol of DNA) from the human immunodeficiency virus long terminal repeat
5′-TTGTTACAA GGGACTTTC CGCTG GGGACTTTC CAGGGAGGCGTGG-3′
(boldface indicates NF-κB-binding sites) for 30 minutes at 37°C, and the DNA-protein
complex that formed was separated from free oligonucleotides on 6.6% native polyacrylamide
gels. A double-stranded mutated oligonucleotide, 5-TTGTTACAA CTCACTTTC CGCTG
CTCACTTTC CAGGGAGGCGTGG-3′, was used to determine the specificity of NF-κB
binding to DNA. The specificity of binding was also evaluated by competition with the
unlabeled oligonucleotide. The dried gels were visualized with a Storm 820 phosporimager,
and radioactive bands were quantified using Imagequant software (Amersham, Piscataway,
NJ).
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2.4. Cytotoxicity assay
The effect of simvastatin on the cytotoxic effects of chemotherapeutic reagents was determined
by the MTT uptake method, as previously described [22]. In brief, 5000 cells were incubated
with simvastatin for 12 hours in triplicate on a 96-well plate and then treated with various
concentrations of reagents for 24 hours at 37°C. Thereafter, an MTT solution was added to
each well. After a 2-hour incubation at 37°C, extraction buffer (20% SDS and 50%
dimethylformamide) was added, the cells were incubated overnight at 37°C, and the optical
density was measured at 570 nm using a 96-well multiscanner (MRX Revelation; Dynex
Technologies, Chantilly, VA).

2.5. Live/dead assay
To measure apoptosis, we used the live/dead assay (Molecular Probes, OR), which determines
intracellular esterase activity and plasma membrane integrity. This assay uses calcein, a
polyanionic dye, which is retained in live cells and provides green fluorescence [14]. It also
uses the ethidium monomer dye (red fluorescence), which can enter cells only through damaged
membranes and bind to nucleic acids but is excluded by the intact plasma membrane of live
cells.

In brief, 1 × 106 cells were incubated with 5 µM simvastatin for 12 hours and then treated with
100 nM paclitaxel, 100 nM doxorubicin, and 5 µM 5-fluorouracil for 24 hours at 37°C. Cells
were stained with the live/dead reagent (5 µM ethidium homodimer and 5 µM calcein-AM)
and then incubated at 37°C for 30 minutes. Cells were analyzed under a fluorescence
microscope (Labophot-2; Nikon, Tokyo, Japan). The % values were derived by counting of
the red and green cell numbers manually.

3. Results
The structures of the six statins (Fig. 1) suggest that natural statin molecules are more similar
to each other than composed to synthetic molecules. The conditions used to investigate their
effects on the NF-κB pathway had no effect on cell viability (data not shown).

3.1. Only natural statins suppressed TNF-induced NF-κB activation
KBM-5 cells were pretreated with different doses of statins for 12 hours and then treated with
0.1 nM TNF for 30 minutes to activate NF-κB. Natural statins (Fig. 2, panels A–D) inhibited
TNF-induced NF-κB activation; synthetic statins (panels E and F) did not. Among the natural
statins, simvastatin was the most active, and pravastatin was the least active. Therefore, in all
subsequent studies, only simvastatin was used.

3.2. Simvastatin suppressed NF-κB activation induced by chemotherapeutic agents
Whether chemotherapeutic agent-induced NF-κB activation could be modulated by statins.
KBM-5 cells were pretreated with simvastatin for 12 hours and then with doxorubicin,
paclitaxel, or 5-fluorouracil. As shown in Fig. 3, all three chemotherapeutic agents activated
NF-κB, and simvastatin treatment suppressed this activation.

3.3. Simvastatin enhanced the cytotoxic effects of doxorubicin, paclitaxel, and 5-fluorouracil
Because NF-κB activation has been shown to suppress apoptosis [23], we determined whether
simvastatin modulated chemotherapeutic agent-induced apoptosis in KBM-5 cells using the
MTT assay. Simvastatin synergistically enhanced the cytotoxic effects of paclitaxel,
doxorubicin, and 5-fluorouracil (Fig. 4A–C).
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3.4. Simvastatin potentiated the apoptotic effects of doxorubicin, paclitaxel, and 5-
fluorouracil

We next performed the live/dead assay and found that simvastatin upregulated paclitaxel-
induced apoptosis (from 12% to 55%), doxorubicin-induced apoptosis (10% to 45%), and 5-
fluorouracil-induced apoptosis (3% to 37%) (Fig. 5A). The results of these assays suggest that
simvastatin enhances the apoptotic effects of chemotherapeutic agents. We also investigated
whether atorvastatin enhances paclitaxel-induced apoptosis. In agreement with NF-κB activity,
atorvastatin did not significantly enhance the apoptotic effect of paclitaxel (Fig. 5B).

4. Discussion
In present study, we first investigated the effect of various statins on TNF and chemotherapeutic
agents induced the NF-κB activation and apoptosis in myeloid leukemia cells. Only natural
statins (simvastatin, mevastatin, lovastatin, and pravastatin) blocked TNF-induced NF-kB
activation; synthetic statins did not. Simvastatin also suppressed doxorubicin-, paclitaxel-, and
5-fluorouracil-induced NF-kB activation in human myeloid leukemia cells. Simvastatin also
potentiated the apoptosis induced by TNF and these chemotherapeutic agents.

Our results indicate that only statins derived from fungal fermentation inhibited NF-κB
activation. Synthetic statins, fluvastatin and atorvastatin did not. Why lovastatin, simvastatin,
mevastatin, and pravastatin suppressed NF-κB activation and fluvastatin and atorvastatin did
not is unclear; Lovastatin, mevastatin, and simvastatin contain a lactone ring (Fig. 1), which
may be essential for suppressing NF-κB activation. In contrast, fluvastatin and atorvastatin are
acidic in nature. The Ki for 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase
of lovastatin, simvastatin, and pravastatin are 0.6 nM, 0.12 nM, and 2.3 nM, respectively
[24], which may also explain the difference in their activities.

Lovastatin in combination with TNF has been reported to inhibit proliferation of both murine
melanoma and leukemia cells [25]. That mevastatin can was found to suppress TNF-induced
NF-κB activation is in agreement with the results of an earlier report study in endothelial cells
[26]. Hilgendorff and colleagues [27] determined the effects of different statins on
lipopolysaccharide-induced NF-κB activation in human monocytes; and reported that
atorvastatin was the most effective in at blocking NF-κB activation, followed by simvastatin,
pravastatin, lovastatin, and fluvastatin. Why these results differ so substantially from ours is
not clear, it could relate to the inducer and cells used. Hilgendorff and colleagues [27] found
that fluvastatin inhibited NF-κB activation by only 5%; this result is similar to ours.
Chemotherapeutic agents have been shown to induce NF-κB activation through the
upregulation of anti-apoptotic gene products that leads to chemoresistance [17]. In this study,
we found that doxorubicin, paclitaxel, and 5-fluorourcil were potent inducers of NF-κB. This
NF-kB activation, however, was abrogated by simvastatin. The combination of simvastatin
and standard chemotherapeutic agents resulted in enhanced cytotoxic effects and potentiated
apoptosis in tumor cells. Thus, simvastatin by the virtue of its NF-κB inhibitory effect can
sensitize the cells to these drugs and hence overcome chemoresistance. Under identical
conditions, atorvastatin did not have any substantial effect on NF-κB activation and apoptosis.
We previously demonstrated that, concurrent with downregulation of gene expression,
apoptosis induced by TNF is potentiated by simvastatin [14]. This provides a novel opportunity
to exploit statins, not only in the prevention but also the treatment of cancer.

Overall, our results provide novel insights into statins’ role in overcoming chemoresistance
through the modulation of NF-κB. Considering an extensive experience on the safety of statins
in human subjects, Statins may be a novel approach for the treatment of various cancers.
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Fig. 1.
Structures of the natural (lovastatin, mevastatin, simvastatin, and pravastatin) and synthetic
(fluvastatin, atorvastatin) statins used.
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Fig. 2.
(A–F). Statins differ in their ability to suppress NF-κB activation in KBM-5 cells. KBM-5 cells
(1 × 106/mL) were preincubated with the indicated concentrations of statins for 12 hours at
37°C and then treated with 0.1 nM TNF for 30 minutes. Nuclear extracts were prepared and
tested for NF-κB activation as described in Materials and Methods. (G). Quantitative analysis
of NF-κB inhibitory effect of different statins.
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Fig. 3.
Simvastatin suppresses chemotherapeutic agent-induced NF-κB activation in KBM-5 cells.
KBM-5 cells (1 × 106/mL) were preincubated with 50 µM simvastatin for 12 hours at 37°C
and then treated with TNF (0.1 nM) for 30 minutes, doxorubicin (2 µM) for 6 hours, paclitaxel
(100 µM) for 8 hours, and 5-fluorouracil (100 µM) for 6 hours. Nuclear extracts were prepared
and tested for NF-κB activation as described in Materials and Methods.
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Fig. 4.
Simvastatin enhances cytotoxicity induced by chemotherapeutic agents. KBM-5 cells (5000
cells/0.1 mL) were incubated at 37°C with (A), 100 nM doxorubicin; (B), 100 nM paclitaxel;
(C), 5 µM 5-fluorouracil in the presence and absence of 5 µM simvastatin as indicated for 24
hours, and viable cells were assayed using the MTT reagent. The results are expressed as mean
cytotoxicity ± standard deviation from triplicate cultures. Determinations were made in
triplicate. Data represent the mean of three measurements ± SD. *** p <0.001, ** p <0.01.
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Fig. 5.
(A). Simvastatin potentiates apoptotic effect induced by chemotherapeutic agents. KBM-5
cells (1 × 106/mL) were incubated with chemotherapeutic agents, alone or in combination with
simvastatin, as indicated above, for 24 hours. Cell death was determined by the calcein-AM-
based live/dead assay, as described in Materials and Methods. (B). Atorvastain has no effect
on paclitaxel induced apoptosis. KBM-5 cells (1 × 106/mL) were incubated with paclitaxel,
alone or in combination with atorvastatin, as indicated above, for 24 hours. Cell death was
determined by the calcein-AM-based live/dead assay, as described in Materials and Methods.
Experiments were performed in triplicate. Data are from one representative experiment.
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